JPH0319536B2 - - Google Patents

Info

Publication number
JPH0319536B2
JPH0319536B2 JP18273784A JP18273784A JPH0319536B2 JP H0319536 B2 JPH0319536 B2 JP H0319536B2 JP 18273784 A JP18273784 A JP 18273784A JP 18273784 A JP18273784 A JP 18273784A JP H0319536 B2 JPH0319536 B2 JP H0319536B2
Authority
JP
Japan
Prior art keywords
dye
polyvinyl chloride
ultraviolet
sensing material
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18273784A
Other languages
Japanese (ja)
Other versions
JPS6161148A (en
Inventor
Isamu Yoshino
Yasohachi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Paper Manufacturing Co Ltd
Original Assignee
Mishima Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Paper Manufacturing Co Ltd filed Critical Mishima Paper Manufacturing Co Ltd
Priority to JP18273784A priority Critical patent/JPS6161148A/en
Publication of JPS6161148A publication Critical patent/JPS6161148A/en
Publication of JPH0319536B2 publication Critical patent/JPH0319536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/02Direct bleach-out processes; Materials therefor; Preparing or processing such materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/48Photometry, e.g. photographic exposure meter using chemical effects
    • G01J1/50Photometry, e.g. photographic exposure meter using chemical effects using change in colour of an indicator, e.g. actinometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 本発明は波長2000Åないし4000Åの近紫外線の
積算照度を検知しうる近紫外線検知材料に関す
る。 「産業上の利用分野および従来技術」 近年、過度の日光浴の害が指摘され特に波長の
短かい紫外線は繰り返し照射をうけると皮膚障害
を起こすといわれている。また紫外線殺菌灯、紫
外線乾燥塗料など紫外線は産業上種々の分野に用
いられており、その最適照射または過剰照射の防
止は工程管理上、安全衛生上ともに要求される。
従来、紫外線照射強度、紫外線積算照度などを測
定するには光電流変換、電解などの技術を利用す
るため、電気的な操作、測定が必要となりその結
果、装置が大きく高価なものとなつていた。本発
明者らは特定の組成物が近紫外線照射によりその
色彩を変化し、かつ化学量論理に色濃度を強くす
ることを見出し、これを近紫外線検知材料とした
簡易な測定用具を提供することを目的として研究
を重ねた結果、本願発明に到達した。本願は2発
明からなり上記の組成物からなる溶液を第1の発
明としこれを利用したシート状物を第2の発明と
する。第1の発明の溶液状組成物を検知材料とし
て、簡易測定用具に供するには、これを紫外線吸
収の少ない石英などの浅底の容器などに収めて用
いることができる。本願第2の発明は上記の溶液
状組成物をシートに塗工し、または第1の発明の
必須成分を混合することなく単一物としてシート
に積層塗工し、ラベルなどに仕上げたもので、そ
の色彩変化および色濃度変化により紫外線積算照
度を見とりもしくは簡易に測定することができ
る。本発明にいう特定の組成物とは低重合度のポ
リ塩化ビニルと特定の有色染料もしくは無色染料
とを必須成分とし前記した効果を奏するものであ
る。また単一物としてシートに積層塗工とは上記
の各単一成分の層がシート上で結合されたものを
いう。これらは同一の目的が達成されるので以下
の説明ではこれを含めて組成物ということがあ
る。 「発明が解決しようとする問題点」 ポリ塩化ビニルが熱、光、剪断力などの物理的
エネルギーによい色調変化、色濃度変化などを起
こすことは知られている。特に低重合度のもの、
酢酸ビニル等と共重合していない単独のポリマー
が上記の色変化を起こしやすい。しかしこれらの
色変化では検知材料にはなり得ない。変化量が微
少に過ぎるからである。そこで、ポリ塩化ビニル
の光分解過程に於て発生するフリーラジカルと塩
化水素に着目した。多数の実験結果より微少量の
塩化水素や分解過程で生ずるフリーラジカルの影
響を受けて化学量論的に正確な色変化を起こす有
色染料または無色染料があることを見出し、これ
らのいずれかと低重合度のポリ塩化ビニルとを共
存させると近紫外線積算照度を測定するのに適し
た材料の得られることが判つた。 本願第1の発明により低重合度のポリ塩化ビニ
ルと有色染料もしくは無色染料とを必須成分とす
る溶液状組成物であつて、波長2000Åないし4000
Åの近紫外線照射により前記有色染料もしくは無
色染料が明瞭な色彩変化および色濃度変化を起こ
すことにより近紫外線の積算照度を検知しうる近
紫外線検知材料が提供され、また本願第2の発明
により低重合度のポリ塩化ビニルと有色染料もし
くは無色染料との組成物が塗工されたシート状物
または前記低重合度のポリ塩化ビニルと有色染料
もしくは無色染料とがそれぞれ単一物として積層
塗工されたシート状物であつて、波長2000Åない
し4000Åの近紫外線照射により前記有色染料もし
くは無色染料が明瞭な色彩変化および色濃度変化
を起こすことにより近紫外線の積算照度を検知し
うる近紫外線検知材料が提供される。 「発明の構成」 以下、近紫外線、ポリ塩化ビニル、有色染料、
無色染料に区別けして第1の発明を説明しつゝ第
2の発明に言及する。 一般に紫外光源として各種の用途に実用されて
いるものは、太陽光、カーボンアーク光、水銀灯
光、キセノンランプ光等であり、何れも2000Å以
下の波長のものは含まれていないので検知範囲は
波長2000Å以上に適合するようにした。また4000
Å以上は可視部であり、可視光によつて色彩変化
および色濃度変化(以下色変化という)を起こす
物質では実用上保存条件が不利となるので本発明
では波長2000Å〜4000Åの範囲の照射光で積算照
度が求められるようにした。前記したように低重
合度のポリ塩化ビニル、酢酸ビニルなどと共重合
していない単独の塩化ビニルポリマーは波長2000
Å〜4000Åの近紫外線照射により微少量ではある
が光分解して塩化水素を生じ、分解過程でフリー
ラジカルが発生する。しかし可視光ではそれらを
無視し得る程度である。これらの低重合度のポリ
塩化ビニルのなかから本発明では平均重合度250
〜600のものを選択使用することが好ましい。平
均重合度600以上ではポリ塩化ビニルの安定性を
増し感度不良になりやすく、平均重合度250以下
のものは、ポリマー自体に遊離の塩化水素などを
含む場合があり本発明の溶液状組成物の原料とし
ては不適当だからである。またこのようなポリ塩
化ビニルは本願第2の発明において、その組成物
もしくは単一物をシートに塗工して塗膜を形成し
たときの物性が悪いという欠点もある。最も好ま
しいのは平均重合度300〜400の範囲である。 このようなポリ塩化ビニルとと組合せる有色染
料は本発明がポリ塩化ビニルと組合せて近紫外線
照射したとき色変化を起こすものを利用すること
から、色変化を与えないものは含まれない。また
この染料のみで波長2000Å〜4000Å以外の光、特
に可視光照射により色変化を強くする染料は好ま
しくない。本発明では有色染料として、酸、アル
カリにより色変化を起こす一般に指示薬とよばれ
る次の如きものが通常用いられる。 青紫色が縁色に変化する指示薬;クリスタル
バイオレツト、青紫もしくは紫色もしくは青色
が黄色に変化する指示薬;プロモフエノールブル
ー、ブロモクレゾールパープル、テトラプロモフ
エノールブルー、ブロモクレゾールグリーン、ブ
ロモチモールブルー、黄色が赤色に変化する指
示薬;チモールブルー、トロペオリンOO、メチ
ルイエロー、メチルオレンジ、メチルレツド、ニ
ユートラルレツド、クレゾールレツド、黄色が
青色に変化する指示薬;インジゴカルミン、赤
色が黄色に変化する指示薬;ブロモフエノールレ
ツド、フエノールレツド、トロペオリンOOO、
アリザリンイエローR、赤色が青色に変化する
指示薬;コンゴーレツド、赤色が無色に変化す
る指示薬;フエノールフタレイン、青色が無色
に変化する指示薬;チモールフタレインなどであ
る。なおこれらの有色染料は使用に際し必要によ
り微少量のアルカリを添加してアルカリ側色とし
て用いる。これらの有色染料を混用することも差
支えなく、またシートに塗工する場合には異種の
色彩のものを数部域に分けて与えることもでき
る。 次にポリ塩化ボニルと組合せる無色染料とはポ
リ塩化ビニルと組合せて近紫外線照射したとき無
色であつたものが着色し、色濃度変化を起こすも
ので、この機能を有しない無色染料は含まれな
い。また無色染料のみで波長2000Å〜4000Å以外
の光、特に可視光照射により着色する無色染料は
好ましくない。以上の要件を満足する無色染料の
好ましい例示として、従来感圧記録紙、感熱記録
紙などに用いられているロイコ染料を挙げること
ができ次の如きものを用いることができる。トリ
フエニルメタンフタリド系、フルオラン系、フエ
ノチアジン系、インドリルフタリド系、リユーコ
オーラミン系、スピロピラン系、トリフエニルメ
タン系、トリアゼン系、ナフトラクタム系、アゾ
メチン系、ベンゾピラン系、スピロフタランキサ
ンテン系、ヒドロキシフタラン系、ローダミンラ
クタム系などである。これらはいずれも無色であ
るが本発明の組成物として発色後は各系列の無色
染料に応じて種々の色彩が与えられ、照射時間に
対応して色濃度を増大する。なおこれらは必要に
より混合使用され、また組成物をシートに塗工す
る場合には異種色彩の発色をなすものを数部域に
分けて塗工することもできる。上記のロイコ染料
は電子供与性物質であり、ポリ塩化ビニルの光分
解過程に際し発生するフリーラジカルとの相互作
用または結果として残る塩化水素との作用で発色
が起り、化学量論的に色濃度は正確に変化し、ポ
リ塩化ビニルの光化学変化が正確に増幅されるの
で積算照度を正確に検知することが出来る。この
タイプの染料は油溶性のものが多いのでポリ塩化
ビニルと共に有機溶媒に溶解し、紫外線吸収の少
ないプラスチツク容器、石英容器などに収め本願
第1の発明の検知材料とする。その場合は低濃度
溶液として用い濃度変化は濃度計によつて求め積
算照度を算出する。本願第2の発明により視覚的
に検知する材料とするには基材たとえば紙、フイ
ルム、硝子板、金属はく等に有色染料もしくは無
色染料を単一物としてあらかじめ塗工乾燥した表
面上に同じく単一成分のポリ塩化ビニル溶液を塗
工、乾燥する。塗工の順序は問わない。ロイコ染
料は油溶性のものが多いのでポリ塩化ビニルの有
機溶媒溶液中に共存させ、また有色染料として例
示した指示薬のように水溶性、アルコール可溶性
の染料などはポリ塩化ビニルのエマルジヨン溶液
中に共存させて基材に塗工、乾燥後検知材料とす
ることなども本発明の好ましい1態様である。積
算照度を求めるには光源毎に予め用意した標準色
調、標準色濃度表と対比して積算照度が得られる
ようにする。なお有色染料もしくは無色染料の配
合比率はポリ塩化ビニルに対しそれぞれ0.2〜4
重量%の範囲で使用でき1〜2重量%が好まし
い。 「発明の効果」 本発明は以上に説明したように、低重合度のポ
リ塩化ビニルが波長2000Å〜4000Åの近紫外線照
射により事実上色彩変化および色濃度変化を起こ
さない範囲内においてそのポリ塩化ビニルを一方
の組成分として用い、他方の組成分である有色染
料または無色染料が近紫外線照射によりポリ塩化
ビニルの光化学変化を増幅して顕著な色彩変化お
よび色濃度変化を起こし、これに基づいて積算照
度を求めうるようにしたものであるから、視覚的
または濃度計などでポリ塩化ビニル自身の色変化
が認められない照射範囲内での積算照度を正確に
求めることができる。なお要に応じ本発明の効果
を害しない程度で、ポリ塩化ビニルの安定剤、酸
化防止剤、紫外線吸収剤、増感剤などを混合して
用いることができる。 実施例 1 重合度350のポリ塩化ビニル(KR−400、三菱
モンサント製)を10g、メチルエチルケトン45
g、トルエン45g、ロイコ染料(PSD−V、新
日曹化学製)0.2gより成る溶液を更にメチルエ
チルケトンを用い5倍に希釈したものとし、深さ
5mmの石英製容器に詰め、2537Åの近紫外線(水
銀灯光)を照射した。照射光の強度は0.50mw/
cm2であつた。90mw・min/cm2の積算照度即ち照
射時間180分後赤色となり、赤色濃度−照射時間
曲線は極めて再現性が良好であつた。また上記検
知液からロイコ染料を除いたポリ塩化ビニル溶液
は照射180分後において色濃度変化は零であつた。
ロイコ染料のみの溶液についてても同様であつ
た。 実施例 2 実施例1に用いたポリ塩化ビニルとロイコ染料
溶液の希釈前のものをキヤストコート紙(山陽国
策パルプ製、坪量157g/m2)に直接マイヤーバ
ー#22で塗工し、これを3回繰り返し塗装を重ね
た。塗工量は3g/m2であつた。得られた検知材
料に水銀灯光3650Å(3650Å強度0.4mw/cm2)、
フエードオメーターのアーク灯光(3650Å強度
2.6mw/cm2)、太陽光(真夏快晴気温32℃、
PM12:00〜PM3:00、3650Å強度1.0mw/cm2
を照射した。その時に得られた赤色濃度変化は次
表の通りであつた。数値は照射後のマクベス濃度
計による測定値を示す。
``Object of the Invention'' The present invention relates to a near-ultraviolet sensing material capable of detecting the integrated illuminance of near-ultraviolet light having a wavelength of 2000 Å to 4000 Å. "Industrial Application Fields and Prior Art" In recent years, the harmful effects of excessive sunbathing have been pointed out, and it is said that repeated exposure to ultraviolet rays, especially those with short wavelengths, can cause skin damage. Further, ultraviolet rays are used in various industrial fields, such as ultraviolet germicidal lamps and ultraviolet drying paints, and optimal irradiation or prevention of excessive irradiation is required for both process control and safety and health reasons.
Conventionally, to measure ultraviolet irradiation intensity, integrated ultraviolet irradiance, etc., technologies such as photocurrent conversion and electrolysis were used, which required electrical operation and measurement, resulting in large and expensive equipment. . The present inventors have discovered that a specific composition changes its color when irradiated with near ultraviolet rays and increases the color density based on stoichiometric theory, and provides a simple measuring tool using this composition as a near ultraviolet detection material. As a result of repeated research aimed at this purpose, we have arrived at the present invention. This application consists of two inventions; the first invention is a solution made of the above composition, and the second invention is a sheet-like product using the solution. In order to use the solution composition of the first invention as a detection material in a simple measurement tool, it can be placed in a shallow container made of quartz or the like with low ultraviolet absorption. The second invention of the present application is a product in which the solution composition described above is coated on a sheet, or the essential components of the first invention are laminated and coated on a sheet as a single product without mixing, and finished as a label or the like. The integrated illuminance of ultraviolet rays can be easily measured based on the color change and color density change. The specific composition referred to in the present invention is one that contains polyvinyl chloride with a low degree of polymerization and a specific colored dye or colorless dye as essential components and exhibits the above-mentioned effects. Also, the term "laminate coating on a sheet as a single product" means that the layers of each of the above-mentioned single components are combined on the sheet. Since these achieve the same purpose, they may be collectively referred to as a composition in the following description. ``Problems to be Solved by the Invention'' It is known that polyvinyl chloride causes changes in color tone and color density that are favorable to physical energy such as heat, light, and shearing force. Especially those with low degree of polymerization,
A single polymer that is not copolymerized with vinyl acetate or the like is likely to cause the above color change. However, these color changes cannot be used as detection materials. This is because the amount of change is too small. Therefore, we focused on free radicals and hydrogen chloride generated during the photodecomposition process of polyvinyl chloride. From the results of numerous experiments, it was discovered that there are colored dyes or colorless dyes that undergo stoichiometrically accurate color changes under the influence of trace amounts of hydrogen chloride or free radicals generated during the decomposition process, and that low polymerization with either of these dyes is possible. It has been found that a material suitable for measuring near-ultraviolet integrated illuminance can be obtained by coexisting with polyvinyl chloride. According to the first invention of the present application, there is provided a solution composition comprising polyvinyl chloride with a low degree of polymerization and a colored dye or a colorless dye as essential components, the composition having a wavelength of 2000 Å to 4000 Å.
The second invention of the present application provides a near-ultraviolet sensing material capable of detecting the integrated illuminance of near-ultraviolet rays by causing the colored dye or colorless dye to undergo a clear color change and color density change when irradiated with near-ultraviolet rays of 500 nm. A sheet material coated with a composition of polyvinyl chloride of a high degree of polymerization and a colored dye or a colorless dye, or a laminated material coated with a composition of polyvinyl chloride of a low degree of polymerization and a colored dye or a colorless dye, respectively, as a single product. A near-ultraviolet sensing material is a sheet-like material that is capable of detecting the cumulative illuminance of near-ultraviolet light by causing the colored dye or colorless dye to undergo a clear color change and color density change when irradiated with near-ultraviolet light with a wavelength of 2000 Å to 4000 Å. provided. "Structure of the invention" Below, near ultraviolet rays, polyvinyl chloride, colored dyes,
The first invention will be explained with a distinction made to colorless dyes, and the second invention will be referred to. Generally, ultraviolet light sources that are used for various purposes include sunlight, carbon arc light, mercury lamp light, and xenon lamp light, and none of them include wavelengths of 2000 Å or less, so the detection range is limited to wavelengths. Made to fit over 2000Å. 4000 again
Å or more is the visible region, and since the storage conditions are disadvantageous in practice for substances that cause color changes and color density changes (hereinafter referred to as color changes) due to visible light, in the present invention, irradiation light in the wavelength range of 2000 Å to 4000 Å is used. The integrated illuminance can now be calculated using . As mentioned above, a single vinyl chloride polymer that is not copolymerized with low polymerization degree polyvinyl chloride, vinyl acetate, etc. has a wavelength of 2000.
When irradiated with near ultraviolet light of Å to 4000 Å, it photodecomposes to produce hydrogen chloride, albeit in a small amount, and free radicals are generated during the decomposition process. However, in visible light, these can be ignored. Among these polyvinyl chlorides with a low degree of polymerization, the present invention uses polyvinyl chloride with an average degree of polymerization of 250.
It is preferable to select and use ~600. If the average degree of polymerization is 600 or more, the stability of polyvinyl chloride increases and sensitivity tends to deteriorate. If the average degree of polymerization is less than 250, the polymer itself may contain free hydrogen chloride, etc. This is because it is unsuitable as a raw material. In addition, in the second invention of the present application, such polyvinyl chloride also has the disadvantage of poor physical properties when a composition or a single product thereof is applied to a sheet to form a coating film. The most preferred range is an average degree of polymerization of 300 to 400. As the colored dye to be combined with such polyvinyl chloride, the present invention utilizes a dye that causes a color change when combined with polyvinyl chloride and is irradiated with near ultraviolet rays, and therefore does not include a dye that does not cause a color change. Furthermore, it is not preferable to use a dye that strongly changes color when irradiated with light having a wavelength other than 2000 Å to 4000 Å, especially visible light. In the present invention, the following colored dyes, generally called indicators, which change color when exposed to acid or alkali, are commonly used. Indicators whose blue-purple color changes to a border color; crystal violet, blue-purple or purple, or indicators whose blue color changes to yellow; promophenol blue, bromocresol purple, tetrapromophenol blue, bromocresol green, bromothymol blue, yellow to red Thymol Blue, Tropeolin OO, Methyl Yellow, Methyl Orange, Methyl Red, Neutral Red, Cresol Red, Indicator that changes from yellow to blue; Indigo Carmine, Indicator that changes from red to yellow; Bromophenol Red Do, Phenol Red, Tropeolin OOO,
Alizarin Yellow R, an indicator that changes from red to blue; Congo Red, an indicator that changes from red to colorless; phenolphthalein, an indicator that changes from blue to colorless; thymolphthalein, etc. In addition, when using these colored dyes, if necessary, a very small amount of alkali is added to the dyes and used as an alkaline side color. There is no problem in using these colored dyes in combination, and when coating a sheet, different colors can be applied in several areas. Next, the colorless dye that is combined with polyvinyl chloride becomes colored when it is combined with polyvinyl chloride and irradiated with near ultraviolet rays, causing a change in color density. Colorless dyes that do not have this function are not included. do not have. Also, colorless dyes that are colored only by irradiation with light having wavelengths other than 2000 Å to 4000 Å, particularly visible light, are not preferred. Preferred examples of colorless dyes that satisfy the above requirements include leuco dyes conventionally used in pressure-sensitive recording paper, heat-sensitive recording paper, etc., and the following can be used. Triphenylmethane phthalide series, fluoran series, phenothiazine series, indolyl phthalide series, lyuco auramine series, spiropyran series, triphenylmethane series, triazene series, naphtholactam series, azomethine series, benzopyran series, spirophthalanxanthene series , hydroxyphthalane type, rhodamine lactam type, etc. All of these are colorless, but after color development in the composition of the present invention, various colors are imparted depending on the colorless dye of each series, and the color density increases in accordance with the irradiation time. These may be used in combination if necessary, and when the composition is applied to a sheet, it is also possible to apply different colors in several areas. The above-mentioned leuco dye is an electron-donating substance, and coloration occurs due to interaction with free radicals generated during the photodecomposition process of polyvinyl chloride or action with hydrogen chloride that remains as a result, and the color density is stoichiometrically Since the photochemical changes in polyvinyl chloride are accurately amplified, the integrated illuminance can be accurately detected. Since most of this type of dye is oil-soluble, it is dissolved in an organic solvent together with polyvinyl chloride and placed in a plastic container, quartz container, etc. that has low ultraviolet absorption, and is used as the detection material of the first invention of the present application. In that case, a low concentration solution is used, and the change in concentration is determined using a densitometer and the integrated illuminance is calculated. In order to obtain a visually detectable material according to the second invention of the present application, a colored dye or a colorless dye is coated as a single substance on a substrate such as paper, film, glass plate, metal foil, etc., and then the same is applied on the dried surface. Apply a single component polyvinyl chloride solution and dry. The order of coating does not matter. Most leuco dyes are oil-soluble, so they are allowed to coexist in an organic solvent solution of polyvinyl chloride, and water-soluble and alcohol-soluble dyes, such as the indicators exemplified as colored dyes, coexist in an emulsion solution of polyvinyl chloride. It is also a preferred embodiment of the present invention to coat the mixture on a base material and use it as a sensing material after drying. To obtain the integrated illuminance, compare it with a standard color tone and standard color density table prepared in advance for each light source so that the integrated illuminance can be obtained. The blending ratio of colored dyes or colorless dyes is 0.2 to 4, respectively, to polyvinyl chloride.
It can be used in a range of 1 to 2% by weight, preferably 1 to 2% by weight. "Effects of the Invention" As explained above, the present invention provides that polyvinyl chloride with a low degree of polymerization can be used within a range where polyvinyl chloride with a wavelength of 2000 Å to 4000 Å practically does not cause color change or color density change when irradiated with near ultraviolet rays with a wavelength of 2000 Å to 4000 Å. is used as one component, and the other component, colored dye or colorless dye, amplifies the photochemical changes in polyvinyl chloride by irradiating it with near ultraviolet rays, causing a remarkable color change and color density change, and the integration is based on this. Since the illuminance can be determined, it is possible to accurately determine the integrated illuminance within the irradiation range where no color change of the polyvinyl chloride itself is observed visually or with a densitometer. If necessary, stabilizers for polyvinyl chloride, antioxidants, ultraviolet absorbers, sensitizers, etc. may be mixed and used within the range that does not impair the effects of the present invention. Example 1 10g of polyvinyl chloride (KR-400, manufactured by Mitsubishi Monsanto) with a degree of polymerization of 350, 45g of methyl ethyl ketone
A solution consisting of 45 g of toluene, 0.2 g of leuco dye (PSD-V, manufactured by Nisso Chemical Co., Ltd.) was further diluted 5 times with methyl ethyl ketone, packed in a quartz container with a depth of 5 mm, and exposed to near ultraviolet light of 2537 Å. (Mercury lamp light) was irradiated. The intensity of the irradiated light is 0.50mw/
It was warm in cm2 . After an integrated illuminance of 90 mw·min/cm 2 or an irradiation time of 180 minutes, the color became red, and the red density-irradiation time curve had extremely good reproducibility. Furthermore, the polyvinyl chloride solution obtained by removing the leuco dye from the detection solution had no change in color density after 180 minutes of irradiation.
The same was true for solutions containing only leuco dye. Example 2 The undiluted polyvinyl chloride and leuco dye solution used in Example 1 was directly coated on cast coated paper (manufactured by Sanyo Kokusaku Pulp, basis weight 157 g/m 2 ) using Meyer Bar #22. The process was repeated 3 times and coated. The coating weight was 3 g/m 2 . The obtained detection material was exposed to 3650 Å of mercury lamp light (3650 Å intensity 0.4 mw/cm 2 ).
Fade-o-meter arc lamp light (3650Å intensity
2.6mw/cm 2 ), sunlight (midsummer clear and sunny temperature 32℃,
PM12:00~PM3:00, 3650Å intensity 1.0mw/ cm2 )
was irradiated. The changes in red color density obtained at that time were as shown in the table below. The numerical values indicate the values measured by a Macbeth densitometer after irradiation.

【表】 前記の通り3種の光源はいずれも波長3650Åの
近紫外線であるが、上表にはいずれも照射時間に
対応して赤色濃度が強くなつたことが示されてい
る。またその濃度は照射光の強度が大きいほど大
であることが判る。なお、この例では、赤色濃度
は照射光の種類により一定時間後最大値を示しそ
の後の増加はなかつた。 また同時に本例の塗料からロイコ染料を除いた
ポリ塩化ビニルのみの塗被紙は180分照射しても、
いずれの試料も測定濃度0.09であり変化は生じな
かつた。なお、ロイコ染料のみをキヤストコート
紙に塗工したものについての照射後の色濃度変化
は微弱であり上表の試験結果に影響を及ぼすよう
なものではなかつた。さらに本例の試料に近紫外
光を含まない可視光、赤外光を照射しても極端な
長時間でない限り色濃度変化は認められなかつ
た。別の試験として本例に用いた基材に本例のポ
リ塩化ビニルのみの溶液を最初に1回塗工した
後、本例のロイコ染料を含む溶液を2回繰り返し
塗工した検知材料は前表と同様の結果を得た。 実施例 3 クレゾールレツド1gをエチルアルコール100
gに溶解し、10%濃度KOHを0.1ml添加して黄色
の溶液とする。この溶液に東洋濾紙No.3を浸漬直
後引き上げ余分の液を滴下乾燥した後、重合度
500のポリ塩化ビニル(KR−600、三菱モンサン
ト製)10g、メチルエチルケトン45g、トルエン
45gより成る溶液をマイヤーバー#22で1回塗工
乾燥して検知材料とした。塗工量は4g/m2であ
つた。このものは黄色に仕上つているが近紫外線
照射によつて赤色に色彩変化する。色濃度変化は
照射時間に対し良好な再現性を示した。クレゾー
ルレツドのみを塗工したものゝ近紫外線照射によ
る色彩変化は殆んど認められなかつた。
[Table] As mentioned above, all three types of light sources emit near-ultraviolet light with a wavelength of 3650 Å, and the table above shows that the red density increases with the irradiation time. It can also be seen that the concentration increases as the intensity of the irradiated light increases. In this example, the red density reached its maximum value after a certain period of time depending on the type of irradiation light, and did not increase thereafter. At the same time, the paper coated only with polyvinyl chloride (without the leuco dye from the paint in this example) showed no signs of irradiation even after irradiation for 180 minutes.
The measured concentration of all samples was 0.09, and no change occurred. In addition, the change in color density after irradiation of the cast-coated paper coated with only the leuco dye was slight and did not affect the test results shown in the above table. Furthermore, even when the sample of this example was irradiated with visible light or infrared light that does not include near-ultraviolet light, no change in color density was observed unless it was for an extremely long time. As another test, the sensing material used in this example was coated with the solution containing only polyvinyl chloride of this example once, and then repeatedly coated with the solution containing the leuco dye of this example twice. Results similar to those in the table were obtained. Example 3 1 g of cresol red and 100 ml of ethyl alcohol
g and add 0.1 ml of 10% KOH to give a yellow solution. Immediately after immersing Toyo Roshi No. 3 in this solution, pull it up, drop the excess liquid, and dry it.
500 polyvinyl chloride (KR-600, manufactured by Mitsubishi Monsanto) 10g, methyl ethyl ketone 45g, toluene
A solution consisting of 45 g was coated once with a Meyer bar #22 and dried to provide a sensing material. The coating weight was 4 g/m 2 . This product has a yellow finish, but changes color to red when exposed to near ultraviolet rays. Color density changes showed good reproducibility with respect to irradiation time. When only cresol red was applied, almost no color change was observed due to near ultraviolet irradiation.

Claims (1)

【特許請求の範囲】 1 低重合度のポリ塩化ビニルと有色染料もしく
は、無色染料とを必須成分とする溶液状組成物で
あつて、波長2000Åないし4000Åの近紫外線照射
により前記有色染料もしくは無色染料が明瞭な色
彩変化および色濃度変化を起こすことにより近紫
外線の積算照度を検知しうることを特徴とする近
紫外線検知材料。 2 ポリ塩化ビニルの平均重合度が250ないし600
である特許請求の範囲第1項に記載の近紫外線検
知材料。 3 有色染料が酸、アルカリにより色彩変化を起
こす指示薬である特許請求の範囲第1項または第
2項に記載の近紫外線検知材料。 4 無色染料が電子供与性のロイコ染料である特
許請求の範囲第1項または第2項に記載の近紫外
線検知材料。 5 低重合度のポリ塩化ビニルと有色染料もしく
は無色染料との組成物が塗工されたシート状物ま
たは前記低重合度のポリ塩化ビニルと有色染料も
しくは無色染料とがそれぞれ単一物として積層塗
工されたシート状物あつて、波長2000Åないし
4000Åの近紫外線照射により前記有色染料もしく
は無色染料が明瞭な色彩変化および色濃度変化を
起こすことにより近紫外線の積算照度を検知しう
ることを特徴とする近紫外線検知材料。 6 ポリ塩化ビニルの平均重合度が250ないし600
である特許請求の範囲第5項に記載の近紫外線検
知材料。 7 有色染料が酸、アルカリにより色彩変化を起
こす指示薬である特許請求の範囲第5項または第
6項に記載の近紫外線検知材料。 8 無色染料が電子供与性のロイコ染料である特
許請求の範囲第5項または第6項に記載の近紫外
線検知材料。
[Scope of Claims] 1. A solution composition containing polyvinyl chloride with a low degree of polymerization and a colored dye or a colorless dye as essential components, wherein said colored dye or colorless dye is irradiated with near ultraviolet light with a wavelength of 2000 Å to 4000 Å. 1. A near-ultraviolet sensing material that is capable of detecting the integrated illuminance of near-ultraviolet rays by causing clear color changes and color density changes. 2 The average degree of polymerization of polyvinyl chloride is 250 to 600
A near-ultraviolet sensing material according to claim 1. 3. The near-ultraviolet sensing material according to claim 1 or 2, wherein the colored dye is an indicator that causes a color change in the presence of acid or alkali. 4. The near-ultraviolet sensing material according to claim 1 or 2, wherein the colorless dye is an electron-donating leuco dye. 5 A sheet-like article coated with a composition of polyvinyl chloride with a low degree of polymerization and a colored dye or a colorless dye, or a laminated coating in which the polyvinyl chloride with a low degree of polymerization and a colored dye or a colorless dye are each applied as a single product. If it is a processed sheet material, the wavelength is 2000 Å or more.
A near-ultraviolet sensing material characterized in that the integrated illuminance of near-ultraviolet rays can be detected by causing the colored dye or colorless dye to undergo a clear color change and color density change when irradiated with near-ultraviolet rays at 4000 Å. 6 The average degree of polymerization of polyvinyl chloride is 250 to 600
The near-ultraviolet sensing material according to claim 5. 7. The near-ultraviolet sensing material according to claim 5 or 6, wherein the colored dye is an indicator that causes a color change in the presence of acid or alkali. 8. The near-ultraviolet sensing material according to claim 5 or 6, wherein the colorless dye is an electron-donating leuco dye.
JP18273784A 1984-09-03 1984-09-03 Near ultraviolet rays detecting material Granted JPS6161148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18273784A JPS6161148A (en) 1984-09-03 1984-09-03 Near ultraviolet rays detecting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18273784A JPS6161148A (en) 1984-09-03 1984-09-03 Near ultraviolet rays detecting material

Publications (2)

Publication Number Publication Date
JPS6161148A JPS6161148A (en) 1986-03-28
JPH0319536B2 true JPH0319536B2 (en) 1991-03-15

Family

ID=16123555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18273784A Granted JPS6161148A (en) 1984-09-03 1984-09-03 Near ultraviolet rays detecting material

Country Status (1)

Country Link
JP (1) JPS6161148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186031A (en) * 2013-02-25 2014-10-02 Fujifilm Corp Ultraviolet sensing sheet, method of manufacturing the same, and ultraviolet sensing method
JP2017167155A (en) * 2013-02-25 2017-09-21 富士フイルム株式会社 Ultraviolet sensing sheet, method of manufacturing the same, and ultraviolet sensing method
US10247603B2 (en) 2013-02-25 2019-04-02 Fujifilm Corporation Ultraviolet-sensitive sheet, ultraviolet-sensing kit, and method for sensing ultraviolet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818491A (en) * 1988-03-14 1989-04-04 Sun Du Jour, Inc. Suntanning gauge
JP2712106B2 (en) * 1988-06-06 1998-02-10 日本カーバイド工業株式会社 Simple ultraviolet light receiving amount measuring apparatus and method
US5075557A (en) * 1988-06-06 1991-12-24 Nippon Carbide Kogyo Kabushiki Kaisha Simplified apparatus and method for measuring quantity of ultraviolet radiation received
US5206118A (en) * 1989-03-06 1993-04-27 Minnesota-Mining & Manufacturing Company Acid-sensitive leuco dye polymeric films
KR20010095852A (en) * 2000-04-12 2001-11-07 복성해 Novel use of carotenoid compounds as detection marker for UV irradation
US20060289796A1 (en) * 2005-06-22 2006-12-28 Cryovac, Inc. UV-C sensitive composition and dosimeter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186031A (en) * 2013-02-25 2014-10-02 Fujifilm Corp Ultraviolet sensing sheet, method of manufacturing the same, and ultraviolet sensing method
US9689742B2 (en) 2013-02-25 2017-06-27 Fujifilm Corporation Ultraviolet-sensitive sheet, method for manufacturing ultraviolet-sensing sheet, and method for sensing ultraviolet
JP2017167155A (en) * 2013-02-25 2017-09-21 富士フイルム株式会社 Ultraviolet sensing sheet, method of manufacturing the same, and ultraviolet sensing method
US10203245B2 (en) 2013-02-25 2019-02-12 Fujifilm Corporation Ultraviolet-sensitive sheet, method for manufacturing ultraviolet-sensing sheet, and method for sensing ultraviolet
US10247603B2 (en) 2013-02-25 2019-04-02 Fujifilm Corporation Ultraviolet-sensitive sheet, ultraviolet-sensing kit, and method for sensing ultraviolet

Also Published As

Publication number Publication date
JPS6161148A (en) 1986-03-28

Similar Documents

Publication Publication Date Title
AU612143B2 (en) Systems for the visualization of exposure to ultraviolet radiation and for the utilization of ultraviolet radiation to effect color changes
US5028792A (en) System for the visualization of exposure to ultraviolet radiation
US3667916A (en) Sterilization indicator
US4917503A (en) Photoactivatable leuco base time-temperature indicator
AU670310B2 (en) Phototranschromic ink
Galagan et al. Fadable ink for time–temperature control of food freshness: Novel new time–temperature indicator
DK2376879T3 (en) Dose-responsive UV INDICATOR
US3360338A (en) Indicator tape
EP1423692A1 (en) Sensor for oxidising agents
KR20090127143A (en) Color changing indicator
CA1286881C (en) Photoactivatable leuco base time-temperature indicator
JPH0319536B2 (en)
JPH01272930A (en) Energy beam dosage measurement sheet
JPH0616089B2 (en) Radiation detecting composition and radiation dosimetry sheet
JP2557362B2 (en) Photoactivatable leuco base time-temperature indicator
CN207779891U (en) Copper ion colorimetric method sensor
US4804630A (en) Kit and method for detecting lithium ions
JPH0428036Y2 (en)
JP3646504B2 (en) Photochromic color dosimeter
JPH0524460B2 (en)
JPH0658400B2 (en) Radiation detecting composition and radiation dosimetry sheet
JPS5822930A (en) Detecting method for temperature
JPS62207374A (en) Paint
JPH0216030U (en)
JPH0516472B2 (en)