JPH03195337A - Step motor and manufacture thereof - Google Patents

Step motor and manufacture thereof

Info

Publication number
JPH03195337A
JPH03195337A JP1331171A JP33117189A JPH03195337A JP H03195337 A JPH03195337 A JP H03195337A JP 1331171 A JP1331171 A JP 1331171A JP 33117189 A JP33117189 A JP 33117189A JP H03195337 A JPH03195337 A JP H03195337A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
shaped permanent
magnetized
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1331171A
Other languages
Japanese (ja)
Inventor
Kazuto Sakai
和人 堺
Isamu Morino
森野 勇
Haruo Nakatsuka
中塚 晴雄
Iwao Takeuchi
竹内 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Mechatronics Corp
Original Assignee
Toshiba Corp
Shibaura Engineering Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibaura Engineering Works Co Ltd filed Critical Toshiba Corp
Priority to JP1331171A priority Critical patent/JPH03195337A/en
Publication of JPH03195337A publication Critical patent/JPH03195337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To facilitate manufacture of a motor having high torque and high output by burying a permanent magnet having high coercive force in the groove at the core tooth section of the motor and employing a permanent magnet having low coercive force as the main flux field magnet. CONSTITUTION:Magnetic rotor steel boards are laminated to produce rotor core blocks 6a, 6b, non magnetized rare earth permanent rod magnets 16a, 16b are inserted into the groove in a rotor tooth 7 and secured in place, then the outer circumference thereof is polished. The permanent rod magnet 16a is magnetized radially and the permanent rod magnet 16b is magnetized in different direction. A non-magnetized Alnico disc permanent magnet is then sandwiched between two rotor cores provided with permanent rod magnets and fixed to a rotary shaft 11 thus assembling a rotor. Thus assembled rotor is then placed in a ceramics and subjected to a magnetic field in the axial direction thus magnetizing the permanent disc magnet.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ステッピングモータおよびその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a stepping motor and a method for manufacturing the same.

(従来の技術) 近年、OA用、FA用の精密制御機器の駆動機構部のア
クチュエータとして、小形・軽量である高出力密度(モ
ータトルク/モータ重量)のモータの開発が要望されて
いる。
(Prior Art) In recent years, there has been a demand for the development of small, lightweight motors with high output density (motor torque/motor weight) as actuators for drive mechanisms of precision control equipment for OA and FA.

一般的に、高トルクを発生するモータとして、誘導子を
有するステッピングモータがあげられる。
A stepping motor having an inductor is generally used as a motor that generates high torque.

ステッピングモータは、空隙面に多数の歯(誘導子)を
有するため、ロータ位置による磁気抵抗の変化に伴って
空隙磁束密度が変化する。これにより、磁気エネルギが
変化して、トルクを生じる。
Since the stepping motor has a large number of teeth (inductors) on the air gap surface, the air gap magnetic flux density changes as the magnetic resistance changes depending on the rotor position. This changes the magnetic energy and produces torque.

しかし、空隙長を狭くしたり磁気装荷・電気装荷を大き
くすると、鉄心歯部が磁気飽和や歯側面への磁束の漏れ
により、トルクはあまり増加せずモータは大形化する欠
点がある。
However, if the air gap length is narrowed or the magnetic loading/electrical loading is increased, the torque will not increase much and the motor will become larger due to magnetic saturation of the core teeth and leakage of magnetic flux to the tooth sides.

そこで、この欠点を改善したものとして下記のステッピ
ングモータがある。
Therefore, the following stepping motor has been developed to improve this drawback.

第10図および第11図は、従来の高トルク・高出カス
チッピングモータを示したもので、モータの構成として
は、ステータ鉄心1の円周方向に複数個のステータ極歯
2を設け、各ステータ極歯2には多相巻線4を巻回し、
各ステータ極歯2の内周面に複数個のステータ小歯3を
設け、ステータ小歯3の溝に半径方向に着磁された棒状
永久磁石5が固着されたステータと、ステータ小歯3に
対向するロータ鉄心6の外周面に複数個のロータ歯7を
設け、軸方向に2分割され、互いにロータ歯7を1/2
歯ピッチずらし、分割部に軸方向に着磁された円盤状永
久磁石8を設け、ロータ歯7の溝に半径方向に着磁され
た棒状永久磁石9が固着されたロータから成り、ステー
タの棒状永久磁石5とロータの棒状永久磁石9の極性が
上記円盤状永久磁石8により発生する主磁束を打消す方
向とすることにより高トルク・高出力となるように構成
したものである。なお、符号11は回転軸を示す。
10 and 11 show a conventional high-torque/high-output chipping motor. The motor has a structure in which a plurality of stator pole teeth 2 are provided in the circumferential direction of a stator core 1, and each A polyphase winding 4 is wound around the stator pole teeth 2,
A plurality of stator small teeth 3 are provided on the inner circumferential surface of each stator pole tooth 2, and a stator with a rod-shaped permanent magnet 5 fixed in a radial direction magnetized in the groove of the stator small teeth 3, A plurality of rotor teeth 7 are provided on the outer circumferential surface of the rotor core 6 facing each other, and the rotor teeth 7 are divided into two in the axial direction, and each rotor tooth 7 is divided into 1/2.
The tooth pitch is shifted, a disc-shaped permanent magnet 8 magnetized in the axial direction is provided in the divided part, and a rod-shaped permanent magnet 9 magnetized in the radial direction is fixed in the groove of the rotor teeth 7. The polarity of the permanent magnet 5 and the rod-shaped permanent magnet 9 of the rotor is set in a direction that cancels out the main magnetic flux generated by the disk-shaped permanent magnet 8, thereby achieving high torque and high output. Note that the reference numeral 11 indicates a rotation axis.

(発明が解決しようとする課題) ところで、第10図および第11図に示すステッピング
モータのロータでは、ロータ歯7の溝に埋め込まれた棒
状永久磁石9と円盤状永久磁石8は閉磁路で形成する磁
束の向きが逆である。このため、組立後に両方の磁石を
着磁すると、先に着磁した永久磁石は後からの残りの永
久磁石を着磁するときの逆磁界の影響を受けて、減磁す
る恐れがある。
(Problems to be Solved by the Invention) In the stepping motor rotor shown in FIGS. 10 and 11, the rod-shaped permanent magnets 9 and the disc-shaped permanent magnets 8 embedded in the grooves of the rotor teeth 7 are formed in a closed magnetic path. The direction of the magnetic flux is opposite. Therefore, if both magnets are magnetized after assembly, the permanent magnet that was magnetized first may be affected by the reverse magnetic field when the remaining permanent magnets are magnetized later, and may be demagnetized.

従って、」−記した高トルク・高出カスチッピングモー
タのロータを製造する場合には、ロータにある円盤状永
久磁石8を着磁・磁化した後、着磁・3 磁化された棒状永久磁石9をロータ歯7の溝に挿入・固
着する。しかしながら、円盤状永久磁石8と棒状永久磁
石9の極性が反対であり、棒状永久磁石9をロータ歯7
の溝に挿入時に反発力を受けるため作業性が悪く、また
磁石を破損することがある。さらに全組立後にロータ外
径の研磨を行うと、研磨した鉄粉が磁化されているロー
タ表面に付着してモータ空隙10間で詰まり駆動できな
くなる。
Therefore, when manufacturing the rotor of the high-torque, high-output chipping motor described in "-", after magnetizing the disc-shaped permanent magnet 8 in the rotor, the magnetized bar-shaped permanent magnet 9 is magnetized. Insert and fix into the groove of the rotor tooth 7. However, the polarity of the disk-shaped permanent magnet 8 and the rod-shaped permanent magnet 9 is opposite, and the rod-shaped permanent magnet 9 is connected to the rotor tooth 7.
When inserted into the groove, the magnet receives a repulsive force, resulting in poor workability and may damage the magnet. Furthermore, if the outer diameter of the rotor is polished after the entire assembly, the polished iron powder will adhere to the magnetized rotor surface and become clogged between the motor gaps 10, making it impossible to drive.

そこで、本発明は、モータ鉄心歯の溝部に高保磁力であ
る永久磁石を埋め込み、主磁束界磁磁石を低保磁力であ
る永久磁石とすることにより、製造が容易となる高トル
ク・高出力のステッピングモータおよびその製造方法を
提供することを目的としている。
Therefore, the present invention provides a high-torque, high-power product that is easy to manufacture by embedding a permanent magnet with a high coercive force in the groove of the motor core teeth and using a permanent magnet with a low coercive force as the main flux field magnet. The present invention aims to provide a stepping motor and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(ill!題を解決するための手段) 本発明は、ステータ鉄心の円周方向に複数個のステータ
極歯を設け、各ステータ極歯には多相巻線を巻回すると
共に内周面に複数個のステータ小歯を設け、ステータ小
歯の溝に半径方向に着磁された高保磁力の第1の棒状永
久磁石を固着して成るステータと、ロータ鉄心のステー
タ小歯に対向する外周面に複数個のロータ歯を設け、か
つ軸方向に2分割され、互いにロータ歯を1/2歯ピッ
チずらし、分割部に軸方向に着磁された低保磁力の円盤
状永久磁石を設け、ロータ歯の溝に半径方向に着磁され
た高保磁力の棒状永久磁石が固着されたロータとから成
り、第1の棒状永久磁石と第2の棒状永久磁石の極性が
円盤状永久磁石により発生する主磁束を打消す方向とし
たものである。
(Means for Solving the ill! Problem) The present invention provides a plurality of stator pole teeth in the circumferential direction of a stator core, and winds a polyphase winding around each stator pole tooth, and A stator comprising a plurality of small stator teeth and a first rod-shaped permanent magnet with a high coercive force magnetized in the radial direction fixed in the groove of the small stator teeth, and an outer circumferential surface of a rotor core facing the small stator teeth. The rotor is divided into two parts in the axial direction, the rotor teeth are shifted by 1/2 tooth pitch, and a low coercive force disc-shaped permanent magnet magnetized in the axial direction is provided in the divided part. It consists of a rotor in which a rod-shaped permanent magnet with a high coercive force magnetized in the radial direction is fixed in the tooth groove, and the polarity of the first rod-shaped permanent magnet and the second rod-shaped permanent magnet is generated by the disk-shaped permanent magnet. The direction is to cancel the magnetic flux.

また、本発明は、ロータ歯の溝に棒状で無着磁の希土類
永久磁石を挿入・固着した後外周を研磨し、この状態で
半径方向に着磁した2個のロータ鉄心を、無着磁で低保
磁力の円盤状永久磁石を挟んで回転軸に取付け、ロータ
組立をした後、磁性材の薄い円筒の中に入れて円盤状永
久磁石を軸方向に着磁してロータを製造するようにした
ものである。
In addition, the present invention involves inserting and fixing bar-shaped, unmagnetized rare earth permanent magnets into the grooves of the rotor teeth, polishing the outer periphery, and in this state, removing the two rotor cores magnetized in the radial direction. After assembling the rotor by sandwiching and attaching a disk-shaped permanent magnet with a low coercive force to the rotating shaft, the disk-shaped permanent magnet is placed inside a thin cylinder of magnetic material and magnetized in the axial direction to manufacture the rotor. This is what I did.

(作用) 低保磁力の永久磁石は、飽和着磁磁界が大きくないため
、磁化された高保磁力の永久磁石に飽和着磁磁界が逆磁
界でかかっても高保磁力永久磁石は減磁することはない
(Function) A permanent magnet with a low coercive force does not have a large saturation magnetizing magnetic field, so even if a magnetized permanent magnet with a high coercive force is applied with a saturating magnetizing magnetic field in a reverse magnetic field, a high coercive force permanent magnet will not be demagnetized. .

従って、永久磁石を無着磁の状態でロータ組立てを行っ
た後、まず棒状永久磁石を半径方向に着磁し、次に円盤
状永久磁石を軸方向に着磁することができるので、モー
タの製作が容易となる。
Therefore, after assembling the rotor with the permanent magnets unmagnetized, first the bar-shaped permanent magnets can be magnetized in the radial direction, and then the disk-shaped permanent magnets can be magnetized in the axial direction. Manufacturing becomes easy.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は、本発明の一実施例を示す縦断面図であり、第2
図は、第1図のA−A線に沿った横断面図であり、第3
図(a)は、第1図のXX線に沿った断面図であり、第
3図(b)は、第1図のY−Y線に沿った断面図である
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a vertical sectional view showing one embodiment of the present invention, and FIG.
The figure is a cross-sectional view taken along line A-A in Figure 1;
FIG. 3(a) is a sectional view taken along line XX in FIG. 1, and FIG. 3(b) is a sectional view taken along line Y-Y in FIG. 1.

まず、ステッピングモータの構成について説明する。First, the configuration of the stepping motor will be explained.

第1図および第2図に示すようにステータ12は、ステ
ータ鉄心1の内周側の円周方向に8個のステータ極歯2
を有し、このステータ極歯2の内周面には、5個のステ
ータ小歯3が形成され、各ステータ極歯2には2相の巻
線4を設けて構成している。
As shown in FIGS. 1 and 2, the stator 12 has eight stator pole teeth 2 disposed circumferentially on the inner circumferential side of the stator core 1.
Five stator small teeth 3 are formed on the inner circumferential surface of the stator pole tooth 2, and each stator pole tooth 2 is provided with a two-phase winding 4.

また、ロータ13は、回転軸11に2つのロータ鉄心6
で、低保磁力のアルニコ永久磁石である円盤状永久磁石
14を軸方向に挟み込むようにして構成されている。し
かして、ロータ鉄心6の外周面には、等間隔ピッチで5
0個のロータ歯7が設けられており、2つのロータ鉄心
6は、ロータ歯ピッチの1/2分、互いに円周方向にず
れた位置で回転軸11に固定されている。また、円盤状
永久磁石14は、軸方向に磁化されている。
The rotor 13 also has two rotor cores 6 on the rotating shaft 11.
A disk-shaped permanent magnet 14, which is an alnico permanent magnet with a low coercive force, is sandwiched in the axial direction. Therefore, on the outer peripheral surface of the rotor core 6, there are 5
Zero rotor teeth 7 are provided, and the two rotor cores 6 are fixed to the rotating shaft 11 at positions offset from each other in the circumferential direction by 1/2 of the rotor tooth pitch. Further, the disk-shaped permanent magnet 14 is magnetized in the axial direction.

一方、ステータ小歯3の溝には、高保磁力の希土類永久
磁石である棒状永久磁石15a、 15bが埋め込まれ
ており、1つの溝に対し、2つの棒状永久磁石15a、
 15bが、磁気的に2分割されるようにステータ鉄心
1の中心から任意の間隔で離して配置されており、磁化
方向は半径方向で、ロータ13の円盤状永久磁石14に
より発生する磁束を打消す方向とする。これと同じ状態
で周方向全てのステータ小歯3の溝に棒状永久磁石]、
5a、 15bを埋込んでいる。
On the other hand, rod-shaped permanent magnets 15a, 15b, which are rare earth permanent magnets with high coercive force, are embedded in the grooves of the stator small teeth 3, and two rod-shaped permanent magnets 15a, 15b are inserted into one groove.
15b is arranged at an arbitrary distance from the center of the stator core 1 so as to be magnetically divided into two parts, and the magnetization direction is in the radial direction, and the magnetic flux generated by the disk-shaped permanent magnet 14 of the rotor 13 is struck. The direction is to erase. In the same state, rod-shaped permanent magnets are placed in the grooves of all the small stator teeth 3 in the circumferential direction],
5a and 15b are embedded.

また、2つのロータ鉄心6のロータ歯7の溝には、高保
磁力の希土類永久磁石である棒状永久磁石16a、 1
6bが埋め込まれている。この棒状永久磁石16a、 
1.6bの磁化方向は、ロータ13に設けられた円盤状
永久磁石14により発生する磁束を打消す方向で、半径
方向とする。
Further, in the grooves of the rotor teeth 7 of the two rotor cores 6, there are bar-shaped permanent magnets 16a, 1, which are rare earth permanent magnets with high coercive force.
6b is embedded. This rod-shaped permanent magnet 16a,
The magnetization direction of magnet 1.6b is the direction that cancels the magnetic flux generated by the disk-shaped permanent magnet 14 provided on the rotor 13, and is the radial direction.

なお、本実施例では、X−X線断面側ではロータ13の
棒状永久磁石16aの空隙面がS極となり、Y−Y断面
側ではロータ13の棒状永久磁石16bの空隙面がN極
となる。これと同じ状態で周方向全てのロータ歯7の溝
に棒状永久磁石16a、 16bを埋込んでいる。
In addition, in this embodiment, the air gap surface of the rod-shaped permanent magnet 16a of the rotor 13 becomes the south pole on the X-X cross section side, and the air gap surface of the rod-shaped permanent magnet 16b of the rotor 13 becomes the north pole on the Y-Y cross section side. . In the same state, rod-shaped permanent magnets 16a and 16b are embedded in the grooves of all the rotor teeth 7 in the circumferential direction.

次に、上記のように構成されたステッピングモータの製
造方法、特にそのロータの製造方法について説明する。
Next, a method of manufacturing the stepping motor configured as described above, particularly a method of manufacturing the rotor thereof, will be described.

(1)第1の製造方法 まず、ロータ磁性鋼板を積層してブロック状のロータ鉄
心6を2個作り、それぞれのロータ歯76 − の溝に棒状で無着磁の希土類永久磁石である棒状永久磁
石16を挿入・固着し、外周を研磨する。次に、2個の
うち一方を第4図に示すように棒状永久磁石16をロー
タ鉄心6に取付けた状態で、着磁ヨーク20に取付けた
半径方向着磁コイル21により半径方向に20kOeの
磁界で棒状永久磁石16を着磁する。また、他方を磁化
方向を変えて同様の方法で棒状永久磁石16を着磁する
。次に、棒状永久磁石付ロータ鉄心2個により円盤状で
無着磁のアルニコ永久磁石である円盤状永久磁石14を
挟んで回転軸11に取付け、ロータ組立を行い、第5図
に示すように磁性材で製作した薄い円筒22でロータ1
3を覆って非磁性材で円筒状に形成された着磁器23の
中に入れ、軸方向着磁コイル24により軸方向に3kO
eの磁界をかけて円盤状永久磁石14を着磁する。
(1) First manufacturing method First, two block-shaped rotor cores 6 are made by laminating rotor magnetic steel plates, and rod-shaped permanent magnets, which are unmagnetized rare earth permanent magnets, are placed in the grooves of each rotor tooth 76. The magnet 16 is inserted and fixed, and the outer periphery is polished. Next, with one of the two rod-shaped permanent magnets 16 attached to the rotor core 6 as shown in FIG. The rod-shaped permanent magnet 16 is magnetized. Further, the bar-shaped permanent magnet 16 is magnetized in the same manner by changing the magnetization direction of the other magnet. Next, the disk-shaped permanent magnet 14, which is a disk-shaped non-magnetized alnico permanent magnet, is sandwiched between two rotor cores with rod-shaped permanent magnets and is attached to the rotating shaft 11, and the rotor is assembled, as shown in FIG. The rotor 1 is made of a thin cylinder 22 made of magnetic material.
3 is placed in a magnetizer 23 formed in a cylindrical shape with a non-magnetic material, and 3kO is applied in the axial direction by an axial magnetizing coil 24.
The disk-shaped permanent magnet 14 is magnetized by applying a magnetic field of e.

■ 第2の製造方法 上記した第1の製造方法と同様にロータ組立・外周研磨
終了後に棒状永久磁石16を着磁し、円盤状永久磁石1
4は無着磁の状態でモータ組立を行った後、モータを着
磁器に入れてモータ全体に軸方向着磁コイルにより3k
Oeの軸方向磁界をかけて円盤状永久磁石14を着磁す
る。
■Second manufacturing method Similarly to the first manufacturing method described above, after rotor assembly and outer periphery polishing, the rod-shaped permanent magnet 16 is magnetized, and the disc-shaped permanent magnet 1 is magnetized.
4, after assembling the motor in an unmagnetized state, put the motor into a magnetizer and apply 3k to the entire motor using an axial magnetizing coil.
The disk-shaped permanent magnet 14 is magnetized by applying an axial magnetic field of Oe.

■ 第3の製造方法 ロータ歯7の溝部に無着磁の棒状永久磁石16を挿入・
固着し、外周研磨した棒状永久磁石付ロータ鉄心2個で
無着磁の円盤状永久磁石14を挟んで、回転軸11に取
付け、ロータ組立を行い、まず、第6図に示す着磁器を
用いて着磁ヨーク25に取付けた半径方向着磁コイル2
6a、 26b、 26cにより20kOe半径方向磁
界をかけてロータ13の棒状永久磁石16を着磁する。
■ Third manufacturing method Insert an unmagnetized bar-shaped permanent magnet 16 into the groove of the rotor tooth 7.
The unmagnetized disk-shaped permanent magnet 14 is sandwiched between two rotor cores with rod-shaped permanent magnets that have been fixed and polished on their outer peripheries, and are attached to the rotating shaft 11 to assemble the rotor. First, the rotor is assembled using a magnetizer shown in FIG. Radial magnetizing coil 2 attached to magnetizing yoke 25
6a, 26b, and 26c apply a radial magnetic field of 20 kOe to magnetize the rod-shaped permanent magnets 16 of the rotor 13.

次に、上記した薄い円筒22でロータ13を覆い、第5
図に示した着磁器23を用いて軸方向着磁コイル24に
より3kOeの軸方向磁界をかけて円盤状永久磁石14
を着磁する。
Next, the rotor 13 is covered with the thin cylinder 22 described above, and the fifth
Using the magnetizer 23 shown in the figure, an axial magnetic field of 3 kOe is applied to the disk-shaped permanent magnet 14 by an axial magnetizing coil 24.
magnetize.

(イ)第4の製造方法 」1記した第3の製造方法によりロータ組立・ロータ外
周研磨終了後、まず、第6図に示した着磁器を用いて半
径方向着磁コイル26a、 26b、 26cにより2
0kOeの半径方向磁界をかけてロータ13の棒状永久
磁石16を着磁する。次に、モータの組立後にこのモー
タを第5図に示した着磁器を用いて軸方向着磁コイル2
4により3kOeの軸方向磁界をかけて円盤状永久磁石
14を着磁する。
(a) Fourth manufacturing method After rotor assembly and rotor outer periphery polishing are completed by the third manufacturing method described in 1, first, the radial magnetizing coils 26a, 26b, 26c are made using the magnetizer shown in FIG. By 2
A radial magnetic field of 0 kOe is applied to magnetize the rod-shaped permanent magnets 16 of the rotor 13. Next, after assembling the motor, use the magnetizer shown in FIG.
4, the disk-shaped permanent magnet 14 is magnetized by applying an axial magnetic field of 3 kOe.

■ 第5の製造方法 一上記した構成のステッピングモータおよびその製造方
法において、棒状永久磁石を希土類プラスティク永久磁
石としたものである。
(fifth manufacturing method) In the stepping motor having the above-described structure and its manufacturing method, the bar-shaped permanent magnet is a rare earth plastic permanent magnet.

(6)第6の製造方法 上記した第2〜第5の各製造方法において、棒状永久磁
石は、希土類永久磁石のパウダを鉄心歯の溝に入れて樹
脂で成形したものである。
(6) Sixth manufacturing method In each of the second to fifth manufacturing methods described above, the rod-shaped permanent magnet is formed by placing rare earth permanent magnet powder into grooves of iron core teeth and molding with resin.

次に、本実施例の作用を説明する。第7図は、本実施例
に使用する永久磁石の特性を示す。円盤状永久磁石14
に用いるアルニコ永久磁石の磁気特性は、保磁力BI(
C=6000e、残留磁束密度Br=1.3T、着磁磁
界Hm = 3kOeであり、棒状の永久磁石16に用
いる希土類永久磁石の磁気特性は、保磁力B HC: 
9kOe、残留磁束密度Br=1.OT、着磁磁界Hm
 = 20kOeである。
Next, the operation of this embodiment will be explained. FIG. 7 shows the characteristics of the permanent magnet used in this example. Disc-shaped permanent magnet 14
The magnetic properties of alnico permanent magnets used in
C=6000e, residual magnetic flux density Br=1.3T, magnetizing magnetic field Hm=3kOe, and the magnetic properties of the rare earth permanent magnet used for the bar-shaped permanent magnet 16 are coercive force BHC:
9kOe, residual magnetic flux density Br=1. OT, magnetizing magnetic field Hm
= 20kOe.

まず、上記したように棒状永久磁石16をロータ1 鉄心6の溝に取付けた状態で外周研磨後、第4図または
第6図に示す着磁器により半径方向に20kOeの磁界
をかけて着磁する。ただし、2個のロータ鉄心6の溝に
挿入・固着された棒状永久磁石の磁化方向は逆である。
First, as described above, after polishing the outer periphery of the rod-shaped permanent magnet 16 attached to the groove of the rotor 1 iron core 6, it is magnetized by applying a magnetic field of 20 kOe in the radial direction using a magnetizer shown in FIG. 4 or FIG. . However, the magnetization directions of the rod-shaped permanent magnets inserted and fixed in the grooves of the two rotor cores 6 are opposite.

次に、この2個のロータ鉄心6で円盤状永久磁石14を
挟んで回転軸11に取付け、第5図に示す着磁器により
軸方向に3kOeの磁界をかけて円盤状永久磁石14を
着磁する。この時、棒状永久磁石]6の磁化方向は半径
方向であり、円盤状永久磁石14の磁化方向である軸方
向磁界に対して垂直な方向であるため、軸方向着磁磁界
の影響を受けにくい。
Next, the two rotor cores 6 sandwich the disk-shaped permanent magnet 14 and attach it to the rotating shaft 11, and the disk-shaped permanent magnet 14 is magnetized by applying a magnetic field of 3 kOe in the axial direction using the magnetizer shown in FIG. do. At this time, the magnetization direction of the bar-shaped permanent magnet] 6 is the radial direction, which is perpendicular to the axial magnetic field, which is the magnetization direction of the disk-shaped permanent magnet 14, so it is not easily affected by the axial magnetizing magnetic field. .

仮に最大である3kOeの逆磁界が棒状永久磁石16に
かかるとすると、その間は、第8図に示すように動作点
は第2象限にあり第3象限にはない。従って、−時的な
逆磁界がなくなると、元の動作点近くに戻ることができ
て減磁しないことが分かる。
Assuming that a maximum reverse magnetic field of 3 kOe is applied to the bar-shaped permanent magnet 16, during that time, the operating point is in the second quadrant and not in the third quadrant, as shown in FIG. Therefore, it can be seen that when the temporal reverse magnetic field disappears, it is possible to return to near the original operating point and no demagnetization occurs.

また、上記した第1の製造方法に用いた薄い円筒22は
、第9図に示されるように棒状永久磁石16のパーミア
ンス係数を大として磁石の動作点を反2 磁界の小さな領域とすることにより、−時的な逆磁界中
での減磁を防止する。さらに、保磁力の小さな円盤状永
久磁石14の減磁防止となる。
In addition, the thin cylinder 22 used in the first manufacturing method described above is produced by increasing the permeance coefficient of the bar-shaped permanent magnet 16 and setting the operating point of the magnet to a region with a small magnetic field. , - prevent demagnetization in temporal reverse magnetic fields. Furthermore, demagnetization of the disk-shaped permanent magnet 14 having a small coercive force is prevented.

なお、本発明は、」1記した実施例に限定されるもので
はなく、ステータ小歯3.ロータ歯7の各溝部に挿入す
る棒状永久磁石15.16は、ステータ小歯3の溝また
はロータ歯7の溝の片方でもよい。
Note that the present invention is not limited to the embodiments described in 1. The rod-shaped permanent magnets 15 and 16 inserted into each groove of the rotor teeth 7 may be either the grooves of the small stator teeth 3 or the grooves of the rotor teeth 7.

また、円盤状永久磁石14がステータ12にある場合も
同様にでき、ロータ13の製造方法はステータ12の製
造方法として用いることができ、同様な効果が得られる
。さらに、ステッピングモータは誘導子形電気機械の一
つであるので、当然他の誘導子形電動機・発電機(リニ
アモータも含む)にも本発明を適用すれば同様な効果が
得られる。
Further, the same can be done when the disc-shaped permanent magnet 14 is provided in the stator 12, and the method for manufacturing the rotor 13 can be used as the method for manufacturing the stator 12, and the same effect can be obtained. Furthermore, since a stepping motor is one type of inductor type electric machine, it is natural that similar effects can be obtained by applying the present invention to other inductor type motors/generators (including linear motors).

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、ロータに棒状永久磁
石を取付けた後、または、ロータ組立・外周研磨後に永
久磁石の着磁を行うため、製造が容易にできる。
As explained above, according to the present invention, since the permanent magnets are magnetized after attaching the rod-shaped permanent magnets to the rotor or after assembling the rotor and polishing the outer periphery, manufacturing can be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1−図は本発明のステッピングモータの一実施例を示
す縦断面図、第2図は第1図のA−A線に沿った横断面
図、第3図は拡大断面図で(a)は第2図のX−X線に
沿った断面図、(b)は第2図のY−Y線に沿った断面
図、第4図は本発明の第1の製造方法における棒状の永
久磁石の着磁を行う方法を示す説明図、第5図は本発明
の第1の製造方法における円盤状永久磁石の着磁を行う
方法を示す説明図、第6図は本発明の第3の製造方法に
おける棒状の永久磁石の第4図と異なる方法を示す説明
図、第7図は本発明の実施例で使用する希土類磁石とア
ルニコ永久磁石の減磁曲線を示す線図、第8図は本発明
の実施例で使用する円盤状永久磁石の着磁により棒状の
永久磁石に最大の逆磁界がかかったときの棒状の永久磁
石の減磁曲線」二での動作の動きを示す説明図、第9図
は本発明の第2の製造方法においてロータを薄い磁性材
円筒に入れたときの棒状の永久磁石の減磁曲線上の動作
点を示す説明図、第10図は従来の高トルク・高山カス
チッピングモータの縦断面図、第11図は・高出力のス
テッピングモータの 従来の高1〜ルク 横断面図である。 ]・ステータ鉄心 3・ステータ小歯 7・・・ロータ歯 11・・・回転軸 13・・ロータ 15a、 15b、 16a。 20・・・着磁ヨーク 22・・・磁性の円筒 24・・軸方向着磁コイル 2・・ステータ極歯 4・・巻線 8・・・ロータ鉄心 12・・・ステータ 14・・円盤状永久磁石 16b・・棒状永久磁石 21・半径方向着磁コイル z3・・・着磁器
Figure 1 is a longitudinal cross-sectional view showing one embodiment of the stepping motor of the present invention, Figure 2 is a cross-sectional view taken along line A-A in Figure 1, and Figure 3 is an enlarged cross-sectional view (a). is a cross-sectional view taken along line X-X in FIG. 2, (b) is a cross-sectional view taken along line Y-Y in FIG. 2, and FIG. 4 is a rod-shaped permanent magnet in the first manufacturing method of the present invention. 5 is an explanatory diagram showing a method for magnetizing a disk-shaped permanent magnet in the first manufacturing method of the present invention. FIG. 6 is an explanatory diagram showing a method for magnetizing a disk-shaped permanent magnet in the first manufacturing method of the present invention. Fig. 7 is an explanatory diagram showing a method different from Fig. 4 for rod-shaped permanent magnets in the method, Fig. 7 is a line diagram showing demagnetization curves of rare earth magnets and alnico permanent magnets used in the examples of the present invention, and Fig. 8 is a diagram showing the demagnetization curves of the rare earth magnets and alnico permanent magnets used in the examples of the present invention. Explanatory diagram showing the movement of the demagnetization curve of a bar-shaped permanent magnet when the maximum reverse magnetic field is applied to the bar-shaped permanent magnet due to the magnetization of the disc-shaped permanent magnet used in the embodiments of the invention. Figure 9 is an explanatory diagram showing the operating point on the demagnetization curve of a rod-shaped permanent magnet when the rotor is placed in a thin magnetic cylinder in the second manufacturing method of the present invention, and Figure 10 is an explanatory diagram showing the operating point on the demagnetization curve of a rod-shaped permanent magnet when the rotor is placed in a thin magnetic cylinder in the second manufacturing method of the present invention. FIG. 11 is a vertical sectional view of a stepping motor; and FIG. 11 is a conventional cross-sectional view of a high output stepping motor. ]・Stator core 3・Stator small teeth 7・Rotor teeth 11・Rotating shaft 13・Rotors 15a, 15b, 16a. 20... Magnetizing yoke 22... Magnetic cylinder 24... Axial magnetizing coil 2... Stator pole teeth 4... Winding 8... Rotor core 12... Stator 14... Disc-shaped permanent Magnet 16b... Rod-shaped permanent magnet 21... Radial magnetizing coil z3... Magnetizer

Claims (2)

【特許請求の範囲】[Claims] (1)ステータ鉄心の円周方向に複数個のステータ極歯
を設け、このステータ極歯には多相巻線を巻回すると共
に内周面に複数個のステータ小歯を設け、このステータ
小歯の溝に半径方向に着磁された高保磁力の第1の棒状
永久磁石を固着して成るステータと、ロータ鉄心の前記
ステータ小歯に対向する外周面に複数個のロータ歯を設
け、かつ軸方向に2分割され、互いに前記ロータ歯を1
/2歯ピッチずらし、分割部に軸方向に着磁された低保
磁力の円盤状永久磁石を設け、前記ロータ歯の溝に半径
方向に着磁された高保磁力の第2の棒状永久磁石が固着
されたロータとから成り、前記第1の棒状永久磁石と前
記第2の棒状永久磁石の極性が前記円盤状永久磁石によ
り発生する界磁主磁束を打消す方向であることを特徴と
するステッピングモータ。
(1) A plurality of stator pole teeth are provided in the circumferential direction of the stator core, a polyphase winding is wound around the stator pole teeth, and a plurality of stator small teeth are provided on the inner peripheral surface. a stator comprising a first bar-shaped permanent magnet having a high coercive force magnetized in the radial direction fixed in a tooth groove; and a plurality of rotor teeth provided on the outer peripheral surface of the rotor core opposite to the stator small teeth, and It is divided into two parts in the axial direction, and each rotor tooth is
/2 tooth pitch shifted, a disc-shaped permanent magnet with a low coercive force magnetized in the axial direction is provided in the divided part, and a second bar-shaped permanent magnet with a high coercive force magnetized in the radial direction is provided in the groove of the rotor teeth. and a fixed rotor, wherein the polarity of the first bar-shaped permanent magnet and the second bar-shaped permanent magnet is in a direction that cancels the field main magnetic flux generated by the disc-shaped permanent magnet. motor.
(2)ロータ歯の溝に棒状で無着磁の希土類永久磁石を
挿入・固着した後外周を研磨し、この状態で半径方向に
着磁した2個のロータ鉄心を、無着磁で低保磁力の円盤
状永久磁石を挟んで回転軸に取付け、ロータ組立をした
後、磁性材の薄い円筒の中に入れて前記円盤状永久磁石
を軸方向に着磁するようにしたことを特徴とする特許請
求の範囲第1項記載のステッピングモータの製造方法。
(2) After inserting and fixing rod-shaped, unmagnetized rare earth permanent magnets into the grooves of the rotor teeth, the outer periphery is polished, and in this state, the two rotor cores magnetized in the radial direction are A magnetic disc-shaped permanent magnet is sandwiched and attached to a rotating shaft to assemble the rotor, and then the disc-shaped permanent magnet is placed in a thin cylinder made of magnetic material so that the disc-shaped permanent magnet is magnetized in the axial direction. A method for manufacturing a stepping motor according to claim 1.
JP1331171A 1989-12-22 1989-12-22 Step motor and manufacture thereof Pending JPH03195337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331171A JPH03195337A (en) 1989-12-22 1989-12-22 Step motor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331171A JPH03195337A (en) 1989-12-22 1989-12-22 Step motor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03195337A true JPH03195337A (en) 1991-08-26

Family

ID=18240677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331171A Pending JPH03195337A (en) 1989-12-22 1989-12-22 Step motor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03195337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228485A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Method and device for magnetizing permanent magnet of rotor for rotating electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228485A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Method and device for magnetizing permanent magnet of rotor for rotating electric machine

Similar Documents

Publication Publication Date Title
JP3152405B2 (en) Electric motor
US20020180294A1 (en) Dynamo electric machine with permanent magnet type rotor
JP3280896B2 (en) Permanent magnet type reluctance type rotating electric machine
JP2006087296A (en) Permanent magnet motor
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JPH02223342A (en) Rotor with permanent magnet and its manufacture
JP4029679B2 (en) Bond magnet for motor and motor
JPH0479741A (en) Permanent magnet rotor
JP7267024B2 (en) Halbach array rotor, motor, electric compressor, and manufacturing method thereof
JPH03195343A (en) Magnetizer for step motor
JPS6149901B2 (en)
JPH03195337A (en) Step motor and manufacture thereof
JPH03195344A (en) Magnetizer for step motor
JP2777331B2 (en) Permanent magnet type rotating electric machine
JPH0698489A (en) Rotor for servo motor
JPH03203558A (en) Magnetizing method for stepping motor
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JPH03203566A (en) Stepping motor
JPH0644303Y2 (en) Magnetic circuit
JPH0628945Y2 (en) Permanent magnet type motor
JPH03203557A (en) Magnetizing method for stepping motor
JP4737202B2 (en) Method for orienting anisotropic bonded magnet for motor
JPH03203539A (en) Stepping motor
JPS60167310A (en) Magnetization of anisotropic cylinder magnet