JPH03195019A - Gas supply apparatus for semiconductor diffusion furnace use - Google Patents

Gas supply apparatus for semiconductor diffusion furnace use

Info

Publication number
JPH03195019A
JPH03195019A JP33549989A JP33549989A JPH03195019A JP H03195019 A JPH03195019 A JP H03195019A JP 33549989 A JP33549989 A JP 33549989A JP 33549989 A JP33549989 A JP 33549989A JP H03195019 A JPH03195019 A JP H03195019A
Authority
JP
Japan
Prior art keywords
gas supply
diffusion furnace
supply pipe
supplied
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33549989A
Other languages
Japanese (ja)
Inventor
Yasushi Nishimoto
西本 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP33549989A priority Critical patent/JPH03195019A/en
Publication of JPH03195019A publication Critical patent/JPH03195019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent that ultrapure water to be liquefied inside a gas supply pipe flows into a diffusion furnace by a method wherein a hermetically sealed liquid storage container is installed at a halfway part of the gas supply pipe which is connected to the diffusion furnace. CONSTITUTION:Steam, of ultrapure water 6, which is generated by using an apparatus is supplied through a gas supply pipe 8; oxygen 9 is supplied to the gas supply pipe 8. Even when the steam is cooled and liquefied at a halfway part of a divided long gas supply pipe 11 on one side, the liquefied ultrapure water flows and drops into a hermetically sealed liquid storage container 10 and is stored there. The steam and the oxygen once flow into the hermetically sealed liquid container; after that, they are supplied into a diffusion furnace through a divided short gas supply pipe 12 on the other side. Consequently, a pulsatory movement of the Iiquefied ultrapure water inside the gas supply pipe is not caused; the steam of a definite amount is always fed into the diffusion furnace. Thereby, the liquefied ultrapure water 6 is not supplied into the diffusion furnace 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水蒸気酸化法により半導体基板に酸化膜を形
成するための半導体拡散炉用ガス供給装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a gas supply device for a semiconductor diffusion furnace for forming an oxide film on a semiconductor substrate by a steam oxidation method.

[従来の技術] 従来、水蒸気酸化法により半導体基板に酸化膜を形成す
るには、第2図に示す如く拡散炉1内へ半導体基板2を
治具3にて支持して入れ、ガス供給装置4のフラスコ5
内の超純水6を加熱ヒーター7にて加熱して水蒸気を発
生させ、この水蒸気を石英管又はテフロンチューブより
成るガス供給管8を通して拡散炉1内へ供給し、と同時
にガス供給管8の途中に連通された酸素供給管9を通し
て酸素を送り込み、水蒸気と共にガス供給管8を通して
拡散炉1内へ供給して、半導体基板2上に水蒸気酸化に
より酸化膜を形成している。
[Prior Art] Conventionally, in order to form an oxide film on a semiconductor substrate by a steam oxidation method, a semiconductor substrate 2 is supported by a jig 3 and put into a diffusion furnace 1 as shown in FIG. 4 flasks 5
The ultrapure water 6 in the interior is heated with a heater 7 to generate water vapor, and this water vapor is supplied into the diffusion furnace 1 through a gas supply pipe 8 made of a quartz tube or a Teflon tube, and at the same time, the gas supply pipe 8 is Oxygen is sent through an oxygen supply pipe 9 connected in the middle, and is supplied together with water vapor into the diffusion furnace 1 through a gas supply pipe 8 to form an oxide film on the semiconductor substrate 2 by steam oxidation.

[発明が解決しようとする課題] ところで、上記従来のガス供給手段では、フラスコS内
の超純水が加熱され、蒸発した水蒸気がガス供給管8を
通して拡散炉1内へ供給される前に冷やされて一部液化
し、管内壁に水滴が付着し、これが成長して管内を塞ぎ
始め、開口断面積が極端に小さくなって水蒸気が通りに
くくなり、やがて管内が完全に塞がれると、管内を流れ
る酸素の圧力及び水蒸気の圧力により液化超純水の一部
が拡散炉1内へ供給され、管内が一部開かれて再び水蒸
気が少ないながらも拡散炉1内へ供給されるということ
が繰返される液化超純水の脈動が発生する。従って、拡
散炉1内へ十分に水蒸気が送り込まれなかったり、液化
した超純水がそのまま拡散炉1へ供給されたりして、半
導体基板2が異常酸化して、酸化膜厚のばらつきや酸化
歩留の低下が生じ、その結果として半導体素子の電気的
特性に悪影響を与えるという問題を惹起することとなる
[Problems to be Solved by the Invention] By the way, in the conventional gas supply means described above, the ultrapure water in the flask S is heated, and the evaporated water vapor is cooled before being supplied into the diffusion furnace 1 through the gas supply pipe 8. water droplets adhere to the inner wall of the pipe and begin to grow and block the inside of the pipe.The cross-sectional area of the opening becomes extremely small, making it difficult for water vapor to pass through, and eventually the inside of the pipe becomes completely blocked. A part of the liquefied ultrapure water is supplied into the diffusion furnace 1 due to the pressure of oxygen and water vapor flowing through the pipe, and the inside of the pipe is partially opened and the water vapor is supplied into the diffusion furnace 1 again, although the amount of water vapor is small. Repeated pulsations of liquefied ultrapure water occur. Therefore, if sufficient water vapor is not sent into the diffusion furnace 1, or if liquefied ultrapure water is supplied directly to the diffusion furnace 1, the semiconductor substrate 2 may be abnormally oxidized, resulting in variations in oxide film thickness and oxidation step. This leads to a problem in that the electrical characteristics of the semiconductor device are adversely affected.

この為、ガス供給管8を適正な温度に保持するようにヒ
ーターで加熱することが考えられるが、構造が複雑にな
り、適正な温度調整及び保守が面倒である。
For this reason, it is conceivable to heat the gas supply pipe 8 with a heater to maintain it at an appropriate temperature, but the structure becomes complicated and proper temperature adjustment and maintenance are troublesome.

このようなことから近時、ガス供給管に輻射熱反射カバ
ーを被覆して、ガス供給管を水滴発生を阻止するに十分
な温度に保持するようにすることが提案されている。(
特開昭60−154627号公報参照) しかし、このようにガス供給管に輻射熱反射カバーを被
覆してもガス供給管が長いと、水蒸気がガス供給管内を
通過する途中で過飽和状態となり、凝結して水滴を作っ
てしまい、これが拡散炉に入るという問題がある。
For this reason, it has recently been proposed to cover the gas supply pipe with a radiant heat reflective cover to maintain the gas supply pipe at a temperature sufficient to prevent the generation of water droplets. (
(Refer to Japanese Patent Application Laid-Open No. 60-154627.) However, even if the gas supply pipe is covered with a radiant heat reflective cover in this way, if the gas supply pipe is long, water vapor will become supersaturated while passing through the gas supply pipe and condense. There is a problem in that water droplets are created and these droplets enter the diffusion furnace.

そこで本発明は、ガス供給管内で液化した超純水が決し
て拡散炉内に流入しないようにした半導体拡散炉用ガス
供給装置を提供しようとするものである。
Therefore, the present invention aims to provide a gas supply device for a semiconductor diffusion furnace in which ultrapure water liquefied in a gas supply pipe never flows into the diffusion furnace.

[課題を解決するための手段] 上記課題を解決するための本発明の半導体拡散炉用ガス
供給装置は、半導体基板を拡散炉に入れ、水蒸気と酸素
を供給して水蒸気酸化法により半導体基板に酸化膜を形
成する半導体拡散炉用ガス供給装置に於いて、前記拡散
炉に連通ずるガス供給装置の酸素供給管を有するガス供
給管の途中を拡散炉に至近の位置で分断し、該分断部分
に密閉液溜容器を設け、該密閉液溜容器に分断した各ガ
ス供給管を傾けて連通したことを特徴とするものである
[Means for Solving the Problems] In order to solve the above problems, the gas supply device for a semiconductor diffusion furnace of the present invention places a semiconductor substrate in a diffusion furnace, supplies water vapor and oxygen, and processes the semiconductor substrate by a steam oxidation method. In a gas supply device for a semiconductor diffusion furnace for forming an oxide film, a gas supply pipe having an oxygen supply pipe of the gas supply device communicating with the diffusion furnace is divided in the middle at a position close to the diffusion furnace, and the divided portion is The present invention is characterized in that a closed liquid storage container is provided, and each of the divided gas supply pipes is connected to the closed liquid storage container at an angle.

[作 用] 上記の如く構成された半導体拡散炉用ガス供給装置によ
れば、ガス供給装置で発生させた超純水の水蒸気をガス
供給管を通して供給すると共にガス供給管へ酸素を供給
した際、水蒸気が分断した一方の長いガス供給管の途中
で冷やされて液化しても、この液化した超純水は密閉液
溜容器内に流入落下して貯溜され、水蒸気と酸素は一旦
密閉液溜容器内に入った後分断した他方の短いガス供給
管を通って拡散炉内へ供給される。従って、ガス供給管
内の液化した超純水の脈動が無くなって、拡散炉内へ常
に一定量の水蒸気が送り込まれ、また液化した超純水が
拡散炉内へ供給されることが無いので、拡散炉内ヘセッ
トした半導体基板が異常酸化することが無く、酸化膜厚
が一定となり、酸化歩留が向上する。
[Function] According to the gas supply device for a semiconductor diffusion furnace configured as described above, when ultrapure water vapor generated by the gas supply device is supplied through the gas supply pipe and oxygen is supplied to the gas supply pipe, Even if water vapor is cooled and liquefied in the middle of one of the long gas supply pipes, this liquefied ultrapure water flows into the sealed liquid reservoir and is stored, and the water vapor and oxygen are temporarily stored in the sealed liquid reservoir. After entering the container, the gas is supplied into the diffusion furnace through the other short gas supply pipe. Therefore, the pulsation of the liquefied ultrapure water in the gas supply pipe is eliminated, and a constant amount of water vapor is always sent into the diffusion furnace.Also, since the liquefied ultrapure water is not supplied into the diffusion furnace, the diffusion The semiconductor substrate set in the furnace will not be abnormally oxidized, the oxide film thickness will be constant, and the oxidation yield will be improved.

[実施例] 本発明の半導体拡散炉用ガス供給装置の一実施例を第1
図によって説明すると、1は拡散炉で、図示の如く半導
体基板2を石英製の治具3にて支持して入れるものであ
る。4はガス供給装置で、フラスコ5内の超純水6を加
熱ヒーター7にて加熱して水蒸気を発生させるものであ
る。ガス供給装置4のフラスコ5と前記拡散炉1を連通
ずるガス供給管8は途中を拡散炉1に至近の位置で分断
し、該分断部分に石英製の密閉液溜容器10を設けて、
分断したガス供給管11.12を連通している。分断し
た一方のフラスコ5からの長いガス供給管11はやや下
方に傾斜させて密閉液溜容器10の上部外周に貫通支持
させてあり、分断した他方の拡散炉1への短いガス供給
管12はL形に下方に屈曲してその垂直部が密閉液溜容
器10の上面中心に貫通支持され、水平部が密閉液溜容
器10側にやや傾斜せしめられている。密閉液溜容器1
0の底には水抜きコック13を有する排水口14が設け
られている。前記ガス供給管11の途中には酸素供給管
9が連通されている。
[Example] A first example of the gas supply device for a semiconductor diffusion furnace of the present invention is described below.
To explain with reference to the drawings, reference numeral 1 denotes a diffusion furnace into which a semiconductor substrate 2 is supported by a jig 3 made of quartz as shown in the figure. Reference numeral 4 denotes a gas supply device that heats the ultrapure water 6 in the flask 5 with a heating heater 7 to generate water vapor. The gas supply pipe 8 that communicates the flask 5 of the gas supply device 4 with the diffusion furnace 1 is divided in the middle at a position close to the diffusion furnace 1, and a sealed liquid storage container 10 made of quartz is provided at the divided part.
The divided gas supply pipes 11 and 12 are communicated with each other. A long gas supply pipe 11 from one of the divided flasks 5 is slanted slightly downward and is supported through the upper outer periphery of the closed liquid storage container 10, and a short gas supply pipe 12 to the other divided diffusion furnace 1 is It is bent downward in an L-shape, and its vertical portion is penetratingly supported through the center of the upper surface of the closed liquid storage container 10, and its horizontal portion is slightly inclined toward the closed liquid storage container 10 side. Sealed liquid storage container 1
A drain port 14 having a drain cock 13 is provided at the bottom of the tank. An oxygen supply pipe 9 is connected in the middle of the gas supply pipe 11 .

このように構成された実施例の半導体拡散炉用ガス供給
装置の作用について説明する。ガス供給装置4のフラス
コ5内の超純水6を加熱ヒーター7にて加熱して水蒸気
を発生させ、この水蒸気をガス供給管11を通して供給
すると共に酸素供給管9からガス供給管11へ酸素を供
給した際、水蒸気が長いガス供給管11の途中で冷やさ
れて液化シても、この液化した超純水はやや傾斜したガ
ス供給管11の内壁を伝い流れて密閉液溜容器10内に
流入落下して貯溜され、水蒸気と酸素は一旦密閉液溜容
器10内へ入った後、短いガス供給管12を通って拡散
炉1内へ供給される。このガス供給管12の途中では水
蒸気は液化することが無く、仮に液化するようなことが
あっても密閉液溜容器10側に傾いているので拡散炉1
内へ入ることが無い。従フて、ガス供給管11内の液化
した超純水の脈動が無くなって、拡散炉1内へ常に一定
量の水蒸気が送り込まれ、また液化した超純水が拡散炉
1内へ供給されることが無いので、拡散炉1内へセット
した半導体基板2が異常酸化することが無くなった。そ
の結果、半導体基板2の酸化膜厚及び酸化歩留が、第2
図の従来の半導体拡散炉用ガス供給装置による場合に比
べ、下記の表に示すように改善された。
The operation of the gas supply device for a semiconductor diffusion furnace according to the embodiment configured as described above will be explained. The ultrapure water 6 in the flask 5 of the gas supply device 4 is heated by the heater 7 to generate water vapor, and this water vapor is supplied through the gas supply pipe 11 and oxygen is supplied from the oxygen supply pipe 9 to the gas supply pipe 11. When water vapor is supplied, even if it is cooled and liquefied in the middle of the long gas supply pipe 11, this liquefied ultrapure water flows along the slightly inclined inner wall of the gas supply pipe 11 and flows into the closed liquid storage container 10. The water vapor and oxygen that fall and are stored once enter the closed liquid storage container 10 and then are supplied into the diffusion furnace 1 through the short gas supply pipe 12. Water vapor does not liquefy in the middle of this gas supply pipe 12, and even if it does, it is tilted toward the closed liquid storage container 10, so the diffusion furnace 1
There is no way to go inside. Therefore, the pulsation of the liquefied ultrapure water in the gas supply pipe 11 is eliminated, and a constant amount of water vapor is always fed into the diffusion furnace 1, and the liquefied ultrapure water is also supplied into the diffusion furnace 1. Therefore, the semiconductor substrate 2 set in the diffusion furnace 1 is no longer subject to abnormal oxidation. As a result, the oxide film thickness and oxidation yield of the semiconductor substrate 2 are
Compared to the conventional gas supply system for semiconductor diffusion furnaces shown in the figure, improvements were made as shown in the table below.

[発明の効果] 以上の説明で判るように本発明の半導体拡散炉用ガス供
給装置によれば、超純水の水蒸気と酸素を半導体拡散炉
へ供給でき、液化した超純水を半導体拡散炉内へ供給す
ることが無いので、拡散炉内にセットした半導体基板が
異常酸化することが無く、半導体基板上に形成される酸
化膜厚が一定となり、酸化歩留が向上した。
[Effects of the Invention] As can be seen from the above description, according to the gas supply device for a semiconductor diffusion furnace of the present invention, ultrapure water vapor and oxygen can be supplied to the semiconductor diffusion furnace, and liquefied ultrapure water can be supplied to the semiconductor diffusion furnace. Since the semiconductor substrate set in the diffusion furnace is not supplied to the interior of the diffusion furnace, the semiconductor substrate set in the diffusion furnace is not abnormally oxidized, the thickness of the oxide film formed on the semiconductor substrate is constant, and the oxidation yield is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体拡散炉用ガス供給装置の一実施
例を示す図、第2図は従来の半導体拡散炉用ガス供給装
置を示す図である。 1・・・拡散炉      2・・・半導体基板3・・
・治具       4・・・ガス供給装置5・・・フ
ラスコ     6・・・超純水7・・・加熱ヒーター
   8・・・ガス供給管9・・・酸素供給管    
10・・・密閉液溜容器11.12・・・分断したガス
供給管
FIG. 1 is a diagram showing an embodiment of a gas supply device for a semiconductor diffusion furnace according to the present invention, and FIG. 2 is a diagram showing a conventional gas supply device for a semiconductor diffusion furnace. 1...Diffusion furnace 2...Semiconductor substrate 3...
・Jig 4... Gas supply device 5... Flask 6... Ultrapure water 7... Heater 8... Gas supply pipe 9... Oxygen supply pipe
10... Sealed liquid storage container 11.12... Divided gas supply pipe

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板を拡散炉に入れ、水蒸気と酸素を供給し
て水蒸気酸化法により半導体基板に酸化膜を形成する半
導体拡散炉用ガス供給装置に於いて、前記拡散炉に連通
するガス供給装置の酸素供給管を有するガス供給管の途
中を拡散炉に至近の位置で分断し、該分断部分に密閉液
溜容器を設け、該密閉液溜容器に分断した各ガス供給管
を傾けて連通したことを特徴とする半導体拡散炉用ガス
供給装置。
1) In a gas supply device for a semiconductor diffusion furnace in which a semiconductor substrate is placed in a diffusion furnace and water vapor and oxygen are supplied to form an oxide film on the semiconductor substrate by a steam oxidation method, a gas supply device communicating with the diffusion furnace is provided. A gas supply pipe having an oxygen supply pipe is divided in the middle at a position close to the diffusion furnace, a sealed liquid reservoir is provided at the divided part, and each of the divided gas supply pipes is connected to the closed liquid reservoir by tilting it. A gas supply device for a semiconductor diffusion furnace, characterized by:
JP33549989A 1989-12-25 1989-12-25 Gas supply apparatus for semiconductor diffusion furnace use Pending JPH03195019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33549989A JPH03195019A (en) 1989-12-25 1989-12-25 Gas supply apparatus for semiconductor diffusion furnace use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33549989A JPH03195019A (en) 1989-12-25 1989-12-25 Gas supply apparatus for semiconductor diffusion furnace use

Publications (1)

Publication Number Publication Date
JPH03195019A true JPH03195019A (en) 1991-08-26

Family

ID=18289261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33549989A Pending JPH03195019A (en) 1989-12-25 1989-12-25 Gas supply apparatus for semiconductor diffusion furnace use

Country Status (1)

Country Link
JP (1) JPH03195019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000497T5 (en) 2008-03-17 2011-04-21 Mitsubishi Electric Corp. Origin position signal detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000497T5 (en) 2008-03-17 2011-04-21 Mitsubishi Electric Corp. Origin position signal detector

Similar Documents

Publication Publication Date Title
EP0435088B1 (en) Chemical vapor deposition method and apparatus therefor
JPH05291142A (en) Liquid source supplying equipment
JP2001156055A (en) Method and apparatus for gasifying liquid material
JPH0795527B2 (en) Vaporizer for liquid raw materials
JPH03195019A (en) Gas supply apparatus for semiconductor diffusion furnace use
KR100378497B1 (en) Gas distribution system for a process reactor and method for processing semiconductor substrates
JPH0726365Y2 (en) Chemical liquid vaporizer for vapor phase surface treatment equipment
JP3770409B2 (en) HMDS supply device
JP3690095B2 (en) Deposition method
JP2721222B2 (en) Source gas supply device for plasma CVD
JPH10168571A (en) Device for cooling o ring
JPH08227848A (en) Feeding method and device of processing gas
JPH044749B2 (en)
JPH1053402A (en) Ozone concentrator and ozone concentration
JP2878462B2 (en) Cylinder container for organometallic compound vaporizer
JP4052506B2 (en) Substrate processing equipment
JPH05291144A (en) Chemical vapor deposition equipment and its vaporiser
JP2635019B2 (en) Semiconductor device manufacturing equipment
JPH0522256Y2 (en)
JPS61205629A (en) Raw material feeder
JPS6293925A (en) Vapor growth device
JPH0742481Y2 (en) Evaporator
JPH0536097B2 (en)
JPH07221091A (en) Method of controlling feed of material to thin-film formation apparatus
JPS61117824A (en) Vapor phase reaction container