JPH03194470A - Flow velocity measuring instrument - Google Patents

Flow velocity measuring instrument

Info

Publication number
JPH03194470A
JPH03194470A JP33407689A JP33407689A JPH03194470A JP H03194470 A JPH03194470 A JP H03194470A JP 33407689 A JP33407689 A JP 33407689A JP 33407689 A JP33407689 A JP 33407689A JP H03194470 A JPH03194470 A JP H03194470A
Authority
JP
Japan
Prior art keywords
frequency
transmitter
signal
oscillator
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33407689A
Other languages
Japanese (ja)
Inventor
Masato Nakajima
真人 中島
Akihisa Oya
晃久 大矢
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP33407689A priority Critical patent/JPH03194470A/en
Publication of JPH03194470A publication Critical patent/JPH03194470A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a slow flow velocity and discriminate the direction of the flow by irradiating a reflection body with ultrasonic wave beams which differ in frequency in an intersecting state, receiving a reflected wave which has a beat signal corresponding to the movement of the reflection body due to an interference standing wave, and analyzing its frequency. CONSTITUTION:The ultrasonic waves beam which are generated by a 1st oscillator 11 and a transmitter 1, and a 2nd oscillator 12 and a transmitter 2 and differ in frequency by a frequency shift DELTAf intersect each other and the interference standing wave is generated at the intersection part. The reflected ultrasonic wave beam which has the beat signal corresponding to the movement of the moving reflection body based upon the interference standing wave from the flow 4 is received by a receiver 5, and processed by a detector 14 and a Fourier transformer (FFT) 15 to analyze its frequency, thereby deciding the flow velocity from the movement position of a beat frequency waveform part moving from the frequency DELTAf part and the flow direction from the moving direction. Thus the slow flow velocity can be measured and even the direction of the slow flow velocity is also surely detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超音波を利用した流速測定装置に関し、特に超
音波の干渉定在波を利用した流速測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flow velocity measuring device using ultrasonic waves, and more particularly to a flow velocity measuring device using interference standing waves of ultrasonic waves.

(従来の技術) 2個のレーザ光源から発する光の光路を交差させると定
在波が発生する。この定在波中を移動物質が通過すると
その物質の速度に比例した周波数の揺らぎを生ずる。こ
の現象を超音波に応用して流速をD)定する方法が発表
されている。この現象を利用して行う流速測定の原理を
第3図を参照して説明する。図において、第1送波器1
と第2送波器2とから照射する波長λの連続波超音波ビ
ームを角度2θで交差させると、第1送波器1からの超
音波ビームと第2送波器からの超音波ビームとの交差部
3において定在波が生じ、次式に示す間隔dの干渉縞が
形成される。
(Prior Art) When the optical paths of light emitted from two laser light sources intersect, a standing wave is generated. When a moving object passes through this standing wave, it causes frequency fluctuations that are proportional to the speed of the object. A method for determining the flow velocity by applying this phenomenon to ultrasonic waves has been announced. The principle of flow rate measurement using this phenomenon will be explained with reference to FIG. In the figure, the first transmitter 1
When continuous wave ultrasound beams of wavelength λ emitted from the first transmitter 1 and the second transmitter 2 intersect at an angle of 2θ, the ultrasound beam from the first transmitter 1 and the ultrasound beam from the second transmitter 2 intersect. A standing wave is generated at the intersection 3, and interference fringes with an interval d shown in the following equation are formed.

λ 今、この定在波が存在している交差部3を1つの移動物
体4が速度■で通過することを考えた場合、移動物体4
からのエコー信号を受波器5で受信するとその包路線は
定在波の形に応じた揺らぎを持つ信号となる。この包路
線の揺らぎの信号即ちビート信号の周期Tは次式に示す
通りである。
λ Now, if we consider that one moving object 4 passes through the intersection 3 where this standing wave exists at a speed of ■, the moving object 4
When the receiver 5 receives an echo signal from the waveform, the envelope becomes a signal with fluctuations corresponding to the shape of the standing wave. The period T of this fluctuation signal of the envelope line, that is, the beat signal, is as shown in the following equation.

T=λ/V      ・・・・・・・ (2)(2)
式から明らかに判るように、その周期Tは移動物体4の
移動速度が速ければ短く、移動速度が遅ければ長くなる
。このエコーによるビート信号を有する受信信号の波形
を第4図に示す。このビート信号の周期Tは図示の通り
である。そしてこの方法による流速測定はドプラ法に比
べて次のような特長を備えている。
T=λ/V・・・・・・(2)(2)
As clearly seen from the equation, the period T becomes shorter if the moving speed of the moving object 4 is faster, and becomes longer if the moving speed is slower. FIG. 4 shows the waveform of a received signal having a beat signal due to this echo. The period T of this beat signal is as shown in the figure. Flow velocity measurement using this method has the following advantages compared to the Doppler method.

イ ドプラ法ではn1定困難な超低速の流速等も測定可
能である。
With the Doppler method, it is possible to measure extremely low flow velocities that are difficult to determine n1.

ロスペラクル速度計測法のように計測精度に確率的な要
因を持つものではないため、短時間に測定可能である。
Unlike the Losperacle velocity measurement method, there is no probabilistic factor in measurement accuracy, so it can be measured in a short time.

ハスベラクル速度計測法では散乱体密度が十分に高くス
ペックル領域になっていることが1llP+定条件の1
つであるが、本手法ではむしろ1個の散乱体が通過する
場合でも計測が可能である。
In the hasberacle velocity measurement method, the scatterer density is sufficiently high to form a speckle region.
However, with this method, measurement is possible even when a single scatterer passes through.

(発明が解決しようとする課題) ところで、上記のような2つの同一周波数の交差によっ
て生ずる干渉定在波を利用した流速測定法では、流速又
は物体の移動速度(以下流速という)の測定は可能であ
るが、ドプラ測定法のようにその移動方向を知ることか
できない。医用超音波システムではその流れの方向を知
ることは重要な課題である。
(Problem to be Solved by the Invention) By the way, in the flow velocity measurement method that utilizes interference standing waves generated by the intersection of two identical frequencies as described above, it is possible to measure the flow velocity or the moving speed of an object (hereinafter referred to as flow velocity). However, unlike the Doppler measurement method, it is not possible to know the direction of movement. Knowing the direction of flow is an important issue in medical ultrasound systems.

本発明は上記の点に鑑みてなされたもので、その目的は
、干渉定在波を利用した流速測定法の利点を失わず、そ
の流れの方向が測定可能な流速測定装置を実現すること
にある。
The present invention has been made in view of the above points, and its purpose is to realize a current velocity measuring device that can measure the direction of flow without losing the advantages of the current velocity measurement method using interference standing waves. be.

(課題を解決するための手段) 前記の課題を解決する本発明は、或る基準周波数より或
る偏移周波数たけ高い周波数の信号を発生する第1の発
振器と、該第1の発振器の出力信号により超音波を発生
し、目標に対して或る角度で超音波ビームを照射する第
1の送波器と、或る基準周波数の信号を発生する第2の
発振器と、該第2の発振器からの信号の周波数を発生し
、前記第1の送波器の照射ビームに対して目標付近で或
る角度で交差する超音波ビームを照射する第2の送波器
と、前記第1の送波器と前記第2の送波器から照射する
超音波ビームによる交差部で発生する移動する定在波に
基づいて前記交差部に存在する反射体からの前記反射体
の移動速度及び移動方向に由来するビート信号を有する
反射波を受波する受波器と、該受波器からの反射波信号
を増幅する受信増幅器と、受信信号を検波する検波器と
、該検波器の出力信号を周波数分析するFFTとを具備
することを特徴とするものである。
(Means for Solving the Problems) The present invention for solving the above problems includes a first oscillator that generates a signal with a frequency higher than a certain reference frequency by a certain deviation frequency, and an output of the first oscillator. a first transmitter that generates an ultrasonic wave according to a signal and irradiates the ultrasonic beam at a certain angle to a target; a second oscillator that generates a signal of a certain reference frequency; and the second oscillator. a second transmitter that generates a frequency of a signal from the first transmitter and emits an ultrasonic beam that intersects at a certain angle near the target with respect to the irradiation beam of the first transmitter; The speed and direction of movement of the reflector from the reflector present at the intersection are determined based on the moving standing waves generated at the intersection between the ultrasonic beams emitted from the wave transmitter and the second transmitter. a receiver that receives a reflected wave having a beat signal derived from the waveform, a reception amplifier that amplifies the reflected wave signal from the receiver, a detector that detects the received signal, and a frequency The method is characterized by comprising an FFT for analysis.

(作用) 第1の送波器からの超音波ビームとそれとは僅かに異な
る周波数の第2の送波器からの超音波ビームとの交差部
に、その周波数差に比例した速度で移動する定在波が発
生する。この交差部を通過する流体からの反射信号は、
定在波の移動速度と流速との間に一定の関係を有するビ
ート周波数を持っているので周波数スペクトルにおける
反射信号の位置により流速が求められる。
(Function) At the intersection of the ultrasonic beam from the first transmitter and the ultrasonic beam from the second transmitter with a slightly different frequency, a constant beam moves at a speed proportional to the frequency difference. Wave presence occurs. The reflected signal from the fluid passing through this intersection is
Since the beat frequency has a certain relationship between the moving speed of the standing wave and the flow velocity, the flow velocity can be determined from the position of the reflected signal in the frequency spectrum.

(実施例) 以下図面を参照して本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の回路のブロック図と定在波
形を示す図である。図において、第3図と同等の部分に
は同一の符号を付しである。図中、11は周波数f1+
Δfの信号を発振し、第1送波器1に信号を供給する第
1発振器、12は周波数f、の信号を発振し、第2送波
器2に信号を供給する第2発振器である。この場合、基
準周波数f、及び偏移周波数Δfは必要に応じて適宜選
ぶものである。13は受波器5が受波して電気信号に変
換した交差部3における移動物体4もしくは固定物体か
らのエコー信号を増幅する受信増幅器、14は受信増幅
器13の出力信号を検波する検波器で、その出力はFF
T15て周波数分析されて次回路以降に出力される。
FIG. 1 is a block diagram of a circuit according to an embodiment of the present invention and a diagram showing standing waveforms. In the figure, parts equivalent to those in FIG. 3 are given the same reference numerals. In the figure, 11 is the frequency f1+
A first oscillator 12 oscillates a signal of frequency f and supplies the signal to the first transmitter 1, and a second oscillator 12 oscillates a signal of frequency f and supplies the signal to the second transmitter 2. In this case, the reference frequency f and the deviation frequency Δf are appropriately selected as necessary. 13 is a receiving amplifier that amplifies the echo signal from the moving object 4 or a fixed object at the intersection 3 which the receiver 5 receives and converts into an electrical signal; 14 is a detector that detects the output signal of the receiving amplifier 13; , its output is FF
The frequency is analyzed at T15 and output to the next circuit.

次に、」1記のように構成された実施例の動作を説明す
るが、先ず、本実施例の原理を説明する。
Next, the operation of the embodiment configured as described in item 1 will be explained, but first, the principle of this embodiment will be explained.

交差させる超音波ビームの周波数を僅かにずらせ、第1
送波器1からの送波信号の周波数をf1+Δfとし、第
2送波器2からの送波信号の周波数をf、として、相互
の周波数間にΔfの差を持たせると、交差部3に生ずる
定在波は図示の矢印のように定速移動する。この移動速
度は、流れからの反射波にビート周波数が生しない流速
の値に等しいことが分る。即ち、定在波の移動速度と物
体の移動速度か等しい場合、物体からの反射波は常に射
波の強度が変化しないためビート周波数が発生しないか
らである。
The frequency of the ultrasonic beams to be crossed is slightly shifted, and the first
If the frequency of the transmission signal from the transmitter 1 is f1 + Δf and the frequency of the transmission signal from the second transmitter 2 is f, and there is a difference of Δf between the two frequencies, the intersection 3 The resulting standing wave moves at a constant speed as shown by the arrow in the figure. It can be seen that this moving speed is equal to the value of the flow velocity at which no beat frequency occurs in the reflected wave from the flow. That is, when the moving speed of the standing wave is equal to the moving speed of the object, the intensity of the reflected wave from the object does not always change, so no beat frequency occurs.

この場合、厄介な副作用として、固定物体のエコーがそ
の周波数差のビート即ちΔfで変調される。この場合は
、予め交差部3の中に固定反射源が殆どないようにする
か、さもなければ、強力なノツチフィルタを用いてその
反射波を取り除くようにすればよい。このようにΔfの
周波数差を持たせてそのビームを交差させた実施例の方
法では、固定物体は或るビート周波数即ちΔfに、定在
波の移動方向と同じ方向にそれよりゆっくりと流れる流
体は前記のビート周波数Δfより低い周波数に、逆の方
向に流れる流体は前記の固定物体からの反射波のビート
周波数Δfより高い周波数にそれぞれ現れるので、結果
として方向分離が可能となる。
In this case, a nasty side effect is that the fixed object's echo is modulated by the beat of its frequency difference, Δf. In this case, it is sufficient to make sure that there are almost no fixed reflection sources in the intersection 3, or else to remove the reflected waves using a strong notch filter. In the method of the embodiment in which the beams are intersected with a frequency difference of Δf, the fixed object has a certain beat frequency, that is, Δf, and a fluid flowing more slowly in the same direction as the moving direction of the standing wave. Since the fluid flowing in the opposite direction appears at a frequency lower than the beat frequency Δf, and the fluid flowing in the opposite direction appears at a frequency higher than the beat frequency Δf of the reflected wave from the fixed object, directional separation becomes possible.

次に第1図の装置に戻って、その動作を説明する。第1
発振器11は周波数がf、+Δfの信号を発生して第1
送波器1に供給する。第2発振器12は周波数fの信号
を発生して第2送波器2に供給する。第1送波器1から
出される超音波ビームと第2送波器2から出される超音
波ビームとは交差部3て交差する。この交差部3で発生
する定在波は、前記2個の送波器から出される送波ビー
ムの周波数の差Δfに比例する速度で第1送波器]から
第2送波器2の方に向って移動する。この交差部3にあ
る物体、又はこの交差部3中を流れる流体からの反射信
号を受波器5は受波して電気信号に変換し、出力信号を
受信増幅器13に入力する。受信増幅器13で増幅され
た信号は検波器14で検波され、FFT15において周
波数分析されて次回路へ出力される。このFFT15に
おいて周波数分析された信号の波形は第2図に示す通り
である。図において、20は固定目標からのエコーで、
ビート周波数がΔfの所に現れる。21は流体からのエ
コーで、この流れは定在波の移動方向とは逆の方向に動
いている場合を示しており、Δfより高いビート周波数
が出力される。定在波の移動速度と等しい速度の流体に
よるビート周波数はOなので、定在波の移動速度と同一
方向の流体のエコーによるビート周波数は、その速度が
増す程周波数軸のΔfから0の方に移動し、定在波の移
動速度と等しい流体のエコーによるビート周波数即ち0
の所までビート周波数は変化する。
Next, returning to the apparatus shown in FIG. 1, its operation will be explained. 1st
The oscillator 11 generates a signal with a frequency of f and +Δf to generate the first signal.
Supplied to the transmitter 1. The second oscillator 12 generates a signal of frequency f and supplies it to the second transmitter 2. The ultrasonic beam emitted from the first transmitter 1 and the ultrasonic beam emitted from the second transmitter 2 intersect at an intersection 3. The standing wave generated at this intersection 3 is directed from the first transmitter to the second transmitter 2 at a speed proportional to the frequency difference Δf between the transmitted beams emitted from the two transmitters. move towards. The receiver 5 receives a reflected signal from an object at the intersection 3 or a fluid flowing through the intersection 3, converts it into an electrical signal, and inputs the output signal to the reception amplifier 13. The signal amplified by the receiving amplifier 13 is detected by the wave detector 14, frequency-analyzed by the FFT 15, and output to the next circuit. The waveform of the signal subjected to frequency analysis in this FFT 15 is as shown in FIG. In the figure, 20 is an echo from a fixed target,
The beat frequency appears at Δf. Reference numeral 21 indicates an echo from the fluid, which indicates a case where the flow is moving in the opposite direction to the moving direction of the standing wave, and a beat frequency higher than Δf is output. Since the beat frequency due to the fluid having the same speed as the moving speed of the standing wave is O, the beat frequency due to the echo of the fluid in the same direction as the moving speed of the standing wave increases from Δf on the frequency axis toward 0 as the speed increases. The beat frequency due to echoes of the fluid that is moving and equal to the moving speed of the standing wave, i.e. 0
The beat frequency changes up to .

従って、Δfは測定しようとする流れの速度によって適
宜定めるとよい。
Therefore, Δf may be appropriately determined depending on the velocity of the flow to be measured.

以上説明したように本実施例によれば、速度Oからの極
めて遅い流速の測定ができる外、その流れの方向まで識
別ができるようになる。
As explained above, according to this embodiment, not only can extremely slow flow velocities starting from the velocity O be measured, but also the direction of the flow can be identified.

(発明の効果) 以上詳細に説明したように本発明によれば、極低速の流
れのnj定が可能であり、僅かの移動によって生ずるビ
ート周波数の観測で流速の判定が可能なので、短時間の
測定が可能である。又、ただ1個の散乱体の通過によっ
ても測定可能であるという利点の外に、その移動方向の
判別が可能になり、実用上の効果は大きい。
(Effects of the Invention) As explained in detail above, according to the present invention, it is possible to determine nj of an extremely low-velocity flow, and the flow velocity can be determined by observing the beat frequency caused by a slight movement. Measurement is possible. Moreover, in addition to the advantage that measurements can be made by the passage of just one scatterer, it is also possible to determine the direction of movement of the scatterer, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の回路と発生する定在波形を
示す図、 第2図は第1図の回路で得られた周波数スペクトルの図
、 第3図は同一周波数の超音波ビームを交差させた場合の
移動物体の速度測定の原理図、第4図は第3図の交差超
音波ビームから得られた信号の図である。 1・・・第1送波器     2・・・第2送波器3・
・・交差部       4・・・移動物体(流れ)5
・・・受波器       11・・・第1発振器12
・・・第2発振器    13・・・受信増幅器14・
・・検波器      15・・・FFT2O・・・固
定目標からのエコー 21・・・流体からのエコー
Figure 1 is a diagram showing a circuit according to an embodiment of the present invention and the standing waveform generated. Figure 2 is a diagram of the frequency spectrum obtained with the circuit in Figure 1. Figure 3 is an ultrasound beam of the same frequency. FIG. 4 is a diagram of the signal obtained from the crossed ultrasonic beams of FIG. 3. 1...First transmitter 2...Second transmitter 3.
...Intersection 4...Moving object (flow) 5
...Receiver 11...First oscillator 12
...Second oscillator 13...Reception amplifier 14.
...Detector 15...FFT2O...Echo from fixed target 21...Echo from fluid

Claims (1)

【特許請求の範囲】 或る基準周波数より或る偏移周波数だけ高い周波数の信
号を発生する第1の発振器(11)と、該第1の発振器
(11)の出力信号により超音波を発生し、目標に対し
て或る角度で超音波ビームを照射する第1の送波器(1
)と、 或る基準周波数の信号を発生する第2の発振器(12)
と、 該第2の発振器(12)からの信号の周波数を発生し、
前記第1の送波器(1)の照射ビームに対して目標付近
で或る角度で交差する超音波ビームを照射する第2の送
波器(2)と、 前記第1の送波器(1)と前記第2の送波器(2)から
照射する超音波ビームによる交差部(3)で発生する移
動する定在波に基づいて前記交差部(3)に存在する反
射体からの前記反射体の移動速度及び移動方向に由来す
るビート信号を有する反射波を受波する受波器(5)と
、 該受波器(5)からの反射波信号を増幅する受信増幅器
(13)と、 受信信号を検波する検波器(14)と、 該検波器(14)の出力信号を周波数分析するFFT(
15)とを具備することを特徴とする流速測定装置。
[Claims] A first oscillator (11) that generates a signal with a frequency higher than a certain reference frequency by a certain deviation frequency, and an ultrasonic wave generated by the output signal of the first oscillator (11). , a first transmitter (1) that irradiates an ultrasound beam at a certain angle to the target
), and a second oscillator (12) that generates a signal at a certain reference frequency.
and generating a frequency of a signal from the second oscillator (12);
a second transmitter (2) that emits an ultrasonic beam that intersects the irradiation beam of the first transmitter (1) at a certain angle near the target; and the first transmitter ( 1) and a moving standing wave generated at the intersection (3) by the ultrasonic beam irradiated from the second transmitter (2). a receiver (5) that receives a reflected wave having a beat signal derived from the moving speed and direction of the reflector; and a receiving amplifier (13) that amplifies the reflected wave signal from the receiver (5). , a detector (14) that detects the received signal, and an FFT (FFT) that frequency-analyzes the output signal of the detector (14).
15) A flow rate measuring device comprising:
JP33407689A 1989-12-22 1989-12-22 Flow velocity measuring instrument Pending JPH03194470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33407689A JPH03194470A (en) 1989-12-22 1989-12-22 Flow velocity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33407689A JPH03194470A (en) 1989-12-22 1989-12-22 Flow velocity measuring instrument

Publications (1)

Publication Number Publication Date
JPH03194470A true JPH03194470A (en) 1991-08-26

Family

ID=18273247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33407689A Pending JPH03194470A (en) 1989-12-22 1989-12-22 Flow velocity measuring instrument

Country Status (1)

Country Link
JP (1) JPH03194470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188966A (en) * 2003-12-24 2005-07-14 Olympus Corp Carrying speed detector, and image forming device provided therewith
JP2012200478A (en) * 2011-03-28 2012-10-22 Konica Minolta Medical & Graphic Inc Ultrasonic modulation light measurement device and ultrasonic modulation light measurement method
CN114019496A (en) * 2022-01-05 2022-02-08 北京邮电大学 Non-contact measurement method and device for flow velocity of liquid in pipeline

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188966A (en) * 2003-12-24 2005-07-14 Olympus Corp Carrying speed detector, and image forming device provided therewith
JP4509548B2 (en) * 2003-12-24 2010-07-21 オリンパス株式会社 Conveyance speed detector
JP2012200478A (en) * 2011-03-28 2012-10-22 Konica Minolta Medical & Graphic Inc Ultrasonic modulation light measurement device and ultrasonic modulation light measurement method
CN114019496A (en) * 2022-01-05 2022-02-08 北京邮电大学 Non-contact measurement method and device for flow velocity of liquid in pipeline
CN114019496B (en) * 2022-01-05 2022-03-08 北京邮电大学 Non-contact measurement method and device for flow velocity of liquid in pipeline

Similar Documents

Publication Publication Date Title
CA2465256C (en) Doppler ultrasonic flowmeter
US20050150309A1 (en) Blood flow velocity measurement
EP0321717B1 (en) Ultrasonic speckle velocity measurement method and apparatus
US7233388B2 (en) Distance measuring method, distance measuring device using same, and distance measuring structure using same
JPH0426709B2 (en)
WO1994017373A1 (en) Procedure for determining material flow rate
JPH03194470A (en) Flow velocity measuring instrument
JPH0390885A (en) Ground speed detecting device
JP2877119B2 (en) Mobile body speed measurement device
Mehrdadi et al. Non-contacting level measurement of irregular surfaces using coded ultrasound and cross correlation analysis
CN102103147A (en) Ultrasonic autocorrelation transverse flow velocity measuring method
JP2513125Y2 (en) Ground speed detector
JPH10260254A (en) Self-mixing laser velocity meter
JP2520911B2 (en) Flow rate / flow meter
JPH03113324A (en) Flow rate detecting device
JPH03206967A (en) Apparatus for measuring flow velocity
JP2003090796A (en) Apparatus and method for measurement of substance in air
JP2005062093A (en) Object sound detection method and its device
JPH0365608A (en) Method and apparatus for measuring thickness of scale in piping
JPH0666935A (en) Ultrasonic-wave doppler type ground speed meter
JPH02154188A (en) Distance measuring instrument
JPH03206968A (en) Apparatus for measuring flow velocity
JPH0225786A (en) Speed detecting device
JPS62204733A (en) Ultrasonic doppler diagnostic apparatus
JPS6228683A (en) Distance measuring instrument using ultrasonic sensor