JPH0319441A - Reply timing control type arq system - Google Patents

Reply timing control type arq system

Info

Publication number
JPH0319441A
JPH0319441A JP1152238A JP15223889A JPH0319441A JP H0319441 A JPH0319441 A JP H0319441A JP 1152238 A JP1152238 A JP 1152238A JP 15223889 A JP15223889 A JP 15223889A JP H0319441 A JPH0319441 A JP H0319441A
Authority
JP
Japan
Prior art keywords
reception level
level
reception
ack
nak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152238A
Other languages
Japanese (ja)
Inventor
Masaharu Ikura
伊倉 雅治
Shiyougo Itou
正悟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1152238A priority Critical patent/JPH0319441A/en
Publication of JPH0319441A publication Critical patent/JPH0319441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the efficient data transmission by providing one of means suppressing the transmission of ACK or NAK till a reception level exceeds a threshold level when the reception level is smaller than the threshold level or till the level exceeds the threshold level and reaches the increasing state when the reception level is smaller than the threshold level and the fluctuation of the reception level is decreasing. CONSTITUTION:A reception level monitoring section 14 receives a reception level from an output terminal 13, compares the level with a threshold level TH, checks the result of comparison from a reception level monitoring section 24 and a reception level change from a reception level change monitoring section 28, and arithmetic control sections 15, 25 suppress the transmission of a normal reception reply signal (ACK) or an error detection reply signal (NAK) till the reception level exceeds the threshold level when the reception level is smaller than the threshold level or suppress the transmission of the ACK or NAK till the reception level exceeds the threshold level and the fluctuation of the reception level is increasing when the reception level is smaller than the threshold level or the fluctuation of the reception level is decreasing. Thus, the number of times of the retransmission is reduced and highly efficient data transmission is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、データ再送伝送方式に関し、待に、移動通信
等の7エーソングの影響を受ける熊線a信方式の高効牢
データ伝送に係る. 〔従来の技術〕 移動通信のように7ヱーノングの影響を受ける無線通信
方式において、 高品質なディノタル伝送を実現する方
法として、信号再送方式(ARQ)があった(本明#I
I!においては信号再送方式をARQという)。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a data retransmission transmission system, and more specifically to high-efficiency data transmission of the bear line a transmission system, which is affected by the 7A song of mobile communications, etc. .. [Prior art] Signal retransmission (ARQ) has been used as a method to achieve high-quality digital transmission in wireless communication systems that are affected by 7-bit noise, such as mobile communications.
I! The signal retransmission method is called ARQ).

第5図は、従米のARQを示す概念図である.同図にお
いて、TXは送信側、RXは受M側、Lは受信レベル、
1−1.1−2は1番目の送信ブロックデータ、1’−
1.1’−2は1番目の受信プロックデー夕、2−1.
2−2は2番目の送信プロックデーク、2’−1.2’
−2は2番目の受信ブロックデータ、3は3番目の送信
プaツクデータ、3′は3番目の受信ブaツクデータ、
ERは誤りが検出されたブロックデータ、REは再送す
るプロックデータを示している. 通常のARQでは、送信データを数100ビットの長さ
を持つ複数のブロックに分割してブロックごとに伝送し
、受信されたブロックデー夕に誤りが検出されないとき
は、受信儒からデータが正しく受信されたことを示す応
答信号(ACK)を送信側に送信し、これに応じて送信
側から次ブロックが送信される. 一方、受信されたブロックデータに誤りが検出されたと
きはデータに誤りがあったことを示す応答信号(N A
 K )を送信側に送信し、これに対して送信側からそ
のプロックデータの再送が行なわれる. 第5図では、受信ブロックデータ1′−12′−1およ
び3′−1のすべてにおいて受信レベルが低下して誤り
が発生し、当該ブロックデータが1−2   1−3.
2−2等として再送されている様子が示されている. このように、ARQでは、誤りの検出されたブロックを
再送することに上り誤りなく送信データが伝送できる. 〔発明が解決しようとする課題〕 上述したような通常のARQは伝送路の状態が比較的安
定している場合には大きな効果を有するが、これを受信
レベルの変動が大きく、しかも早いピッチで変動するよ
うな移動通信に適用した場合、受信ブロックデータの誤
りが多く発生するため再送回数が増加して、伝送効率が
非常に低下するという欠点があった. 本発明は、このような従未の間m点に置み、受信レベル
の変動が大きく、また、早いピッチでレベル変動する場
合であっても、従米のARQよりも効率の良いデータ伝
送を可能とする熊線通信方式を提供することをa的とし
ている.〔課題を解決するための手段〕 本発明によれば、上述の目的は、前記特許請求の範囲に
記載した手段に上り達威される.すなわち、本発明は、
送信側から送信されたブロックデータが受信側で正しく
受信されたときは、受信側より送信側に対して、ACK
によって応答し、一方、受信データに誤りが検出された
ときには、NAKによって、応答し、これを受けた送信
側が当該データの再送を行なうごとく制御される信号伝
送方式(ARQ)において、受信鋼に受信信号レベルを
fL視する手段を設けるとともに、受信レベルがしきい
値より小であるとき受信レベルが該しきい値を越えるま
で、ACKあるいはNAKの退出を抑止する手段と、受
信レベルがしきい値より小であるか、あるいは受信レベ
ルの変動が減少傾向であるとき、受信レベルがしきい値
を越え、受信レベルの変動が増加傾向に転ずるまで、A
CKあるいはNAKの送出を抑止する手段の内、少なく
とも一方の手段を設けた応答タイミング制御型ARQ方
式?ある. 〔作 用〕 本発明においては、受信側で受信レベルを監視していて
、送信糊に対するACK*たはNAKを受信状態の良好
なときに伝送しているので、これに対して次に送信され
るプロックデー夕を高い受信レベルで受信することがで
きるから、受信ブロックデータが誤りとなる回数が減少
する. したがって、従米のARQよ9再送回数が低減し、高効
率なデータ伝送が実現できる.〔実施例〕 第1図は、本発明の弟1の実施例を説明するための概念
図である. 図中の記号等は先に説明した#15図と同様であり,T
Hはしきい値を表わしている.同図RX (受信1$1
)において、1番目の受信ブロックデータ1′−1に誤
りが検出され、NAXをTX (送信IN>に送信する
ために受信レベルLとしきい値T Hを比較する,この
とき図中に芙字符Aで示すように受信レベルLがしきい
値TH上りも小さい(L<TH)ためNAKの送出を抑
止して待機させ、図中に英字tfB’c’示すようにL
ATHとなったとき送信側に送信する. 送信側は、該NAKを受信すると直ちに送信ブロックデ
ー夕を1−2で示すように再送する.再送された1番目
の受信プロックデータ1′2が誤りなく受信され、この
とき受信レベルLが図に英字符Cで示す上うにL>TH
の条件を満たすときには、ただちにACKを送信する.
送信側はACKを受信すると直ぐに次の送信ブロックデ
ータ2を送信する. 次に、受信ブロックデータ2′が誤りなく受信され、こ
のとき図中に英字符D′1′示すようにL>THであれ
ば送信鯛へ直ちにACKを送信する.送信側は該ACK
を受信すると直ちに送信ブロックデータ3−1を送信す
る.受信プロックデータ3′−1では誤りが検出され、
このとき図中に英字符Eで示すようにLATHであれば
、ただちにNAKを送信する. 以降、このような動作を繰り返して送信プロ,クデータ
とA C K/N A Kを送受信する.また、第2図
は、第1の実施例の受信側の構成の例を示すブロック図
である(データの送信側は従未のARQと同一の構虞と
すればよいので省略する). 第2図において、受信fi11から復調データが復調出
力靖子12に出力され、演算制11fil5はこの復調
データについて誤り検出を行なう.このような誤り検出
にはパリテイチェックやBCH符号を用いるような公知
の方法を用いればよい. 演鼻制御部15は復調データに誤りがなければデータ出
力屠子16にその正しいブロックデータを出力する.こ
のとき、受信レベル監視部14は受信19111の受信
レベル出力靖子13よ9受信レベルを受け取り、これを
しきい値と比較する.演算制御部15は、受信レベル監
視部14よ9比較結果を受け取るが、その比較結果情報
が受信レベルがしきい値上9大きいときは(当該データ
ブロックが正しく受信できているので)次ブロックデー
タの要求を表わすACKを送信?j111に出力して送
信側に通知する.一方、受信レベルがしきい値よりも小
さいときはACK信号を待機させ、受信レベル監視部1
4よワ比較結果情報を受信し続け、受信レベルがしきい
値よりも大きくなったときにACKを送信機17に出力
する. また、復調データに誤りが検出されたときは、演算制御
部15は、受信レベル監視部14より受信レベルとしき
い値との比較結果を受け取り、受信レベルがしきい値よ
りも大きい時は、同一ブロックの再送要求を表わすNA
Kを送信槻17に出力し送信側に通知する.また、受信
レベルがしきい値よりも小さいときはNAKの送出を抑
止して待機させ、受信レベル監視n14よ9比較結果を
受信し続け、受信レベルがしきい値よりも大きくなった
ときにNAKを送信機17に出力する. また、受信側にブロックデータとビットごとの受信レベ
ルを記慎させ、再送されたデータについて、その前に受
信した同一のブロックデータとの間で時闇グイパーシチ
処理を行なうことによりさらに高信頼度にすることがで
きる.時間グイバーンチ処理は従米の公知の方法をもち
いればよい. 第3図は本発明の弟2の実施例を説明するための概念図
である. 同図の受信側において、1番目の受信ブロックデータ1
′−1に誤りが検出され、 NAKを送信側に送信する
ために受信レベルLとしきい値THを比較し、さらに受
信レベル変化量L′を計算する.このとき図中に芙字符
Fで示すように受信レベルLがしきい値THよりも小さ
い(LATH)ときはNAKの送出を抑止して待機させ
、LATHであって、かつ、受信レベル変化量L′−1
が正(L’−1>0)になったとき送信側に送信する. 送信側はNAKを受信するとただちにブロックデータ1
−2を再送する.再送された1番目の受信ブロックデー
タ1′−2が誤りなく受信され、このとき受信レベルL
が図中に英字符Gで示すようLATHを満たし、かつ受
信レベルの変化L′−2が(L’−2>0)を満たすた
め、ただちにACKを送信側へ送信する. 送信側はACKを受信するとすぐに次の送信プロックデ
ータ2を送信する.*に、2番目の受信ブロックデータ
2′は誤りなく受信されたが、図中にL’−3で示され
るように、受信レベル変化量が(L’−3<0)である
ためACKを待機させ、図中に芙字杵Hで示すように、
LATHかっ(L’−3>O)となったとき 送信側へ
送信する.送信側はACKを受信すると直ちに、次の送
信プaツクデータ3を送信する8以降、このような動作
を繰り返して送信プロックデータとA C K/N A
 Kを送受信する.第4図は、第2の実施例の受信側の
構威を示すブロック図である (データの送信側は、従
米のARQと同一の構威とすればよいので省略する). 第4図において、受信機21からの復調データは復調出
力端子22に出力され、演算制御部25において誤り検
出が行なわれる. 該演算制御部25は復調データに誤ηがなければデータ
出力靖子26にその正しいブロックデータを出力する.
このとき受信レベル監視部24は受信レベル出力端子2
3よ9受信レベルを受け取り、しきい値と比較する.ま
た、受信レベル変化監視部28も受信レベル出力端子2
3より同様に受信レベルを受け取り、その変化量を演算
制御W625に出力する. 演算制御MS25は、受信レベル監視部24からの比較
結果と受信レベル変化監視部28からの受信レベル変化
量を調べで、受信レベルがしきい値より大きく、かつ受
信レベル変化量が正のときは当該データブロックが正し
く受信できたので、次ブロックデータを要求する旨を表
わすACKを送信機27に出力し送信側に通知する. 一方、受信レベルがしきい値よりも小さいか、あるいは
受信レベル変化量が負のときはACK信号の送出を抑止
しで待機させ、受信レベル監視部24からの比較結果と
受信レベル変化監視s28からの受信レベル変化量を監
視しでいて、受信レベルがしきい値よりも大きく、かつ
受信レベル変化量が正になったときにACKを送信磯2
7に出力する. また、復調データに誤りが検出されたときは、演算制御
部25は、受信レベル監視部24からの比較結果と受信
レベル監視部28からの受信レベル変化量を調べて、受
信レベルがしきい値よりも大きく、かつ受信レベル変化
量が正のときは同一ブロックの再送要求を表わすNAK
を送信隔27に出力し送信側に通知する.また、受信レ
ベルがしきい値よりも小さいか、あるいは受信レベル変
化量が負のときはNAK信号の退出を抑止して待機させ
、受信レベル監視部24からの受信レベルとしきい値と
の比較結果と、受信レベル変化量監視WS28からの受
信レベル変化量に係る情報を受信し続け、受信レベルが
しきい値よりも大きく、かつ受信レベル変化量が正にな
ったときにNAKを送信8!27に出力する. この実施例の場合も第1の実施例と同様に時間グイパー
ンチを併用することによってさらに高い信頼度を得るこ
とができる. 〔発明の効果〕 以上説明したように、本発明では、送信ブロックデータ
を受信条件の良いときに伝送できるから、受信ブロック
データの誤りが少なくなり、従米上りも高効率なディノ
タルデータ伝送を行なうことができる利点がある.
Figure 5 is a conceptual diagram showing the ARQ of Jumei. In the figure, TX is the transmitting side, RX is the receiving side, L is the receiving level,
1-1.1-2 is the first transmission block data, 1'-
1.1'-2 is the first reception block data, 2-1.
2-2 is the second transmission block data, 2'-1.2'
-2 is the second received block data, 3 is the third transmitted block data, 3' is the third received block data,
ER indicates block data in which an error was detected, and RE indicates block data to be retransmitted. In normal ARQ, transmitted data is divided into multiple blocks each having a length of several 100 bits and transmitted block by block, and if no errors are detected in the received block data, the data is correctly received from the received data. A response signal (ACK) indicating that the block has been received is transmitted to the transmitting side, and in response, the transmitting side transmits the next block. On the other hand, when an error is detected in the received block data, a response signal (N A
K) is transmitted to the transmitting side, and in response, the transmitting side retransmits the block data. In FIG. 5, the reception level decreases and errors occur in all of the received block data 1'-12'-1 and 3'-1, and the block data 1-2, 1-3, .
It shows how it is retransmitted as 2-2 etc. In this way, in ARQ, blocks in which errors have been detected are retransmitted, and transmission data can be transmitted without errors. [Problems to be Solved by the Invention] Normal ARQ as described above has a great effect when the transmission path condition is relatively stable, but this is difficult to achieve when the received level fluctuates widely and at a fast pitch. When applied to mobile communications where fluctuations occur, the disadvantage is that many errors occur in received block data, increasing the number of retransmissions and greatly reducing transmission efficiency. The present invention is placed at point m between these conventional methods, and enables data transmission to be performed more efficiently than conventional ARQ even when the reception level fluctuates widely and at a fast pitch. The aim is to provide a bear line communication system that will [Means for Solving the Problems] According to the present invention, the above-mentioned objects are achieved by the means described in the claims. That is, the present invention
When the receiving side correctly receives the block data sent from the sending side, the receiving side sends an ACK to the sending side.
On the other hand, when an error is detected in the received data, it responds with NAK, and in the signal transmission method (ARQ), the transmitting side that receives this is controlled to retransmit the data. A means for checking the signal level as fL is provided, and a means for suppressing the exit of ACK or NAK until the reception level exceeds the threshold when the reception level is lower than the threshold; A is smaller than A, or when the fluctuation in the received level is on a decreasing trend, until the received level exceeds the threshold and the fluctuation in the received level starts to increase.
A response timing controlled ARQ method that includes at least one of the means to suppress the sending of CK or NAK? be. [Function] In the present invention, since the receiving side monitors the reception level and transmits the ACK* or NAK for the transmission when the reception condition is good, the next transmission in response to this monitors the reception level. Since block data can be received at a high reception level, the number of errors in received block data is reduced. Therefore, the number of retransmissions is reduced compared to conventional ARQ, and highly efficient data transmission can be achieved. [Embodiment] FIG. 1 is a conceptual diagram for explaining a first embodiment of the present invention. Symbols etc. in the figure are the same as those in figure #15 explained earlier, and T
H represents the threshold. Same figure RX (reception 1$1
), an error is detected in the first received block data 1'-1, and in order to transmit NAX to TX (transmission IN>), the reception level L and threshold value TH are compared. As shown in A, since the reception level L is smaller than the threshold value TH (L<TH), sending of NAK is suppressed and the wait is made, and L as shown in the alphabet tfB'c' in the figure
Sends to the sending side when ATH is reached. Immediately upon receiving the NAK, the transmitting side retransmits the transmission block data as shown by 1-2. The retransmitted first reception block data 1'2 is received without error, and at this time, the reception level L becomes L>TH as shown by the alphabet C in the figure.
When the conditions are met, an ACK is immediately sent.
Immediately upon receiving the ACK, the transmitting side transmits the next transmission block data 2. Next, when the received block data 2' is received without error, and at this time, as shown by the alphabet D'1' in the figure, if L>TH, an ACK is immediately transmitted to the transmitting sea bream. The sending side receives the corresponding ACK
Immediately upon receiving , it transmits transmission block data 3-1. An error is detected in the received block data 3'-1,
At this time, if it is LATH, as indicated by the letter E in the diagram, a NAK is immediately sent. Thereafter, such operations are repeated to transmit and receive ACK/NAK with the transmitter and data. Further, FIG. 2 is a block diagram showing an example of the configuration of the receiving side of the first embodiment (the data transmitting side is omitted because it can have the same configuration as the conventional ARQ). In FIG. 2, demodulated data is output from the receiving fi 11 to the demodulated output Yasuko 12, and the arithmetic system 11 fil5 performs error detection on this demodulated data. For such error detection, a known method such as a parity check or a BCH code may be used. If there is no error in the demodulated data, the nose controller 15 outputs the correct block data to the data output controller 16. At this time, the reception level monitoring unit 14 receives the reception level output Yasuko 13-9 of the reception 19111, and compares this with the threshold value. The arithmetic control unit 15 receives the comparison result from the reception level monitoring unit 14, and if the comparison result information indicates that the reception level is 9 higher than the threshold value (because the data block has been correctly received), the next block data is Send an ACK representing the request? j111 to notify the sending side. On the other hand, when the reception level is smaller than the threshold, the ACK signal is put on standby, and the reception level monitoring unit 1
4 continues to receive the comparison result information and outputs ACK to the transmitter 17 when the reception level becomes greater than the threshold value. Further, when an error is detected in the demodulated data, the arithmetic control unit 15 receives the comparison result between the reception level and the threshold value from the reception level monitoring unit 14, and when the reception level is greater than the threshold value, the NA representing block retransmission request
K is output to the transmitter 17 and notified to the transmitting side. Also, when the reception level is lower than the threshold, NAK transmission is suppressed and the NAK is put on standby, reception level monitoring n14-9 comparison results are continued to be received, and NAK is sent when the reception level becomes higher than the threshold. is output to the transmitter 17. In addition, the receiving side records the block data and the reception level for each bit, and the retransmitted data is subjected to time-difference analysis processing between the previously received identical block data, thereby further increasing reliability. can do. Time guide processing can be done using Jubei's well-known method. FIG. 3 is a conceptual diagram for explaining the second embodiment of the present invention. On the receiving side in the same figure, the first received block data 1
An error is detected at '-1, and in order to send a NAK to the transmitting side, the received level L is compared with the threshold TH, and the received level change amount L' is calculated. At this time, as shown by the square mark F in the figure, when the reception level L is smaller than the threshold TH (LATH), the transmission of NAK is suppressed and the system is placed on standby. '-1
When becomes positive (L'-1>0), it is sent to the sending side. When the sending side receives the NAK, it immediately sends block data 1.
-2 is retransmitted. The retransmitted first received block data 1'-2 is received without error, and at this time the reception level is L.
satisfies LATH as indicated by the letter G in the figure, and the change in reception level L'-2 satisfies (L'-2>0), so ACK is immediately sent to the transmitting side. As soon as the transmitting side receives the ACK, it transmits the next transmission block data 2. *, the second received block data 2' was received without error, but as shown by L'-3 in the figure, the amount of change in the reception level was (L'-3<0), so ACK was not received. Wait, and as shown by H in the figure,
When LATH (L'-3>O) is reached, send to the sending side. Immediately upon receiving the ACK, the transmitting side transmits the next transmit block data 3. From 8 onwards, it repeats this operation to transmit the transmit block data and ACK/N A.
Send and receive K. FIG. 4 is a block diagram showing the configuration of the receiving side of the second embodiment (the data transmitting side is omitted because it can have the same configuration as the conventional ARQ). In FIG. 4, demodulated data from a receiver 21 is output to a demodulation output terminal 22, and error detection is performed in an arithmetic control section 25. The arithmetic control unit 25 outputs the correct block data to the data output Yasuko 26 if there is no error η in the demodulated data.
At this time, the reception level monitoring section 24 outputs the reception level at the reception level output terminal 2.
3-9 Receive the reception level and compare it with the threshold. Further, the reception level change monitoring section 28 also receives the reception level output terminal 2.
3, similarly receives the reception level and outputs the amount of change to the arithmetic control W625. The arithmetic control MS 25 checks the comparison result from the reception level monitoring section 24 and the reception level change amount from the reception level change monitoring section 28, and when the reception level is larger than the threshold value and the reception level change amount is positive, Since the data block has been correctly received, an ACK indicating that the next block data is requested is output to the transmitter 27 and the transmitting side is notified. On the other hand, when the reception level is smaller than the threshold or the reception level change amount is negative, the transmission of the ACK signal is suppressed and the system is put on standby, and the comparison result from the reception level monitoring section 24 and the reception level change monitoring s28 are used. ACK is sent when the received level is greater than the threshold and the received level change is positive.
Output to 7. Furthermore, when an error is detected in the demodulated data, the arithmetic control unit 25 checks the comparison result from the reception level monitoring unit 24 and the amount of change in reception level from the reception level monitoring unit 28, and determines whether the reception level is the threshold value. NAK indicating a retransmission request for the same block when the amount of change in reception level is greater than , and the amount of change in reception level is positive.
is output to the transmission interval 27 and notified to the sending side. In addition, when the reception level is smaller than the threshold or the amount of change in the reception level is negative, exit of the NAK signal is suppressed and the signal is put on standby, and the result of comparing the reception level from the reception level monitoring unit 24 with the threshold is Then, it continues to receive information related to the amount of change in the reception level from the reception level change amount monitoring WS 28, and when the reception level is larger than the threshold and the amount of change in the reception level becomes positive, transmits a NAK 8!27 Output to . In this embodiment, as in the first embodiment, even higher reliability can be obtained by using the time guide punch in combination. [Effects of the Invention] As explained above, in the present invention, since the transmission block data can be transmitted when the reception conditions are good, errors in the reception block data are reduced, and highly efficient dinotal data transmission can be performed even in the upstream direction. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明するための概念図
、#!i2図は第1の実施例の受信側のIRf!tの例
を示すプaツク図、第3図は本発明の第2の実施例を説
明するための概念図、第4図はIFI2の実施例の受信
側の構或の例を示すブロック図、lI’ls図は従来の
ARQを示す概念図である. 1−1.1−2.1−3   2.2−1.2−2  
 2−3   3  .  3−1  .  3−2 
 ・・・・・・送信ブロックデータ、 1’−1.1’−2.1’−3  .2’   2’−
1.2’−2.2’−3.3’ ,3’−1  .3’
−2・・・・・・受信プロックデー夕、 11.21  ・・・・・・受信機、
FIG. 1 is a conceptual diagram for explaining the first embodiment of the present invention, #! Figure i2 shows the IRf! on the receiving side of the first embodiment. FIG. 3 is a conceptual diagram for explaining the second embodiment of the present invention, and FIG. 4 is a block diagram showing an example of the structure of the receiving side of the embodiment of IFI2. , lI'ls diagram is a conceptual diagram showing conventional ARQ. 1-1.1-2.1-3 2.2-1.2-2
2-3 3. 3-1. 3-2
...Transmission block data, 1'-1.1'-2.1'-3. 2'2'-
1.2'-2.2'-3.3',3'-1.3'
-2...Reception block date evening, 11.21...Receiver,

Claims (1)

【特許請求の範囲】 送信側から送信されたブロックデータが受信側で正しく
受信されたときは、受信側より送信側に対して、ACK
によって応答し、一方、受信データに誤りが検出された
ときには、NAKによって、応答し、これを受けた送信
側が当該データの再送を行なうごとく制御される信号伝
送方式(ARQ)において、受信側に受信信号レベルを
監視する手段を設けるとともに、 受信レベルがしきい値より小であるとき、受信レベルが
該しきい値を越えるまで、ACKあるいはNAKの送出
を抑止する手段と、受信レベルがしきい値より小である
か、あるいは受信レベルの変動が減少傾向であるとき、
受信レベルがしきい値を越え、受信レベルの変動が増加
傾向に転ずるまで、ACKあるいはNAKの送出
[Claims] When the block data transmitted from the transmitting side is correctly received by the receiving side, the receiving side sends an ACK to the transmitting side.
On the other hand, when an error is detected in the received data, the receiving side responds with a NAK and is controlled so that the sending side retransmits the data. A means for monitoring the signal level is provided, and a means for suppressing the transmission of ACK or NAK when the reception level is lower than the threshold value until the reception level exceeds the threshold value, and a means for suppressing the transmission of ACK or NAK when the reception level is lower than the threshold value. is smaller, or when the fluctuations in the received level tend to decrease,
ACK or NAK is sent until the reception level exceeds the threshold and the reception level fluctuation starts to increase.
JP1152238A 1989-06-16 1989-06-16 Reply timing control type arq system Pending JPH0319441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152238A JPH0319441A (en) 1989-06-16 1989-06-16 Reply timing control type arq system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152238A JPH0319441A (en) 1989-06-16 1989-06-16 Reply timing control type arq system

Publications (1)

Publication Number Publication Date
JPH0319441A true JPH0319441A (en) 1991-01-28

Family

ID=15536109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152238A Pending JPH0319441A (en) 1989-06-16 1989-06-16 Reply timing control type arq system

Country Status (1)

Country Link
JP (1) JPH0319441A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088777A (en) * 1994-06-15 1996-01-12 Nec Corp Radio data communication equipment
WO2000013364A1 (en) * 1998-08-26 2000-03-09 Nokia Networks Oy Bidirectional arq apparatus and method
JP2008169797A (en) * 2007-01-15 2008-07-24 Kawasaki Heavy Ind Ltd Exhaust device for engine and motorcycle
JP2009013960A (en) * 2007-07-09 2009-01-22 Toyota Motor Corp Exhaust system valve
JPWO2014199559A1 (en) * 2013-06-14 2017-02-23 パナソニックIpマネジメント株式会社 Relay device and control method of relay device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088777A (en) * 1994-06-15 1996-01-12 Nec Corp Radio data communication equipment
WO2000013364A1 (en) * 1998-08-26 2000-03-09 Nokia Networks Oy Bidirectional arq apparatus and method
US6425105B1 (en) 1998-08-26 2002-07-23 Nokia Networks Oy Bidirectional ARQ apparatus and method
JP2008169797A (en) * 2007-01-15 2008-07-24 Kawasaki Heavy Ind Ltd Exhaust device for engine and motorcycle
JP2009013960A (en) * 2007-07-09 2009-01-22 Toyota Motor Corp Exhaust system valve
JPWO2014199559A1 (en) * 2013-06-14 2017-02-23 パナソニックIpマネジメント株式会社 Relay device and control method of relay device

Similar Documents

Publication Publication Date Title
JP5000681B2 (en) Wireless communication system
US5797085A (en) Wireless communication system for reliable communication between a group of apparatuses
EP0465533B1 (en) Error correction for infrared data communication
KR100850989B1 (en) A method for controlling power for response signals ACK or NACK in an ARQ system
US4720829A (en) Error control encoding system
KR100434054B1 (en) Polling method of radio link control
US4750165A (en) Method of duplex data transmission using a send-and-wait protocol
US9288014B2 (en) Communication apparatus, transmitting method and receiving method
JP2005506753A5 (en)
KR20050069978A (en) Arq system with status and packet acknowledgement
US7530001B2 (en) Wireless communications system reducing unnecessary retransmission by means of a correlation value of received data with preamble and a method therefor
JPH09247132A (en) Radio packet communication equipment and transmitting device
JPH0319441A (en) Reply timing control type arq system
US7940860B2 (en) Communication system
JPH04111553A (en) Arq communication system
JPH0530115A (en) Polling system
JP3160831B2 (en) Wireless communication method
JPS58198967A (en) Data transmission system
JPH06268634A (en) Radio communications system
JPS61216542A (en) Transmission method of resending request signal
JPH05145527A (en) Data transmission method
KR20020032891A (en) Error Correction Method in Wireless Data Communication
JPH0553089B2 (en)
JPS63287131A (en) Method and equipment for arq communication by majority decision decoding method
JPH11234364A (en) Communication control method and communication module