JPH03193852A - Production of tial-base alloy consisting of superfine structure - Google Patents

Production of tial-base alloy consisting of superfine structure

Info

Publication number
JPH03193852A
JPH03193852A JP33578689A JP33578689A JPH03193852A JP H03193852 A JPH03193852 A JP H03193852A JP 33578689 A JP33578689 A JP 33578689A JP 33578689 A JP33578689 A JP 33578689A JP H03193852 A JPH03193852 A JP H03193852A
Authority
JP
Japan
Prior art keywords
temp
processing
temperature
tial
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33578689A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Hiroo Suzuki
洋夫 鈴木
Naoya Masahashi
直哉 正橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33578689A priority Critical patent/JPH03193852A/en
Publication of JPH03193852A publication Critical patent/JPH03193852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Ti-Al alloy consisting of a fine structure and excellent in hot workability and formability while preventing the coarsening of the structure and maintaining sufficient workability by subjecting a Ti-Al alloy having a specific composition to hot working in a specific temp. range related to the gamma-single phase temp. region of the alloy. CONSTITUTION:A Ti-Al alloy having a composition which consists of, by weight, 35.0-38.0% Al and the balance Ti and contains, if necessary, 3-5% Cr and in which O2 as an impurity is limited to <=0.1% and also having a structure in which a gamma-phase comprises >=95% by volume in the equilibrium state at room temp. is hot-worked in vacuum or in an inert-gas atmosphere in a temp. region between the upper-limit temp. in the gamma-single phase temp. region of the alloy and the solidus temp. and in the plural phases coexisting temp. region (a crosshatched part in the figure) of alpha+gamma or beta+gamma and further subjected to secondary working in the gamma-single phase temp. region at 10-90% draft. By this method, the Ti-Al alloy having extremely fine structure and remarkably improved in hot workability and formability as well as in deterioration in ductility at room temp. due to the ordinary coarse structure and acicular structure can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はγi1f!基合金の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention is γi1f! The present invention relates to a method for producing a base alloy.

更に詳しくは超微細組織からなるTiAl基合金の製造
方法に関する。
More specifically, the present invention relates to a method for producing a TiAl-based alloy having an ultrafine structure.

〔従来の技術〕[Conventional technology]

TiA 1金属間化合物あるいはTiAlfi基合金は
、NiあるいはCo基超超合金どの汎用耐熱合金に比べ
て、きわめて低い比重を有し、また優れた耐熱性を有し
ているため、軽量化および耐熱性の向上が強く要望され
る超高速航空機や宇宙往還機の主要部品材料として期待
されており、実用化研究が進められている。
TiA 1 intermetallic compound or TiAlfi-based alloy has extremely low specific gravity and excellent heat resistance compared to general-purpose heat-resistant alloys such as Ni or Co-based superalloys, making it lightweight and heat resistant. It is expected to be used as a key component material for ultra-high-speed aircraft and spacecraft, where improvements in performance are strongly desired, and research into practical application is underway.

しかしγiA1基合金は室温での延性が極端に乏しく、
また熱間での加工性、成形性が悪いため、実用化には至
っていない。この最大の要因は、延性や加工性を低下さ
せる粗大組織や針状組織が生じやすいためである。その
対策として、従来より恒温鍛造、側圧付加押し出しく以
上、辻本得蔵著材料科学1985年9月p82) 、シ
ース圧延(特開昭63−171862号公報)など熱間
加工方法に工夫を加え、更に1000〜1250°Cで
加工して加工中に再結晶を利用した組織微細化を図るこ
とが試みられてきた。しかしこれらの方法を行っても、
低温で加工した場合には、不均質な再結晶組織が生じや
すく、均質な再結晶組織を得るためには、70%以上の
強加工を行う必要があり、加工性が悪く割れを生じやす
いTiAl基合金への適用においては十分な効果が得ら
れていない。また、高温で加工すると加工性は向上する
が、組織が粗大化するため本来の目的である組織微細化
が不十分となるという問題があった。
However, the γiA single-base alloy has extremely poor ductility at room temperature;
Furthermore, it has not been put into practical use because of its poor hot workability and moldability. The biggest reason for this is that coarse structures and acicular structures that reduce ductility and workability tend to occur. As a countermeasure, we have added innovations to hot processing methods such as constant temperature forging, extrusion with added lateral pressure, Tsujimoto Tokuzo, Materials Science, September 1985, p. 82), and sheath rolling (Japanese Patent Application Laid-open No. 171862/1986). Furthermore, attempts have been made to refine the structure by processing at 1000 to 1250°C and utilizing recrystallization during processing. However, even if these methods are used,
When processed at low temperatures, a non-homogeneous recrystallized structure tends to occur, and in order to obtain a homogeneous recrystallized structure, it is necessary to perform strong processing of 70% or more. Sufficient effects have not been obtained when applied to base alloys. Furthermore, although the processability is improved when processed at high temperatures, the structure becomes coarser, so there is a problem in that the original objective of microstructure refinement is insufficient.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、加工温度の上昇に伴う組織粗大化を防止しな
がら、かつ十分な加工性を保持しながら熱間加工を行う
ことにより、微細な組織を得ることを可能としたTiA
l基合金の製造方法を提供することを目的とする。
The present invention is a TiA film that makes it possible to obtain a fine structure by hot working while preventing the structure from becoming coarse due to an increase in processing temperature and maintaining sufficient workability.
The object of the present invention is to provide a method for producing an l-based alloy.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的は、本発明によれば、室温における平衡状態
でγ相が体積率で95%以上を占める組成のTiAl基
合金を、γ単相温度域の上限温度以上かつ固相線温度以
下の温度で、50%以上90%以下の加工率で加工する
ことを特徴とする超微細組織からなるTiA l基合金
の製造方法、あるいは真空もしくは不活性ガス雰囲気に
おける恒温鍛造により、前記加工を行うことを特徴とす
る超微細組織からなるTiAl基合金の製造方法、ある
いは更にT単相温度域内で10%以上90%以下の二次
加工を行うことを特徴とする超微細組織からなるTiA
 12基合金の製造方法、あるいは35.0〜38.0
重量%のAlを含有し、不純物元素である酸素を0.1
重量%以下に制限した二元系TiAl金属間化合物を用
いて上記加工を行うことを特徴とする超微細組織からな
るTi//!基合金の製造方法、あるいは3〜5重量%
のCrを含有するTiAl基合金を用いて上記加工を行
うことを特徴とする超微細組織からなるTiA 1基合
金の製造方法によって達成される。
According to the present invention, the above object is to heat a TiAl-based alloy having a composition in which the γ phase accounts for 95% or more by volume in an equilibrium state at room temperature at a temperature above the upper limit temperature of the γ single phase temperature range and below the solidus temperature. A method for producing a TiAl-based alloy having an ultrafine structure characterized by processing at a processing rate of 50% or more and 90% or less at a temperature, or performing the processing by isothermal forging in a vacuum or an inert gas atmosphere. A method for producing a TiAl-based alloy having an ultra-fine structure, or a TiA-based alloy having an ultra-fine structure, further comprising performing secondary processing of 10% or more and 90% or less within the T single-phase temperature range.
12 base alloy manufacturing method, or 35.0 to 38.0
Contains 0.1% by weight of Al and 0.1% of oxygen as an impurity element.
Ti//! consisting of an ultrafine structure characterized by performing the above processing using a binary TiAl intermetallic compound limited to less than % by weight! Manufacturing method of base alloy, or 3-5% by weight
This is achieved by a method for producing a TiA single-base alloy having an ultrafine structure, which is characterized in that the above processing is carried out using a TiAl-base alloy containing Cr.

〔作 用〕[For production]

ここでTiAl基合金とは、31〜40重量%のAlと
60〜70重量%のTi とを含有する二元系TiAl
金属間化合物あるいは合金である。このうち合金ではT
i、Aj2および不可避的に存在する不純物元素の他に
、更に1種以上の第3元素を含有している。またγ相と
はLl。の結晶構造を有する金属間化合物相である。
Here, the TiAl-based alloy is a binary TiAl alloy containing 31 to 40% by weight of Al and 60 to 70% by weight of Ti.
It is an intermetallic compound or alloy. Of these, for alloys T
In addition to i, Aj2, and impurity elements that are inevitably present, it further contains one or more third elements. Also, the γ phase is Ll. It is an intermetallic compound phase with a crystal structure of

本発明を適用するTiAlfi基合金を、室温における
平衡状態でγ相が体積率で95%以上を占める組成に限
定した理由は、γ相が95%未満となるような組成の場
合、延性を著しく劣化させる針状組織が大量に生成する
ため本発明の効果が十分に得られないからである。
The reason why the TiAlfi-based alloy to which the present invention is applied is limited to a composition in which the γ phase accounts for 95% or more by volume in an equilibrium state at room temperature is that if the composition has a γ phase of less than 95%, the ductility will significantly decrease. This is because a large amount of deteriorating acicular tissue is generated, so that the effects of the present invention cannot be sufficiently obtained.

本発明を、第1図に示した最も汎用のT i −A に
元系平衡状態図(出典: J、L、Murray[rP
haseDiagram  of  Binary  
Titanium  A11oysJ ASMInte
rnationa1発行P12〜24)を用いて説明す
る。
The present invention is applied to the most general-purpose T i -A element system equilibrium diagram shown in Fig. 1 (Source: J, L, Murray [rP
haseDiagram of Binary
Titanium A11oysJ ASMInte
This will be explained using pages P12-24 published by rnationa1.

この状態図によれば、Al濃度35.0重量%以上の濃
度では室温において95%以上がγ相となる。また/l
濃度38.0重量%以下の組成域では、γ単相温度域の
上限温度以上で固相線温度以下の温度でα十γあるいは
β+Tの複数相が共存する温度域(同図中のハツチング
部分)が存在する。本発明はこのような複数相が共存す
る温度域で熱間加工を行うことにより、加工による再結
晶と変態を利用した組織微細化を図るものである。本発
明では加工温度の上限を面相線温度としたが、これは加
工温度が固相線温度を超えると液相が生じ熱間加工が不
可能になるという理由による。
According to this phase diagram, when the Al concentration is 35.0% by weight or more, 95% or more becomes the γ phase at room temperature. Also/l
In the composition range with a concentration of 38.0% by weight or less, the temperature range where multiple phases of α+γ or β+T coexist at temperatures above the upper limit temperature of the γ single-phase temperature range and below the solidus temperature (the hatched part in the figure) ) exists. The present invention aims at microstructural refinement using recrystallization and transformation caused by processing by performing hot working in a temperature range where such multiple phases coexist. In the present invention, the upper limit of the processing temperature is set to the in-plane phase temperature. This is because when the processing temperature exceeds the solidus temperature, a liquid phase occurs and hot processing becomes impossible.

本発明の方法を適用するTiAl基合金は、不可避的に
存在する不純物の他、延性や加工性を向上させる目的で
、あるいは組織微細化を促進する目的で、1種以上の第
3元素が総量で0.5重量%以上添加されていてもよい
。3〜5重量%のCrを添加したTiAlfi基合金は
その一例である。このように第3元素を含有する場合、
γ単相温度域が高濃度Al側および低濃度Af側へ拡大
するので、上述の複数相共存温度域が存在するAl濃度
範囲は、第1図よりも拡大し31〜40重量%範囲まで
用いることができる。
In addition to the unavoidably present impurities, the TiAl-based alloy to which the method of the present invention is applied contains one or more third elements in a total amount for the purpose of improving ductility and workability, or promoting microstructural refinement. It may be added in an amount of 0.5% by weight or more. An example is a TiAlfi-based alloy with 3 to 5% by weight of Cr added. When containing a third element in this way,
Since the γ single-phase temperature range expands to the high-concentration Al side and the low-concentration Af side, the Al concentration range in which the above-mentioned multi-phase coexistence temperature range exists is expanded from that shown in Fig. 1, and is used in the range of 31 to 40% by weight. be able to.

また、室温延性および熱間加工性を高めるためには、酸
素含有量をできるだけ低減することが望ましく、特に二
元系TiA i、金属間化合物では、酸素含有量を0.
1重置%以下とすることが望ましい。
In addition, in order to improve room temperature ductility and hot workability, it is desirable to reduce the oxygen content as much as possible, and especially in binary TiA i and intermetallic compounds, the oxygen content should be reduced to 0.
It is desirable that the amount is 1% or less.

室温でγ相が95%以上を占める組成のTiAjl!基
合金を、γ単相温度域の上限温度以上かつ固相線温度以
下の温度で、50%以上90%以下の加工率で加工する
。加工率が50%未満では室温延性を低下させる針状組
織が生成しやすく、本発明の効果が十分に達成されない
。また加工率が90%を超えると割れの進行が顕著とな
る。
TiAjl with a composition in which the γ phase accounts for 95% or more at room temperature! The base alloy is processed at a processing rate of 50% to 90% at a temperature above the upper limit temperature of the γ single phase temperature range and below the solidus temperature. If the processing rate is less than 50%, an acicular structure that reduces room temperature ductility is likely to be generated, and the effects of the present invention cannot be fully achieved. Moreover, when the processing rate exceeds 90%, the progress of cracking becomes remarkable.

上述の加工は、真空または不活性ガス雰囲気中での恒温
鍛造によって行うことが望ましい。恒温鍛造はγiAj
!基合金などの加工性の悪い材料の望ましい熱間加工方
法として従来より広く知られている。真空または不活性
ガス中での加工を行うことにより、酸化による材料劣下
や加工割れを防止できる。
The above-mentioned processing is preferably performed by isothermal forging in a vacuum or an inert gas atmosphere. Constant temperature forging is γiAj
! It has been widely known as a desirable hot working method for materials with poor workability such as base alloys. By performing processing in a vacuum or inert gas, material deterioration and processing cracks due to oxidation can be prevented.

上述の加工を行った後、γ単相温度域内の温度でさらに
10%以上90%以下の加工を行うことにより、更に組
織微細化を促進できる。この第2回目の加工は、第1回
目の加工後−旦室温まで冷却させてから改めて第2回目
の加工温度まで加熱して加工してもよく、あるいは、第
1回目の加工後、直接第2回目の加工温度まで降温させ
て加工してもよい。加工率が10%に満たない場合、付
加的な組織微細化は達成されない。また加工率が90%
を超えると割れの進行が顕著となる。
After performing the above-described processing, microstructural refinement can be further promoted by further processing the material by 10% or more and 90% or less at a temperature within the γ single phase temperature range. This second processing may be performed by cooling to room temperature after the first processing and then heating it again to the second processing temperature, or directly after the first processing. Processing may be performed by lowering the temperature to the second processing temperature. If the processing rate is less than 10%, no additional texture refinement will be achieved. Also, the processing rate is 90%
If it exceeds this, the progress of cracking becomes noticeable.

以下に、実施例を用いて本発明を更に詳細に説明する。The present invention will be explained in more detail below using Examples.

〔実施例] 跋簾上 AI!、を35.6重量%、酸素を0.8重量%含有し
、残部が実質的にTiからなるTiAl基合金(二元系
TiA l金属間化合物)をプラズマアーク溶解法によ
り溶製し、インゴットを製造した。このインゴットから
高さ120mm、直径100mmの試験片を切り出し、
熱間加工試験に供した。
[Example] AI on the blind screen! A TiAl-based alloy (binary TiAl intermetallic compound) containing 35.6 wt. % of was manufactured. A test piece with a height of 120 mm and a diameter of 100 mm was cut out from this ingot.
It was subjected to a hot working test.

上記組成におけるγ単相温度域の上限温度は1340°
C1固相線温度は1480°Cであり、この温度間では
β+T二相組織である。
The upper limit temperature of the γ single phase temperature range in the above composition is 1340°
The C1 solidus temperature is 1480°C, and between this temperature there is a β+T two-phase structure.

熱間加工は、真空中(I Xl0−’Torr)におい
て恒温鍛造法により行った。上記試験片をグラファイト
製金型内に収め、初期歪み速度5X10−”毎秒で据え
込み鍛造を行った。このとき、試験片と金型とが反応し
ないように、両者の間に厚さ300aaのタンタル箔を
スペーサーとして挿入した。加工温度および加工率を変
化させて行った試験結果を第1表に示す。
The hot working was performed in vacuum (I Xl0-'Torr) by constant temperature forging. The above test piece was placed in a graphite mold and upset forged at an initial strain rate of 5 x 10-'' per second.At this time, to prevent reaction between the test piece and the mold, a thickness of 300 aa was placed between the two. Tantalum foil was inserted as a spacer.Table 1 shows the test results conducted by varying the processing temperature and processing rate.

第1表 (注)*()内は粒径  林()内は厚さ  ***1
100u以上の粗大粒。
Table 1 (Note) * The value in parentheses is the grain size. The value in parentheses is the thickness ***1
Coarse grains of 100u or more.

本発明の範囲の加工温度(1340〜1480°C)お
よび加工率(50%以上)で加工を行った実施例1゜2
および3は、延性および加工性の良い等軸組織の割合が
90%以上ときわめて高く、結晶粒径は等軸組織で0.
5〜1−1少量(10%以下)存在する針状組織でも1
〜2趨と微細な組織が得られ、未再結晶の粗大延伸粒は
全く残存していなかった。
Example 1゜2 where processing was performed at a processing temperature (1340-1480°C) and processing rate (50% or more) within the range of the present invention
and No. 3, the proportion of equiaxed structure with good ductility and workability is extremely high at 90% or more, and the crystal grain size is equiaxed structure of 0.
5-1-1 Even if there is a small amount (10% or less) of needle-like tissue, 1
A fine structure with ~2 lines was obtained, and no unrecrystallized coarse elongated grains remained.

また加工中の割れも55〜80%の高い加工率にもがか
わらずきわめて軽微(0,5〜Imの深さ)で全く問題
はなかった。
Furthermore, despite the high processing rate of 55 to 80%, cracks during processing were extremely slight (depth of 0.5 to Im) and caused no problems at all.

これに対して、本発明に比べて加工温度が低い、従来例
1および比較例1においては、未再結晶の粗大延伸粒が
かなり多く存在しており、等軸組織の粒径も50〜80
角と極めて粗大であった。また、特に加工温度の低い従
来例1では15閤もの深さに割れが進行しており大きな
歩留り低下を生じた。
On the other hand, in Conventional Example 1 and Comparative Example 1, in which the processing temperature is lower than that of the present invention, there are considerably many unrecrystallized coarse elongated grains, and the grain size of the equiaxed structure is 50 to 80.
The corners were extremely rough. Furthermore, in Conventional Example 1 where the processing temperature was particularly low, the cracks progressed to a depth of 15 mm, resulting in a large decrease in yield.

また、比較例2は、加工温度は本発明の範囲であるが加
工率が本発明の範囲以下であったため、延性、加工性を
低下させる針状組織の割合が20%と高くなっており、
微細等軸化が不十分であった。
In addition, in Comparative Example 2, although the processing temperature was within the range of the present invention, the processing rate was below the range of the present invention, so the proportion of acicular structure that reduces ductility and workability was as high as 20%.
Fine equiaxing was insufficient.

また、比較例3は、加工温度は本発明の範囲であるが加
工率が本発明の範囲以上であったため、8Mもの深さに
割れが進行しており大きな歩留り低下を生じた。
Further, in Comparative Example 3, the processing temperature was within the range of the present invention, but the processing rate was above the range of the present invention, so cracks progressed to a depth of 8M, resulting in a large decrease in yield.

試量」− 次に、試験1の実施例2で加工した試験片を一旦室温ま
で冷却し、表層部の軽微な割れ(1m深さ以下)を研削
により除去し1.あらためてγ単相領域の温度に加熱し
、試験1と同様の恒温鍛造により加工率を変化させて加
工を行った。その結果を第2表に示す。
Test amount'' - Next, the test piece processed in Example 2 of Test 1 was once cooled to room temperature, and minor cracks (1 m or less in depth) on the surface layer were removed by grinding. It was heated again to a temperature in the γ single-phase region, and processed by isothermal forging in the same manner as in Test 1 while changing the processing rate. The results are shown in Table 2.

第2表 (注)*()内は粒径  林()内は厚さ  ***1
OOura以との粗大粒。
Table 2 (Note) * The value in parentheses is the particle size. The value in parentheses is the thickness ***1
Coarse grains with OOura.

実施例4(請求項3における比較例)は、本発明の望ま
しい加工率(10%以上)よりも小さい加工率で加工を
行ったため、実施例2に対して付加的な微細化が達成さ
れず、むしろ粗大化した。
In Example 4 (comparative example in Claim 3), processing was performed at a processing rate smaller than the desired processing rate (10% or more) of the present invention, so additional refinement was not achieved compared to Example 2. , rather it has become coarser.

実施例5、および6は本発明の望ましい加工率で加工を
行った場合であり、いずれも実施例2と比べて更に微細
化が達成された。
Examples 5 and 6 are cases where processing was performed at the desired processing rate of the present invention, and both achieved further refinement compared to Example 2.

また、実施例6では70%の加工率で加工したにもかか
わらず割れは認められず、同じ温度、加工率で加工した
第1表の従来例1と比べて著しく加工性が向上している
In addition, in Example 6, no cracks were observed despite processing at a processing rate of 70%, and workability was significantly improved compared to Conventional Example 1 in Table 1, which was processed at the same temperature and processing rate. .

また、比較例4は、加工率が本発明の範囲以上であった
ため、8mmもの深さに割れが進行しており大きな歩留
り低下を生じた。
Further, in Comparative Example 4, since the processing rate was above the range of the present invention, cracks progressed to a depth of 8 mm, resulting in a large decrease in yield.

拭籏主 Alを33.2重量%、Crを4.1重量%、酸素を0
.12重量%、残部が実質的にTiからなるTiA l
基合金を、プラズマアーク溶解法により溶製し、インゴ
ットを鋳造した。このインゴットから試験lと同じ寸法
の試験片を切り出し熱間加工試験に供した。なお、上記
組成におけるγ単相温度域の上限温度は1330°C5
固相線温度は1430°Cであり、この温度間ではγ+
β二相組織(あるいはT+β+α三相組織)である。
The main content of the wiper is 33.2% by weight of Al, 4.1% by weight of Cr, and 0% of oxygen.
.. 12% by weight of TiAl, the remainder consisting essentially of Ti
The base alloy was melted by plasma arc melting, and an ingot was cast. A test piece having the same dimensions as Test 1 was cut out from this ingot and subjected to a hot working test. In addition, the upper limit temperature of the γ single phase temperature range in the above composition is 1330°C5
The solidus temperature is 1430°C, and between this temperature γ+
It is a β two-phase structure (or a T+β+α three-phase structure).

この試験片を用いて、試験1と同様の恒温鍛造による熱
間加工試験を行った。その結果を第3表に示す。
Using this test piece, a hot working test using constant temperature forging similar to Test 1 was conducted. The results are shown in Table 3.

以下余日 第3表 (注)*()内は粒径  錦()内は厚さ  ***1
00蝿以上の粗大粒。
Table 3 below (Note) *The numbers in parentheses are particle diameters The numbers in parentheses are thickness ***1
Coarse particles of 00 flies or more.

本発明の範囲の加工温度(1330〜1430°C)お
よび加工率(50%以上)で加工を行った実施例7゜8
、および9は、延性および加工性の良い等軸組織の割合
が90%以上ときわめて高く、結晶粒径は等軸組織で0
.2〜0.5 s、少量(10%以下)存在する針状組
織でも0.5〜1趨と微細な組織が得られ、未再結晶の
粗大延伸粒は全く残存していなかった。また加工中の割
れも55〜80%の高い加工率にもかかわらずきわめて
軽微(0,3〜0.5Mの深さ以下)で全く問題はなか
った。また、Crを添加していない試験1の実施例1.
2および3と比べると結晶粒径が細かくなっており、C
r添加によって更に微細化が促進された。
Example 7゜8 where processing was carried out at a processing temperature (1330-1430°C) and processing rate (50% or more) within the range of the present invention.
, and 9 have an extremely high proportion of equiaxed structure with good ductility and workability of 90% or more, and the crystal grain size is 0 in equiaxed structure.
.. 2 to 0.5 s, even if a small amount (10% or less) of the acicular structure was present, a fine structure of 0.5 to 1 strand was obtained, and no unrecrystallized coarse elongated grains remained at all. Furthermore, despite the high processing rate of 55 to 80%, cracks during processing were extremely slight (less than 0.3 to 0.5 m deep) and caused no problems at all. In addition, Example 1 of Test 1 in which Cr was not added.
Compared to 2 and 3, the crystal grain size is finer, and C
Refinement was further promoted by the addition of r.

これに対し、本発明に比べて加工温度が低い、従来例2
および比較例5においては、未再結晶の延伸粒がかなり
多く存在しており、等軸組織の粒径も30〜50−と粗
大であった。また、特に加工温度の低い従来例2では1
0mもの深さに割れが進行しており大きな歩留り低下を
生じた。
In contrast, conventional example 2 has a lower processing temperature than the present invention.
In Comparative Example 5, there were quite a lot of unrecrystallized stretched grains, and the grain size of the equiaxed structure was as large as 30 to 50. In addition, especially in conventional example 2 where the processing temperature is low, 1
Cracks had progressed to a depth of 0 m, resulting in a large decrease in yield.

また、比較例6は、加工温度は本発明の範囲であるが加
工率が本発明の範囲以下であったため、延性、加工性を
低下させる針状組織の割合が15%と高くなっており、
微細等軸化が不十分であった。
In addition, in Comparative Example 6, although the processing temperature was within the range of the present invention, the processing rate was below the range of the present invention, so the proportion of acicular structure that reduces ductility and workability was as high as 15%.
Fine equiaxing was insufficient.

また、比較例7は、加工温度は本発明の範囲であるが加
工率が本発明の範囲以上であったため、7mmもの深さ
に割れが進行しており大きな歩留り低下を生じた。
In addition, in Comparative Example 7, the processing temperature was within the range of the present invention, but the processing rate was above the range of the present invention, so cracks progressed to a depth of 7 mm, resulting in a large decrease in yield.

重量% Az 〔発明の効果〕 上述の説明のとおり、本発明によれば、熱間加工をγ単
相温度域の上限温度以上かつ固相線温度以下の温度域で
行うことにより、加工温度の上昇に伴う組織粗大化を防
止しながら、かつ十分な加工性を保持しながら、微細な
組織からなるTiA II。
Weight % Az [Effects of the Invention] As explained above, according to the present invention, the processing temperature can be reduced by performing hot working in a temperature range above the upper limit temperature of the γ single phase temperature range and below the solidus temperature. TiA II has a fine structure that prevents coarsening of the structure due to rise and maintains sufficient workability.

基合金を製造することができる。Base alloys can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はγi−AN二元系平衡状態図を示す。 第1図 L・・・液相 FIG. 1 shows an equilibrium phase diagram of the γi-AN binary system. Figure 1 L...Liquid phase

Claims (1)

【特許請求の範囲】 1、室温における平衡状態でγ相が体積率で95%以上
を占める組成のTiAl基合金を、γ単相温度域の上限
温度以上かつ固相線温度以下の温度域で、50%以上9
0%以下の加工率で加工することを特徴とする、超微細
組織からなるTiAl基合金の製造方法。 2、真空あるいは不活性ガス雰囲気における恒温鍛造に
より前記加工を行うことを特徴とする請求項1記載の超
微細組織からなるTiAl基合金の製造方法。 3、更にγ単相温度域内で10%以上90%以下の第2
次加工を行うことを特徴とする、請求項1または2に記
載の超微細組織からなるTiAl基合金の製造方法。 4、35.0〜38.0重量%のAlを含有し、不純物
元素である酸素を0.1重量%以下に制限した二元系T
iAl金属間化合物を用いることを特徴とする、請求項
1から3までのいずれか1項に記載の超微細組織からな
るTiAl基合金の製造方法。 5、3〜5重量%のCrを含有するTiAl基合金を用
いることを特徴とする、請求項1から3までのいずれか
1項に記載の超微細組織からなるTiAl基合金の製造
方法。
[Claims] 1. A TiAl-based alloy having a composition in which the γ phase accounts for 95% or more by volume in an equilibrium state at room temperature is heated in a temperature range above the upper limit temperature of the γ single phase temperature range and below the solidus temperature range. , 50% or more9
A method for producing a TiAl-based alloy having an ultrafine structure, characterized by processing at a processing rate of 0% or less. 2. The method for producing a TiAl-based alloy having an ultrafine structure according to claim 1, wherein the processing is performed by isothermal forging in a vacuum or an inert gas atmosphere. 3. Furthermore, a second temperature of 10% or more and 90% or less within the γ single phase temperature range
3. A method for producing a TiAl-based alloy having an ultrafine structure according to claim 1 or 2, which comprises performing a subsequent processing. 4. Binary system T containing 35.0 to 38.0% by weight of Al and limiting oxygen as an impurity element to 0.1% by weight or less
A method for producing a TiAl-based alloy having an ultrafine structure according to any one of claims 1 to 3, characterized in that an iAl intermetallic compound is used. 5. A method for producing a TiAl-based alloy having an ultrafine structure according to any one of claims 1 to 3, characterized in that a TiAl-based alloy containing 3 to 5% by weight of Cr is used.
JP33578689A 1989-12-25 1989-12-25 Production of tial-base alloy consisting of superfine structure Pending JPH03193852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33578689A JPH03193852A (en) 1989-12-25 1989-12-25 Production of tial-base alloy consisting of superfine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33578689A JPH03193852A (en) 1989-12-25 1989-12-25 Production of tial-base alloy consisting of superfine structure

Publications (1)

Publication Number Publication Date
JPH03193852A true JPH03193852A (en) 1991-08-23

Family

ID=18292428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33578689A Pending JPH03193852A (en) 1989-12-25 1989-12-25 Production of tial-base alloy consisting of superfine structure

Country Status (1)

Country Link
JP (1) JPH03193852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048420A3 (en) * 2000-12-15 2002-08-08 Thyssen Krupp Automotive Ag Method for producing components with a high load capacity from tial alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048420A3 (en) * 2000-12-15 2002-08-08 Thyssen Krupp Automotive Ag Method for producing components with a high load capacity from tial alloys

Similar Documents

Publication Publication Date Title
US5055257A (en) Superplastic aluminum products and alloys
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP6307623B2 (en) High strength alpha-beta titanium alloy
US4386976A (en) Dispersion-strengthened nickel-base alloy
EP3844314B1 (en) Creep resistant titanium alloys
US5468305A (en) Method of lowering permeability of difficult-to-work Co alloy
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
JPH08295969A (en) High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
JPH0219438A (en) High strength oxidation-resistant alpha titanium alloy
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
JPH06145854A (en) Alumina nickel single crystal alloy composition and its preparation
EP0379798B1 (en) Titanium base alloy for superplastic forming
EP0476043B1 (en) Improved nickel aluminide alloy for high temperature structural use
WO2016140231A1 (en) Thin titanium sheet and manufacturing method therefor
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP2817427B2 (en) Method for producing TiAl intermetallic compound Ti alloy excellent in strength and ductility
JPH03193852A (en) Production of tial-base alloy consisting of superfine structure
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JP2862494B2 (en) Heat treatment method for TiAl intermetallic compound
JPH11335758A (en) High strength titanium alloy excellent in cold ductility
JPH07173557A (en) Tial-based intermetallic compound alloy excellent in workability, toughness and high temperature strength
JP3328557B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JP2729011B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JPH07197154A (en) Titanium aluminum base alloy and its production