JPH0319293A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH0319293A
JPH0319293A JP15336989A JP15336989A JPH0319293A JP H0319293 A JPH0319293 A JP H0319293A JP 15336989 A JP15336989 A JP 15336989A JP 15336989 A JP15336989 A JP 15336989A JP H0319293 A JPH0319293 A JP H0319293A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
algainp
cladding layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15336989A
Other languages
Japanese (ja)
Other versions
JPH0632347B2 (en
Inventor
Seiji Onaka
清司 大仲
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1153369A priority Critical patent/JPH0632347B2/en
Priority to US07/437,934 priority patent/US5029175A/en
Publication of JPH0319293A publication Critical patent/JPH0319293A/en
Priority to US07/683,181 priority patent/US5143863A/en
Publication of JPH0632347B2 publication Critical patent/JPH0632347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To confine a light in a direction parallel to an active layer and to guide the light by forming AlGaInP or AlInP layers having smaller refractive index than that of an AlGaInP clad layer at both sides of a stripe. CONSTITUTION:An n-type AlGaInP clad layer 102, a GaInP active layer 103, a P-type AlGaInP clad layer 104, and a P-type GaInP buffer layer 105 are grown on an n-type GaAs substrate 101. Then, with an SiO2 film 106 as a mask the layers 105, 104 are etched to form the layer 104 in an inverted mesa shape. Then, with the layer 106 as a mask a P-type AlInP layer 107 and a GaAs layer 108 having lower refractive index than that of the layer 104 are crystalline- grown. Thereafter, an SiO2 film 109 is formed in a stripe state on the layer 108, with the film 109 as a mask the layers 108, 107 are etched to form the layer 107 in an inverted mesa state. Then, with the film 109 as a mask an n-type GaAs current block layer 110 is formed. Thus, a light is confined in a direction parallel to the layer 103 to be guided, and its heat dissipation is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はAlGaInPなどの材料で構或され横モード
が制御された半導体レーザおよびその製造方法に関すん 従来の技術 700nm以下の可視光の波長で発光する半導体レーザ
は光ディス久 レーザプリン久 バーコードリーグなど
に用いる光源として注目されていも 中でもGaAsを
基板とし これに格子整合するGas.sI n*.s
P (以下の説明ではGaInPと略記する)または(
A I XG a I−X) s.s I n s.6
P(以下の説明ではAIGaIrrPと略記する)を活
性JiLAlGaInPをクラッド層とするダプルヘテ
ロ接合型半導体レーザはGaAsに格子整合する7−9
族化合物半導体の中で最も短い波長の光を出すことがで
きるので可視光半導体レーザの材料として有望であも 第3図に従来の横モード制御型のAlGaInP系半導
体レーザのおのおのの製作工程における断面構造を示も
 まず最初に第3図(a)に示すようG,:,(100
)面を主面とするn型GaAs基板301の表面に n
型AlGaInPクラッド層302、Ga I nP活
性層303、p型AIGa I nPクラッド層304
、p型Ga I nPバッフ7層305をMO−VPE
法(有機金属気相威長法)で順次結晶戒長すん 次に 
<011>方向にストライプ状に形成したSide膜3
06をマスクとしてp型GaInPバッファ層305を
例えばCC Iaガスを用いたRIE (反応性イオン
エッチング)によりエッチングし さらにp型AlGa
InPクラッド層304を例えば40℃の熱濃硫酸でエ
ッチングすると・第3図(b)に示すようになん 次に
Sins膜306をマスクとしてMO−VPE法により
n型GaAs電流ブロック層307を選択的に結晶戒長
ずると第3図(c)に示すようになん 選択戒長のマス
クとして用いたS j OtM 3 0 6を除去した
のち全面にp型GaAsコンタクト層308をMO−V
PE法により結晶或長ずると第3図(d)に示すように
ストライプが埋め込まれも 最後に表面にAu/Zn/
Auからなるp型オーミックコンタクト層309を形戊
し 裏面を研磨およびエッチングして基板を薄くしたの
ちA u − G e / N i / A uからな
るn型オーミックコンタクト層310を形成すると第3
図(e)に示すように従来の横モード制御型のAlGa
InP系半導体レーザが完威すもこの従来のレーザにお
いて、n型GaAs電流ブロック層307は電気的には
電流の狭窄層の役割を果たし 光に対してはp型AlG
aInPクラッド層304よりも屈折率が太き<GaI
nP活性層303で発光した光を吸収するので吸収型の
アンチ導波層の役割を果たしていも そのた吹この従来
の横モード制御型のAlGaInP系半導体レーザは低
しきい値でレーザ発振すも発明が解決しようとする課題 このような従来の横モード制御型のAlGaInP系半
導体レーザにおいて(よ 横モードの制御が行なわれて
はいるものの活性層と平行な方向の屈折率による光の閉
じこめは行なわれてはおらず利得導波性が強く残るため
活性層と平行な方向の導波光の波面が曲がってしま八 
その結果として大きな非点隔差ができてしまうという問
題点があっtラ  従って従来の横モード制御型のAl
GaInP系半導体レーザを光学機器に応用しようとす
る場合、通常の凸レンズー枚ではレーザ光を平行光にし
たり一点に集光したりすることができないため応用範囲
が限定されてしまっていtラまt−.  n型GaAs
電流ブロック層は活性層で発光した光を吸収するので活
性層を導波する光に対しては損失となるためこの損失の
分だけ発振しきい値が増加するという問題点もあっ九課
題を解決するための手段 本発明はこのような従来の横モード制御型のAlGaI
nP系半導体レーザにおける問題点を解決するためにな
されたものF,  (1)GaAs基板上に一方導電型
AlGaInPクラッド凰 活性層およびストライプ部
分で厚さが厚くなった他方導電型AlGaInPクラッ
ド層を有し 前記ストライプの両側の前記他方導電型A
lGaInPクラッド層の表面に前記他方導電型AlG
aInPクラッド層よりも屈折率の低いAlGaInP
あるいはAlInP層が一対のストライプ状に形成され
ていて、さらにその外側に一方導電型電流ブロック層が
形成された構欣 (2)(100)を主面とするGaA
s基板上に一方導電型AlGaInPクラッド凰 活性
層および<01丁>方向に形成されたストライプ部分で
厚さが厚く断面形状が逆メサ形状をした他方導電型Al
GaInPクラッド層を有し 前記他方導電型AlGa
InPクラッド層の逆メサ表面に前記他方導電型AlG
aInPクラッド層よりも屈折率の低いAlGaInP
あるいはAlInP層が形成されていて、さらにその外
側に一方導電型電流ブロック層が形成された構IL  
(3)GaAs基板上に一方導電型AlGaInPクラ
ッド凰 活性層およびストライプ部分で厚さが厚くなっ
た他方導電型AlGaInPクラッド層を有レ レーザ
光の出射端面近傍の領域の前記他方導電型AlGaIn
Pクラッド層の前記ストライプの両側表面に前記他方導
電型AlGaInPクラッド層よりも屈折率の低いAl
GaInPあるいはAlInP層が一対のストライプ状
に形成されていて、さらにその外側および前記屈折率の
低いAlGaInPあるいはAlInP層が形成されて
いない領域の前記他方導電型AlGaInPクラッド層
の前記ストライプの両側表面に一方導電型電流ブロック
層が形成された構JliL  (4)  (100)を
主面とするGaAs基板上に一方導電型AlGaInP
クラッド凰 活性層および他方導電型AlGaInPク
ラッド層を形成する工程、 前記他方導電型AlGaI
nPクラッド層を<011>方向にストライプ状で逆メ
サ形状になっており該ストライプ部分で厚さが厚くなる
ようにエッチング加工する工程、 前記前記逆メサ形状
の前記他方導電型AlGaInP層の逆メサ側面に前記
他方導電型AlGaInPクラッド層よりも屈折率の低
いAlGaInPあるいはAlInP層を選択的に形戊
する工程、 表面に露出した前記他方導電型AlGaI
nPクラッド層の表面に一方導電型電流ブロック層を選
択的に形成する工程、 および前記他方導電型AlGa
InPクラッド層のストライプ上 屈折率の低いAlG
aInPあるいはAlInP層の表面および前記一方導
電型電流ブロック層の表面に他方導電型コンタクト層を
形戊する工程を備えた構成を有するものであも 作用 上述の本発明の構戒により本発明{よ 以下のような作
用効果を有すん 構威(1)および(2)においてはストライプの両側に
AlGaInPクラッド層よりも屈折率の小さいAlG
aInPあるいはAlInP層が形成されているので活
性層と平行な方向にも光を閉じこめて導波させることが
でき、さらにその外側に一方導電型GaAs電流ブロッ
ク層が形成されているのでAlGaInPあるいはAl
InP層を電流ブロック層として用いる場合に比べ熱放
散が良くなも また ストライプの両側のAlGaIn
Pクラッド層よりも屈折率の小さいAlGaInPある
いはAlInP層が他方導電型の場森 活性層と平行な
方向にも光を閉じこめて導波させることができ、さらに
屈折率の小さい他方導電型AlGaInPあるいは他方
導電型AlInP層からも活性層への電流注入が行なわ
れるので電流注入によって活性層の屈折率が低下しても
導波モードへの影響は少なし1  従って活性層に平行
な方向および垂直な方向ともに安定に屈折率導波される
ので非点隔差も従来例で示したレーザよりもはるかに小
さくなん 構或(3)ではレーザの出射端面の近傍ではストライプ
の両側にクラッド層よりも屈折率の小さいAlGaIn
PあるいはAlInP層が設けられているため導波光が
完全にストライプに閉じこめられており、出射する光は
非点隔差が小さくなることであり、しかも屈折率の小さ
いAlGaInPあるいはAlInP層が埋め込まれた
領域以外の領域では従来例と同じ利得導波戒分が残るの
でレーザ発振の縦モードはマルチモードになることであ
も これにより半導体レーザは戻り光などの擾乱に対し
ても影響をあまり受けない安定な動作を行なうことがで
きも また構Tli.(4)の製造方法では逆メサ側面に形成
されたクラッド層よりも屈折率の小さい他方導電型Al
GaInPあるいは他方導電型AlInP層の側面も逆
メサ形状であり、幅を狭くすることができも 従って屈
折率導波のストライプ幅を狭くしてなおかつ電流注入の
ストライプ幅も同時に狭くすることができるの玄 低し
きい値電流で単一横モード発振を得ることができも 実施例 以下、本発明を実施例にしたがって説明すも第1図に本
発明の第1の実施例のAlGaInP系半導体レーザの
各製造工程における模式的断面構造図を示も まず最初
に第1図(a)に示すように 例えば(100)面を主
面とするn型GaAs基板101の表面に n型AlG
aInPクラッド層l02(例えばx=0.6、キャリ
ア密度5X10’▼cm−”  厚さl,um)、Ga
InP活性層l03(例えば厚さ0.  2μm)、p
型A]GaInPクラッド層l04 (例えばx = 
0.6、キャリア密度1xlo”cm”  厚さ0.7
μm)、p型GaInPバッファ層105 (例えばキ
ャリア密度3xlO”Cm−”  厚さ0.  3μm
)をMO−VPE法でn型GaAs基板101に格子整
合させて順次結晶或長すん 次に 例えば<011>方
向に例えば幅4μmのストライプ状に形成したSins
膜106をマスクとしてp型GaInPバッフ7層10
5を例えばCC 14ガスを用いたRIEによりエッチ
ングし さらにp型AlGaInPクラッド層104を
例えば40℃の熱濃硫酸で例えば4分間エッチングして
p型AlGaInPクラッド層104がストライプの外
側で厚さが0.2μm残るようにすると、第1図(b)
に示すようになん この実施.例ではストライプを<0
11>方向に形成しているのでストライプの両側面のp
型AlGaInPクラッド層104は逆メサ形状にエッ
チングされも 次にSiO2膜106を選択或長のマス
クとしてp型AlGaInPクラッド層104よりも屈
折率の低いp型AlInP層107(例えばキャリア密
度5x1 0 ”c m−”  厚さ0. 5μm〉お
よびp型GaAs層108 (例えばキャリア密度5x
lO”cm−”  厚さ0.  3μm)を結晶威長ず
ると第1図(C)に示すようになん 次にp型GaAs
層l08の表面に例えば幅8μmのストライプ状にSj
ot膜109を形成L SiO2膜109をマスクとし
てp型GaAs層108を例えばH!S Oa: Ha
re: H*O=1:  l:  1 0の混合液で3
0秒間エッチングし さらにp型AlInP層107を
例えば30℃の熱硫酸でエッチングすると第1図(d)
に示すように逆メサ形状のp型AlGaInPクラッド
層104の側面に逆メサ状にp型AlInP層107が
形成されも 次にSiO象膜109を選択戊長のマスク
としてn型GaAs電流ブロック層110を結晶或長す
ると第1図(e)に示すようになも さらにSins膜
109を除去した後全面にp型GaAsコンタクト層1
11(例えばキャリア密度5xlO’●C m−”、厚
さ3μm)をMO−VPE法により結晶戒長ずると第1
図<f>に示すようにストライプが埋め込まれも最後に
表面にCr/Auからなるp型オーミックコンタクト電
極112を形成し 裏面を研磨およびエッチングして基
板を薄くしたのちAu−Ge/ N i / A uか
らなるn型オーミツクコンタクト電極113を形戊する
と第1図(g)に示すように本発明の第1の実施例のA
lGaInP系半導体レーザが完威すも また 上述の本発明の第1の実施例の中でp型AlIn
P層107の代わりにp型AlGaInPクラッド層1
04よりも屈折率の低いp型AlGaInPを用いても
良L〜 上述の本発明の第1の実施例の特徴とするところは構造
的にはストライプの両側にp型AlGaInPクラッド
層104よりも屈折率の小さいp型AlGaInPある
いはp型AlInP層107が形成されているので活性
屓と平行な方向にも光を閉じこめて導波させることがで
き、さらに屈折率の小さいp型AlGaInPあるいは
p型AlInP層107からも活性層への電流注入が行
なわれるので電流注入によって活性層の屈折率が低下し
てもAlGaInPクラッド層104のストライプの内
側と外側(p型AlInP層107を形成した領域)と
の屈折率の差はほとんど変化しないため導波モードへの
影響は少な鶏 従って活性層に平行な方向および垂直な
方向ともに安定に屈折率導波されるので非点隔差も従来
例で示したレーザよりもはるかに小さくなることであも
またストライプの両側に埋め込まれるp型AlInP層
の熱伝導率は0.  09W/cm−degでありGa
Asの0.54W/cm−degよりも低い値である力
曳 本発明の第1の実施例ではp型AlInP層が埋め
込まれているのはストライプの両側の溝の部分のみであ
りその外側はn型GaAs電流ブロック層であるの玄 
p型AlInP層によって活性層の近傍で発生した熱の
放散が悪くなることはなI,%  さらに上述の本発明
の第1の実施例においてp型GaAsコンタクト層11
1を結晶或長させた場合、表面が平坦になりp型オーミ
ックコンタクト電極112とのコンタクト面積が広くコ
ンタクト抵抗を下げやすいという特徴もあも また上述の本発明の第1の実施例の製造工程における特
徴は逆メサ側面に形成されたp型GaInPクラッド層
104よりも屈折率の小さいp型AlGaInPあるい
はp型AlInP層107の側面も逆メサ形状であり、
幅を狭くすることができることであも 従って屈折率導
波のストライプ幅を狭くしてなおかつ電流注入のストラ
イプ幅も同時に狭くすることができるの玄 低しきい値
電流で単一横モード発振を得ることができも本発明の第
2の実施例を第2図に示も 第2図において、201は
n型GaAs基K 202はn型AlGaInPクラッ
ド# 203はGaInP活性凰 204はp型AlG
aInPクラツド凰 205はp型GaInPバッファ
凰 207はp型AlInP凰 210はn型GaAs
電流ブロック凰 211はpy!:!GaAsコンタク
ト# 2l2はp側オーミックコンタクト電IIL21
3はn側オーミックコンタクト電極であも 第2図にお
いてはレーザの断面構造が領域Aと領域Bとで異なり、
領域Aでは断面構造は本発明の第1の実施例と同じ構造
であり領域Bでは断面構造は従来例と同じであも 本発明の第2の実施例の特徴は領域Aではストライプの
両側にp型AlGaInPクラッド層204よりも低い
屈折率のp型AlInP層207が設けられているため
導波光が完全にストライプに閉じこめられており、従っ
て領域Aでは活性層に平行な方向および垂直な方向とも
に屈折率導波されているので領域Aから出射する光は非
点隔差が小さくなることであり、しかも領域Bでは従来
例と同じ利得導波威分が残るのでレーザ発振の縦モード
はマルチモードになることであも これにより本発明の
第2の実施例の半導体レーザは戻り光などの擾乱に対し
ても影響をあまり受けない安定な動作を行なうことがで
きも また本発明の第2の実施例の半導体レーザの製作
は従来例と本発明の第lの実施例とを組み合わせること
によって行なうことができも な叙 本発明の第1 (あるいは第2)の実施例におい
て逆メサ側面に形成されたp型GaInPクラッド層1
04(あるいは204)よりも屈折率の小さいp型Al
GaInPあるいはp型AlInP層107 (あるい
は207)の代わりに半絶縁性AlGaInPあるいは
半絶縁性AlInP層またはn型AlGaInPあるい
はn型AlInP層を形成してもよも〜 この場念 半絶縁性またはn型AlGaInPあるいは
AlInP層は屈折率によるストライプへの光の閉じこ
めとストライプ以外の部分に流れる電流の阻止の役割を
果た机 これだけの役割だけを実現すればよいのであれ
ば第1図においてn型GaAs電流ブロック層の部分も
半絶縁性またはn型AlGaInPあるいはAlInP
層にしてしまえばよい,4tAlInP層の熱伝導率は
0.09W/cm−degでありGaAsの0.54W
/am−degよりも低い値であるか板 熱放敗が悪く
なってしまう。本発明においてはn型GaAs電流ブロ
ック層1lO (あるいは2lO)がストライプの両側
のほぼ全面にわたって設けられているので熱放散が良く
なも また 上述の本発明の第1および第2の実施例において
p型AlGaInPクラッド層の表面にp型Ga I 
nP層を形成した構造について説明した力t これはp
型AIGa I nPクラッド層とp型GaInP層と
の界面あるいはp型GaInP層とp型GaAs層との
界面のへテロ接合界面に存在する価電子帯のスパイクに
よる電流のバリア効果を低減するために挿入されるもの
であり、これらの各層のキャリア密度を高くすればp型
GaInP層は不要であも また 上述の本発明の第1
および第2の実施例において導電型は逆であっても良い
ことはいうまでもなL〜 また 上述の本発明の第1および第2の実施例において
ストライプの方位は<01丁〉方向にとったがストライ
プの方位を<011>方向にとった場合にはストライプ
が逆メサではなく台形状の順メサになるの力t 同様の
効果が得られることはいうまでもな賎 発明の効果 以上説明したように本発明{上 以下のような効果を有
すん 本発明の第lの実施例においてはストライプの両側にA
lGaInPクラッド層よりも屈折率の小さいAlGa
InPあるいはAlInP層が形成されているので活性
層と平行な方向にも光を閉じこめて導波させることがで
き、さらにその外側にn型GaAs電流ブロック層が形
成されているのでAlGaInPあるいはAlInP層
を電流ブロック層として用いる場合に比べ熱放散が良く
なも また ストライプの両側のAlGaInPクラッ
ド層よりも屈折率の小さいAlGaInPあるいはAl
InP層がp型の場合、活性層と平行な方向にも光を閉
じこめて導波させることができ、さらに屈折率の小さい
p型AlGaInPあるいはp型AlInP層からも活
性層への電流注入が行なわれるので電流注入によって活
性層の屈折率が低下しても導波モードへの影響は少な(
ち従って活性層に平行な方向および垂直な方向ともに安
定に屈折率導波されるので非点隔差も従来例で示したレ
ーザよりもはるかに小さくなもまた製造方法では逆メサ
側面に形成されたクラッド層よりも屈折率の小さいp型
AlGaInPあるいはp型AlInP層の側面も逆メ
サ形状であり、幅を狭くすることができも 従って屈折
率導波のストライプ幅を狭くしてなおかつ電流注入のス
トライプ幅も同時に狭くすることができるの玄 低しき
い値電流で単一横モード発振を得ることができも 本発明の第2の実施例ではレーザの出射端面の近傍では
ストライプの両側にクラッド層よりも屈折率の小さいA
lGaInPあるいはAlInP層が設けられているた
め導波光が完全にストライプに閉じこめられており、出
射する光は非点隔差が小さくなることであり、 しかも
屈折率の小さいAlGaInPあるいはAlInP層が
埋め込まれた領域以外の領域では従来例と同じ利得導波
威分が残るのでレーザ発振の縦モードはマルチモードに
なることであも これにより半導体レーザは戻り光など
の擾乱に対しても影響をあまり受けない安定な動作を行
なうことができも
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser which is made of a material such as AlGaInP and has a controlled transverse mode, and a method for manufacturing the same. Semiconductor lasers are attracting attention as light sources for use in optical discs, laser printers, barcode leagues, etc. Among them, semiconductor lasers that use GaAs as a substrate and are lattice-matched to it. sI n*. s
P (abbreviated as GaInP in the following explanation) or (
A I XG a I-X) s. s I n s. 6
A double heterojunction semiconductor laser having P (abbreviated as AIGaIrrP in the following explanation) active JiLAAlGaInP as a cladding layer is lattice matched to GaAs7-9
Since it can emit light with the shortest wavelength among the group compound semiconductors, it is a promising material for visible light semiconductor lasers. Figure 3 shows a cross section of a conventional transverse mode control type AlGaInP semiconductor laser during each manufacturing process. First, as shown in Fig. 3(a), the structure is shown as G, :, (100
) on the surface of an n-type GaAs substrate 301 whose main surface is n
type AlGaInP cladding layer 302, Ga I nP active layer 303, p type AIGa I nP cladding layer 304
, p-type Ga I nP buffer 7 layers 305 are MO-VPE
The crystallization process is carried out sequentially using the organic metal vapor phase control method.Next
Side film 3 formed in a stripe shape in the <011> direction
06 as a mask, the p-type GaInP buffer layer 305 is etched by, for example, RIE (reactive ion etching) using CC Ia gas, and then the p-type AlGa
For example, when the InP cladding layer 304 is etched with hot concentrated sulfuric acid at 40° C., as shown in FIG. After removing the S j OtM 30 6 used as a mask for selective crystal lengthening, a p-type GaAs contact layer 308 is formed on the entire surface by MO-V as shown in FIG. 3(c).
When the crystal is lengthened by the PE method, stripes are embedded as shown in Figure 3(d).Finally, Au/Zn/
A p-type ohmic contact layer 309 made of Au is formed, the back surface is polished and etched to make the substrate thin, and an n-type ohmic contact layer 310 made of Au-Ge/Ni/Au is formed.
As shown in figure (e), the conventional transverse mode control type AlGa
Although InP-based semiconductor lasers are perfect, in this conventional laser, the n-type GaAs current blocking layer 307 electrically plays the role of a current confinement layer, and for light, it acts as a p-type AlG
The refractive index is thicker than that of the aInP cladding layer 304 <GaI
Since the nP active layer 303 absorbs the emitted light, it plays the role of an absorption type anti-waveguide layer. In such conventional transverse mode control type AlGaInP semiconductor lasers (although the transverse mode is controlled, light is not confined by the refractive index in the direction parallel to the active layer). Because the gain waveguiding property remains strong, the wavefront of the guided light in the direction parallel to the active layer is bent.
As a result, there is a problem that a large astigmatism difference is created.Therefore, the conventional transverse mode control type Al
When trying to apply GaInP semiconductor lasers to optical equipment, the scope of application is limited because a normal convex lens cannot convert the laser beam into parallel light or focus it on a single point. −. n-type GaAs
Since the current blocking layer absorbs the light emitted by the active layer, there is a loss for the light that is guided through the active layer, and the oscillation threshold increases by this loss. The present invention provides a means for controlling such a conventional transverse mode control type AlGaI
Things that have been done to solve the problems in nP semiconductor lasers (1) One conductivity type AlGaInP cladding layer is formed on a GaAs substrate. and the other conductivity type A on both sides of the stripe.
The other conductivity type AlG is formed on the surface of the lGaInP cladding layer.
AlGaInP, which has a lower refractive index than the aInP cladding layer
Alternatively, a structure in which an AlInP layer is formed in a pair of stripes and a current blocking layer of one conductivity type is further formed on the outside thereof (2) GaA with (100) as the main surface
One conductivity type AlGaInP cladding on the s substrate.The other conductivity type Al is thick in the active layer and the stripe portion formed in the <01> direction and has an inverted mesa-shaped cross section.
the other conductivity type AlGa having a GaInP cladding layer;
The other conductivity type AlG is formed on the reverse mesa surface of the InP cladding layer.
AlGaInP, which has a lower refractive index than the aInP cladding layer
Alternatively, an IL structure in which an AlInP layer is formed and a current blocking layer of one conductivity type is further formed on the outside thereof.
(3) One conductivity type AlGaInP cladding layer is formed on the GaAs substrate, and the other conductivity type AlGaInP cladding layer is thicker in the active layer and stripe portions.
Al having a lower refractive index than the other conductivity type AlGaInP cladding layer is formed on both surfaces of the stripe of the P cladding layer.
A GaInP or AlInP layer is formed in a pair of stripes, and one side is formed on both sides of the stripes of the other conductivity type AlGaInP cladding layer on the outside thereof and in the region where the low refractive index AlGaInP or AlInP layer is not formed. A structure in which a conductivity type current blocking layer is formed JliL (4) One conductivity type AlGaInP is deposited on a GaAs substrate having a (100) main surface.
Step of forming an active layer and an AlGaInP cladding layer of the other conductivity type;
a step of etching the nP cladding layer so that it has a striped inverted mesa shape in the <011> direction and is thicker in the striped portion; etching the other conductivity type AlGaInP layer having the inverted mesa shape; selectively forming an AlGaInP or AlInP layer having a lower refractive index than the other conductive type AlGaInP cladding layer on the side surface;
selectively forming a current blocking layer of one conductivity type on the surface of the nP cladding layer, and the other conductivity type AlGa
AlG with low refractive index on stripe of InP cladding layer
According to the above-mentioned structure of the present invention, the present invention can be applied to a structure including a step of forming a contact layer of the other conductivity type on the surface of the aInP or AlInP layer and the surface of the current blocking layer of the one conductivity type. In structures (1) and (2), which have the following effects, AlG, which has a lower refractive index than the AlGaInP cladding layer, is formed on both sides of the stripe.
Since an aInP or AlInP layer is formed, it is possible to confine and guide light even in a direction parallel to the active layer, and since a one conductivity type GaAs current blocking layer is formed on the outside of the active layer, an AlGaInP or AlInP layer can be formed.
Although heat dissipation is better than when using an InP layer as a current blocking layer, AlGaIn on both sides of the stripe
If the AlGaInP or AlInP layer, which has a smaller refractive index than the P cladding layer, is of the other conductivity type, it can confine and guide light even in the direction parallel to the active layer; Current is also injected into the active layer from the conductive AlInP layer, so even if the refractive index of the active layer decreases due to current injection, it has little effect on the waveguide mode.1 Therefore, in the directions parallel and perpendicular to the active layer. Since both the refractive indexes are guided stably, the astigmatism difference is much smaller than that of the laser shown in the conventional example. Small AlGaIn
Because the P or AlInP layer is provided, the guided light is completely confined in the stripe, and the emitted light has a small astigmatism difference.Moreover, the area where the AlGaInP or AlInP layer with a small refractive index is embedded is In other regions, the same gain waveguide principle as in the conventional example remains, so the longitudinal mode of laser oscillation becomes a multimode. It is also possible to perform certain actions. In the manufacturing method (4), the other conductivity type Al having a lower refractive index than the cladding layer formed on the side surface of the reverse mesa is used.
The side surfaces of the GaInP or other conductive type AlInP layer also have an inverted mesa shape, and the width can be made narrower. Therefore, the stripe width for refractive index waveguide can be made narrower, and the stripe width for current injection can also be made narrower at the same time. Although single transverse mode oscillation can be obtained with a low threshold current, the present invention will be explained below with reference to the examples. A schematic cross-sectional structure diagram for each manufacturing process is shown. First, as shown in FIG. 1(a), for example, n-type AlG
aInP cladding layer l02 (e.g. x=0.6, carrier density 5X10'▼cm-" thickness l, um), Ga
InP active layer l03 (for example, thickness 0.2 μm), p
Type A] GaInP cladding layer l04 (for example x =
0.6, carrier density 1xlo"cm" thickness 0.7
μm), p-type GaInP buffer layer 105 (for example, carrier density 3xlO"Cm-" thickness 0.3 μm)
) is lattice-matched to the n-type GaAs substrate 101 using the MO-VPE method, and the crystals are sequentially lengthened.
Seven p-type GaInP buffer layers 10 using the film 106 as a mask
5 by RIE using, for example, CC 14 gas, and further etching the p-type AlGaInP cladding layer 104 with hot concentrated sulfuric acid at 40° C. for 4 minutes, so that the p-type AlGaInP cladding layer 104 has a thickness of 0 on the outside of the stripe. If .2μm remains, Figure 1(b)
This implementation is shown in the figure below. In the example the stripe is <0
Since it is formed in the 11> direction, the p on both sides of the stripe
Although the type AlGaInP cladding layer 104 is etched into an inverted mesa shape, the SiO2 film 106 is then selectively used as a mask for a certain length to form a p-type AlInP layer 107 with a refractive index lower than that of the p-type AlGaInP cladding layer 104 (for example, a carrier density of 5x10''c). m-” thickness 0.5 μm> and p-type GaAs layer 108 (e.g. carrier density 5×
lO"cm-" Thickness 0. 3μm) as shown in Figure 1(C).Next, p-type GaAs
For example, Sj is formed in a stripe shape with a width of 8 μm on the surface of the layer l08.
Forming an ot film 109 Using the L SiO2 film 109 as a mask, the p-type GaAs layer 108 is coated with, for example, H! SOa: Ha
re: H*O=1: l: 3 with a mixture of 1 and 0
After etching for 0 seconds, the p-type AlInP layer 107 is further etched with hot sulfuric acid at 30°C, as shown in Fig. 1(d).
As shown in , a p-type AlInP layer 107 is formed in a reverse mesa shape on the side surface of the p-type AlGaInP cladding layer 104 in a reverse mesa shape. When the crystal is lengthened, a p-type GaAs contact layer 1 is formed on the entire surface after removing the Sins film 109.
11 (for example, carrier density 5xlO'●C m-'', thickness 3 μm) is crystallized by MO-VPE method.
As shown in Figure <f>, even after the stripes are embedded, a p-type ohmic contact electrode 112 made of Cr/Au is finally formed on the front surface, and the back surface is polished and etched to thin the substrate, and then Au-Ge/Ni/ When the n-type ohmic contact electrode 113 made of Au is shaped, it becomes A of the first embodiment of the present invention, as shown in FIG. 1(g).
In the first embodiment of the present invention described above, the p-type AlInP semiconductor laser is perfect.
P-type AlGaInP cladding layer 1 instead of P layer 107
It is also possible to use p-type AlGaInP, which has a refractive index lower than that of 04.The feature of the first embodiment of the present invention described above is that, structurally, there is a p-type AlGaInP cladding layer 104 on both sides of the stripe, which has a refractive index lower than that of the p-type AlGaInP cladding layer 104. Since the p-type AlGaInP or p-type AlInP layer 107 with a small refractive index is formed, it is possible to confine and guide light even in the direction parallel to the active layer. Since current is injected into the active layer from 107 as well, even if the refractive index of the active layer decreases due to current injection, the refraction between the inside and outside of the stripes of the AlGaInP cladding layer 104 (the region where the p-type AlInP layer 107 is formed) is maintained. Since the difference in refractive index hardly changes, it has little effect on the waveguide mode.Therefore, since the refractive index wave is guided stably in both parallel and perpendicular directions to the active layer, the astigmatism difference is also lower than in the conventional laser. Even though it is much smaller, the thermal conductivity of the p-type AlInP layer buried on both sides of the stripe is 0. 09W/cm-deg and Ga
In the first embodiment of the present invention, the p-type AlInP layer is buried only in the trenches on both sides of the stripe, and the outside is The core of the n-type GaAs current blocking layer is
The p-type AlInP layer does not deteriorate the dissipation of heat generated in the vicinity of the active layer.Furthermore, in the first embodiment of the present invention described above, the p-type GaAs contact layer 11
When crystal No. 1 is made to have a certain length, the surface becomes flat and the contact area with the p-type ohmic contact electrode 112 is wide, making it easy to lower the contact resistance. The feature is that the side surface of the p-type AlGaInP or p-type AlInP layer 107, which has a lower refractive index than the p-type GaInP cladding layer 104 formed on the side surface of the reverse mesa, also has a reverse mesa shape.
Therefore, it is possible to narrow the stripe width of refractive index guiding and simultaneously narrow the stripe width of current injection. Obtaining single transverse mode oscillation with a low threshold current. A second embodiment of the present invention is shown in FIG. 2. In FIG. 2, 201 is an n-type GaAs group K, 202 is an n-type AlGaInP clad #203 is a GaInP active layer, and 204 is a p-type AlG
aInP cladding 205 is p-type GaInP buffer 207 is p-type AlInP 210 is n-type GaAs
Current block 凰 211 is py! :! GaAs contact #2l2 is p-side ohmic contact voltage IIL21
3 is the n-side ohmic contact electrode. In Fig. 2, the cross-sectional structure of the laser is different between region A and region B.
In area A, the cross-sectional structure is the same as that of the first embodiment of the present invention, and in area B, the cross-sectional structure is the same as the conventional example. Since the p-type AlInP layer 207 having a lower refractive index than the p-type AlGaInP cladding layer 204 is provided, the guided light is completely confined in the stripes, so that in region A, the waveguide light is completely confined in the stripes, and therefore in the direction parallel to and perpendicular to the active layer. Since the light is guided by the refractive index, the astigmatism difference of the light emitted from region A is reduced.Moreover, in region B, the same gain waveguide effect as in the conventional example remains, so the longitudinal mode of laser oscillation becomes multimode. As a result, the semiconductor laser according to the second embodiment of the present invention can operate stably without being affected much by disturbances such as returned light. The semiconductor laser of this example can be manufactured by combining the conventional example and the first embodiment of the present invention. p-type GaInP cladding layer 1
p-type Al with a lower refractive index than 04 (or 204)
Instead of the GaInP or p-type AlInP layer 107 (or 207), a semi-insulating AlGaInP layer, a semi-insulating AlInP layer, an n-type AlGaInP, or an n-type AlInP layer may be formed. The AlGaInP or AlInP layer plays the role of confining light in the stripe due to its refractive index and blocking current flowing to areas other than the stripe. The block layer part is also semi-insulating or n-type AlGaInP or AlInP.
The thermal conductivity of the 4tAlInP layer is 0.09W/cm-deg, which is 0.54W of GaAs.
If the value is lower than /am-deg, heat dissipation will worsen. In the present invention, since the n-type GaAs current blocking layer 1lO (or 2lO) is provided over almost the entire surface on both sides of the stripe, heat dissipation is good. p-type GaI on the surface of the type AlGaInP cladding layer
The force t explained for the structure forming the nP layer is p
In order to reduce the current barrier effect due to spikes in the valence band existing at the heterojunction interface between the AIGaI nP cladding layer and the p-type GaInP layer or the interface between the p-type GaInP layer and the p-type GaAs layer. However, if the carrier density of each of these layers is increased, the p-type GaInP layer may not be necessary.
It goes without saying that the conductivity type may be reversed in the second embodiment. Furthermore, in the first and second embodiments of the present invention, the stripe orientation is in the <01th block> direction. However, when the orientation of the stripes is set in the <011> direction, the stripes become trapezoidal normal mesas instead of inverted mesas.It goes without saying that the same effect can be obtained as described above. As described above, the present invention has the following effects.In the first embodiment of the present invention, A is provided on both sides of the stripe.
AlGa has a lower refractive index than the lGaInP cladding layer.
Since an InP or AlInP layer is formed, it is possible to confine and guide light even in the direction parallel to the active layer, and since an n-type GaAs current blocking layer is formed on the outside, it is possible to confine and guide light in the direction parallel to the active layer. Although heat dissipation is better than when used as a current blocking layer, AlGaInP or Al has a lower refractive index than the AlGaInP cladding layers on both sides of the stripe.
When the InP layer is p-type, light can be confined and guided in the direction parallel to the active layer, and current can also be injected into the active layer from the p-type AlGaInP or p-type AlInP layer, which has a small refractive index. Therefore, even if the refractive index of the active layer decreases due to current injection, the effect on the waveguide mode is small (
Therefore, since the refractive index wave is stably guided in both directions parallel and perpendicular to the active layer, the astigmatism difference is much smaller than that of the conventional laser. The side surfaces of the p-type AlGaInP or p-type AlInP layer, which has a lower refractive index than the cladding layer, also have an inverted mesa shape, and the width can be made narrower. In the second embodiment of the present invention, a cladding layer is formed on both sides of the stripe in the vicinity of the emission end facet of the laser. A with a small refractive index
Because the lGaInP or AlInP layer is provided, the guided light is completely confined in the stripe, and the emitted light has a small astigmatism difference. In other regions, the same gain waveguide effect as in the conventional example remains, so the longitudinal mode of laser oscillation becomes a multimode. Even if you can perform certain actions,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の第lおよび第2
の実施例の半導体レーザの各製造工程における構造的断
面模式は 第3図は従来の横モード制御型AlGaIn
P系半導体レーザの各製造工程における構造的断面模式
図であも lO1,201.301・・・n型GaAs基K  1
 0 2,  2 0 2,  3 0 2 ・・・n
型AlGaInPクラッドML  103,  203
,  303−−・GaInP活性JiiiL 104
,  204,  304−”p型AlGaInPクラ
ッドML107,207・・・p型AlInPJtiL
  110,210,307・・・n型GaAs電流プ
ロック凰 !l1,  211,  aos−−−p型
GaAs=:lンタクト凰
FIG. 1 and FIG. 2 are the first and second parts of the present invention, respectively.
The structural cross-sectional diagram of each manufacturing process of the semiconductor laser according to the embodiment is as shown in Fig. 3.
In the structural cross-sectional diagrams of each manufacturing process of a P-based semiconductor laser, lO1, 201.301... n-type GaAs base K 1
0 2, 2 0 2, 3 0 2...n
Type AlGaInP clad ML 103, 203
, 303--GaInP activity JiiiL 104
, 204, 304-"p-type AlGaInP clad ML107,207...p-type AlInPJtiL
110,210,307...n-type GaAs current block ! l1, 211, aos---p-type GaAs=:l contact 凰

Claims (6)

【特許請求の範囲】[Claims] (1)GaAs基板上に一方導電型AlGaInPクラ
ッド層、活性層およびストライプ部分で厚さが厚くなっ
た他方導電型AlGaInPクラッド層を有し、前記ス
トライプの両側の前記他方導電型AlGaInPクラッ
ド層の表面に前記他方導電型AlGaInPクラッド層
よりも屈折率の低いAlGaInPあるいはAlInP
層が一対のストライプ状に形成されていて、さらにその
外側に一方導電型電流ブロック層が形成されていること
を特徴とする半導体レーザ。
(1) A GaAs substrate has an AlGaInP cladding layer of one conductivity type, an AlGaInP cladding layer of the other conductivity type that is thicker in the active layer and the stripe portion, and the surface of the AlGaInP cladding layer of the other conductivity type on both sides of the stripe. AlGaInP or AlInP having a lower refractive index than the other conductivity type AlGaInP cladding layer.
A semiconductor laser characterized in that the layers are formed in a pair of stripes, and a current blocking layer of one conductivity type is further formed on the outer side of the layers.
(2)(100)を主面とするGaAs基板上に一方導
電型AlGaInPクラッド層、活性層および<01@
1@>方向に形成されたストライプ部分で厚さが厚く断
面形状が逆メサ形状をした他方導電型AlGaInPク
ラッド層を有し、前記他方導電型AlGaInPクラッ
ド層の逆メサ表面に前記他方導電型AlGaInPクラ
ッド層よりも屈折率の低いAlGaInPあるいはAl
InP層が形成されていて、さらにその外側に一方導電
型電流ブロック層が形成されていることを特徴とする半
導体レーザ。
(2) One conductivity type AlGaInP cladding layer, active layer and <01@
The other conductive type AlGaInP cladding layer has a thick stripe portion formed in the 1@> direction and has an inverted mesa shape in cross section, and the other conductive type AlGaInP is formed on the reverse mesa surface of the other conductive type AlGaInP cladding layer. AlGaInP or Al, which has a lower refractive index than the cladding layer
A semiconductor laser comprising an InP layer and a current blocking layer of one conductivity type formed outside the InP layer.
(3)GaAs基板上に一方導電型AlGaInPクラ
ッド層、活性層およびストライプ部分で厚さが厚くなっ
た他方導電型AlGaInPクラッド層を有し、レーザ
光の出射端面近傍の領域の前記他方導電型AlGaIn
Pクラッド層の前記ストライプの両側表面に前記他方導
電型AlGaInPクラッド層よりも屈折率の低いAl
GaInPあるいはAlInP層が一対のストライプ状
に形成されていて、さらにその外側および前記屈折率の
低いAlGaInPあるいはAlInP層が形成されて
いない領域の前記他方導電型AlGaInPクラッド層
の前記ストライプの両側表面に一方導電型電流ブロック
層が形成されていることを特徴とする半導体レーザ。
(3) A GaAs substrate has an AlGaInP cladding layer of one conductivity type, an AlGaInP cladding layer of the other conductivity type whose thickness is thicker in the active layer and the stripe portion, and the AlGaInP cladding layer of the other conductivity type is formed in a region near the laser beam emission end face.
Al having a lower refractive index than the other conductivity type AlGaInP cladding layer is formed on both surfaces of the stripe of the P cladding layer.
A GaInP or AlInP layer is formed in a pair of stripes, and one side is formed on both sides of the stripes of the other conductivity type AlGaInP cladding layer on the outside thereof and in the region where the low refractive index AlGaInP or AlInP layer is not formed. A semiconductor laser characterized in that a conductive current blocking layer is formed.
(4)屈折率の低いAlGaInPあるいはAlInP
層の導電型が他方導電型であることを特徴とする特許請
求の範囲第1項ないし第3項記載の半導体レーザ。
(4) AlGaInP or AlInP with low refractive index
4. A semiconductor laser according to claim 1, wherein the conductivity type of the layer is the other conductivity type.
(5)屈折率の低い他方導電型AlGaInPあるいは
他方導電型AlInP層の上に他方導電型コンタクト層
が形成されていることを特徴とする特許請求の範囲第4
項記載の半導体レーザ。
(5) Claim 4 characterized in that the other conductivity type contact layer is formed on the other conductivity type AlGaInP having a lower refractive index or on the other conductivity type AlInP layer.
Semiconductor laser described in section.
(6)(100)を主面とするGaAs基板上に一方導
電型AlGaInPクラッド層、活性層および他方導電
型AlGaInPクラッド層を形成する工程、前記他方
導電型AlGaInPクラッド層を<01@1@>方向
にストライプ状で逆メサ形状になっており該ストライプ
部分で厚さが厚くなるようにエッチング加工する工程、
前記前記逆メサ形状の前記他方導電型AlGaInP層
の逆メサ側面に前記他方導電型AlGaInPクラッド
層よりも屈折率の低いAlGaInPあるいはAlIn
P層を選択的に形成する工程、表面に露出した前記他方
導電型AlGaInPクラッド層の表面に一方導電型電
流ブロック層を選択的に形成する工程、および前記他方
導電型AlGaInPクラッド層のストライプ上、屈折
率の低いAlGaInPあるいはAlInP層の表面お
よび前記一方導電型電流ブロック層の表面に他方導電型
コンタクト層を形成する工程を備えたことを特徴とする
半導体レーザの製造方法。
(6) A step of forming one conductivity type AlGaInP cladding layer, an active layer, and the other conductivity type AlGaInP cladding layer on a GaAs substrate having (100) as a main surface, the step of forming the other conductivity type AlGaInP cladding layer <01@1@> A step of etching the material so that it has an inverted mesa shape with stripes in the direction and is thicker at the stripe portions;
AlGaInP or AlIn having a lower refractive index than the other conductivity type AlGaInP cladding layer is formed on the reverse mesa side surface of the other conductivity type AlGaInP layer having the reverse mesa shape.
selectively forming a P layer, selectively forming a current blocking layer of one conductivity type on the surface of the other conductivity type AlGaInP cladding layer exposed on the surface, and on the stripe of the other conductivity type AlGaInP cladding layer, A method for manufacturing a semiconductor laser, comprising the step of forming a contact layer of the other conductivity type on the surface of the AlGaInP or AlInP layer having a low refractive index and the surface of the current blocking layer of the one conductivity type.
JP1153369A 1988-12-08 1989-06-15 Semiconductor laser and manufacturing method thereof Expired - Lifetime JPH0632347B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1153369A JPH0632347B2 (en) 1989-06-15 1989-06-15 Semiconductor laser and manufacturing method thereof
US07/437,934 US5029175A (en) 1988-12-08 1989-11-17 Semiconductor laser
US07/683,181 US5143863A (en) 1988-12-08 1991-04-09 Method of manufacturing semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153369A JPH0632347B2 (en) 1989-06-15 1989-06-15 Semiconductor laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0319293A true JPH0319293A (en) 1991-01-28
JPH0632347B2 JPH0632347B2 (en) 1994-04-27

Family

ID=15560948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153369A Expired - Lifetime JPH0632347B2 (en) 1988-12-08 1989-06-15 Semiconductor laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0632347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480983A (en) * 1990-07-24 1992-03-13 Nec Corp Semiconductor laser
JP4713023B2 (en) * 2001-07-11 2011-06-29 ノリタケ伊勢電子株式会社 Fluorescent display tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480983A (en) * 1990-07-24 1992-03-13 Nec Corp Semiconductor laser
JP4713023B2 (en) * 2001-07-11 2011-06-29 ノリタケ伊勢電子株式会社 Fluorescent display tube

Also Published As

Publication number Publication date
JPH0632347B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US5029175A (en) Semiconductor laser
JPS63164484A (en) Semiconductor laser element
JPH0556036B2 (en)
JPS6343908B2 (en)
JPH0728102B2 (en) Semiconductor laser and manufacturing method thereof
JPH02228087A (en) Semiconductor laser element
JPH0319293A (en) Semiconductor laser and manufacture thereof
JP2846668B2 (en) Broad area laser
JPH02116187A (en) Semiconductor laser
JPH10209553A (en) Semiconductor laser element
JPH10326940A (en) Semiconductor light-emitting element
JPH0671121B2 (en) Semiconductor laser device
JPS59145590A (en) Semiconductor laser device
JPH0614575B2 (en) Semiconductor laser device
JP2743540B2 (en) Semiconductor laser and method of manufacturing the same
JPS637691A (en) Semiconductor laser device
JPH0268975A (en) Semiconductor laser
JPH01132191A (en) Semiconductor laser element
JPH0136276B2 (en)
JPH04269886A (en) Manufacture of semiconductor laser
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS60132381A (en) Semiconductor laser device
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01140691A (en) Semiconductor laser
JPS6167285A (en) Semiconductor laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 16