JPH0319290A - Electromagnetic wave sensor - Google Patents

Electromagnetic wave sensor

Info

Publication number
JPH0319290A
JPH0319290A JP1153275A JP15327589A JPH0319290A JP H0319290 A JPH0319290 A JP H0319290A JP 1153275 A JP1153275 A JP 1153275A JP 15327589 A JP15327589 A JP 15327589A JP H0319290 A JPH0319290 A JP H0319290A
Authority
JP
Japan
Prior art keywords
temperature
electromagnetic wave
heater
detector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1153275A
Other languages
Japanese (ja)
Inventor
Toshiaki Yokoo
横尾 敏昭
Takaaki Ikemachi
隆明 池町
Teruhiko Ienaga
照彦 家永
Masanobu Yoshisato
善里 順信
Akio Takeoka
武岡 明夫
Shoichi Nakano
中野 昭一
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1153275A priority Critical patent/JPH0319290A/en
Publication of JPH0319290A publication Critical patent/JPH0319290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To suppress generation of thermally excited quasi-particle current in an electrode and to reduce noise by composing an electromagnetic wave sensor using an electromotive conductor of a detector made of particulate ceramic electromotive conductor having both end electrodes provided on a substrate, and raising the temperature of the detector higher than that of the detector by using a heater. CONSTITUTION:A bandlike heater 2 is provided with Pt on a crystallized glass substrate 1, and a detector 3 made of particulate ceramic electromotive conductor coupled to electrodes 4 of both ends is provided while crossing the bandlike part of the heater 2. In this case, Y-Ba-Cu-O, etc., is employed as the conductor, and the heater 2 and the detector 3 are insulated therebetween with fritted glass. Thus, a sensor is composed. Even if the detector 3 and the electrodes 4 are set to lower atmospheric temperature than a zero resistance temperature, only the detector 3 is heated to a higher electrode wave detecting temperature by the heater 2 to suppress noise from the electrodes 4.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は超電導体を用いた電磁波センサーに関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to an electromagnetic wave sensor using a superconductor.

(ロ)従来の技術 高温超電導体の発見以来、これを用いた電磁波センサー
が研究されている(たとえばJ.Konopkaetc
.Appl. Phys. Lett. 53(9),
 29(1988)796参照)。
(b) Conventional technology Since the discovery of high-temperature superconductors, electromagnetic sensors using them have been studied (for example, J. Konopkaetc.
.. Appl. Phys. Lett. 53(9),
29 (1988) 796).

超電導体を用いた電磁波センサーの原理を説明すると、
一般に超電導弱結合素子の電流CI)一電圧(V)特性
は、第3図に示す実線特性であり、この素子に電磁波が
照射されると、電磁波の吸収による準粒子の発生により
、I−V特性が同図破線特性の如く変化する。このとき
、バイアス電流(I.)を流すことにより、電圧変化(
δV)が生じ、電磁波を検出する。
To explain the principle of electromagnetic wave sensor using superconductor,
In general, the current CI)-voltage (V) characteristic of a superconducting weakly coupled element is the solid line characteristic shown in Figure 3. When this element is irradiated with electromagnetic waves, quasiparticles are generated due to the absorption of the electromagnetic waves, and the I-V The characteristics change as shown by the broken line in the figure. At this time, by flowing a bias current (I.), the voltage change (
δV) is generated and electromagnetic waves are detected.

この電磁波の検出は、超電導体の零抵抗温度(TCE(
エンドポイント))より僅かに高い温度でなされる。
Detection of this electromagnetic wave is performed at the superconductor's zero resistance temperature (TCE).
endpoint)) at a slightly higher temperature.

従来の電磁波センサーは、超電導体にて形或される電磁
波の検出部とその両端電極部を備え、この検出部と電極
部が前述の如く零抵抗温度より僅かに高い温度下におい
て電磁波を検出するものである。
A conventional electromagnetic wave sensor includes an electromagnetic wave detection section formed of a superconductor and electrode sections at both ends thereof, and as described above, this detection section and electrode section detect electromagnetic waves at a temperature slightly higher than the zero resistance temperature. It is something.

(ハ)発明が解決しようとする課題 従来の電磁波センサーは、零抵抗温度より高い温度下で
電磁波を検出するものであり、検出部の両端電極部が検
出部と同じ温度下にあるため、電極部における超電導状
態が破壊されており、雑音等が生じる。
(c) Problems to be solved by the invention Conventional electromagnetic wave sensors detect electromagnetic waves at temperatures higher than zero resistance temperature, and since the electrodes at both ends of the detection part are under the same temperature as the detection part, The superconducting state in the area is destroyed, and noise etc. are generated.

本発明は、電極部から生ずる雑音を可及的に低減した電
磁波センサーを提供しようとするものである。
The present invention aims to provide an electromagnetic wave sensor in which noise generated from an electrode portion is reduced as much as possible.

(二)課題を解決するための手段 本発明は、基板上に、微粒子セラミックス超電導体にて
形底される電磁波の検出部及びその両端電極部と、前記
検出部の温度を前記電極部の温度に比して高めるヒータ
とを具備してなるものである。
(2) Means for Solving the Problems The present invention provides an electromagnetic wave detection section whose bottom is formed of a fine particle ceramic superconductor on a substrate, an electrode section at both ends of the electromagnetic wave detection section, and a temperature of the detection section. It is equipped with a heater that increases the temperature compared to the

また、第2の本発明は、前記検出部は前記超電導体の零
抵抗温度より高い電磁波検出温度に設定され、前記電極
部は前記零抵抗温度より低い温度に設定されるものであ
る。
Further, in a second aspect of the present invention, the detection section is set to an electromagnetic wave detection temperature higher than the zero resistance temperature of the superconductor, and the electrode section is set to a temperature lower than the zero resistance temperature.

(ホ)作用 前記検出部及び両端電極部を前記零抵抗温度より低い雰
囲気温度にし、ヒータにより検出部を前記零抵抗温度よ
り高い電磁波の検出温度C二することにより、電極部か
らの雑音の発生を抑制する。
(e) Effect: The detection section and both end electrode sections are brought to an ambient temperature lower than the zero resistance temperature, and the detection section is heated to an electromagnetic wave detection temperature C2 higher than the zero resistance temperature using a heater, thereby generating noise from the electrode section. suppress.

電磁波センサーに流れる電流(I)は、超電導電流(I
 s)と常電導電流(準粒子電流>(Iq)の和、即ち
1=1s+Iqであり、IQは熱励起準粒子電流(It
h)と電磁波励起準粒子電流(Iff)の和、即ちIq
=Ith+Iεである。
The current (I) flowing through the electromagnetic wave sensor is the superconducting current (I
s) and the normal conduction current (quasiparticle current > (Iq), that is, 1 = 1s + Iq, and IQ is the thermally excited quasiparticle current (It
h) and the electromagnetic wave excited quasiparticle current (Iff), that is, Iq
=Ith+Iε.

したがってS/N比は で表わされる。Therefore, the S/N ratio is It is expressed as

電磁波センサーの雰囲気温度TがT < < T C 
Eのときには、Is>Iq、即ち、常電導電流IQが小
さくなり、S/N比が小さい。また、I≧Tc8のとき
には、常電導電流IQが大きくなり、■q>I sとな
るが、熱励起準粒子電流Ithが大きくなり、Ith>
Iεとなるため、S / N比が小さい。この状態が前
述の従来の装置によるものである。
The ambient temperature T of the electromagnetic wave sensor is T << T C
When E, Is>Iq, that is, the normal conduction current IQ is small, and the S/N ratio is small. Furthermore, when I≧Tc8, the normal conduction current IQ becomes large and ■q>Is, but the thermally excited quasiparticle current Ith becomes large and Ith>
Iε, so the S/N ratio is small. This state is due to the conventional device described above.

本発明は電磁波センサー全体をT < T cmとなし
て、検出部の両端電極部の温度を零抵抗温度TcK以下
として電極部における熱励起準粒子電流Ithの発生な
いし増大を抑制し、かつ、ヒータにより検出部の温度T
を零抵抗温度Tc窓より僅かに高い電磁波検出温度にす
るものであるから、1th< I tとなり、S/N比
が大きくなるものである。
The present invention makes the entire electromagnetic wave sensor satisfy T < T cm, suppresses the generation or increase of thermally excited quasiparticle current Ith in the electrode part by setting the temperature of the electrode parts at both ends of the detection part to the zero resistance temperature TcK or less, and The temperature T of the detection part is
Since the electromagnetic wave detection temperature is set to be slightly higher than the zero resistance temperature Tc window, 1th<It, and the S/N ratio becomes large.

検出部の電磁波検出温度は、この零抵抗温度Tcxより
高く、全ての粒子が常電導状態になるオンセット温度(
T c (on))までの間に位置する。
The electromagnetic wave detection temperature of the detection unit is higher than this zero resistance temperature Tcx, and is the onset temperature (at which all particles become normally conductive).
T c (on)).

(へ)実施例 本発明の一実施例を、超電導材料として77K級の代表
としてY−Ba−Cu−0の場合を例にとり、第1図を
参照しつつ説明する。第l図は電磁波センサーの平面図
である。
(f) Example An example of the present invention will be described with reference to FIG. 1, taking Y-Ba-Cu-0 as a representative superconducting material of 77K class as an example. FIG. 1 is a plan view of the electromagnetic wave sensor.

まず、結晶化ガラス基板1上に、白金Ptの蒸着により
膜厚200人、幅0,lm、長さlam+のヒータ2を
形或する。このヒータ2は抵抗30Ωであり、IAの電
流を流すことにより30Wの発熱がある。
First, a heater 2 having a thickness of 200 mm, a width of 0.1 m, and a length of lam+ is formed on a crystallized glass substrate 1 by vapor deposition of platinum (Pt). This heater 2 has a resistance of 30Ω, and generates 30W of heat when a current of IA is passed through it.

次に、この基板l及びヒータ2上に、微粒子セラミック
ス超電導体にて検出部3及びその両端電極部4、4を形
或する。この場合の微粒子セラミソクス超電導体を次の
ようにして作製した。
Next, on the substrate 1 and the heater 2, a detection section 3 and electrode sections 4 at both ends thereof are formed using a fine particle ceramic superconductor. The fine particle ceramic superconductor in this case was produced as follows.

硝酸イットリウムY (NOI)S・3 . 5 H 
* 0と、硝酸バリウムB a ( N O s) *
と、硝酸銅Cu(NOI)!●3 H ! 0とを夫々
水に溶かしてY1Ba.Cuがモル比で1:2;3にな
るように混合する。
Yttrium nitrate Y (NOI) S・3. 5 H
* 0 and barium nitrate B a (N O s) *
And copper nitrate Cu (NOI)! ●3H! Y1Ba. Cu is mixed in a molar ratio of 1:2;3.

ついで蓚酸H,C.O.− 2H!0をBa元素2モル
に対し7モル加えてアンモニア水でpH調整を行ない、
pH=4〜7とし、蓚酸塩として共沈させる。
Then oxalic acid H, C. O. -2H! Add 7 moles of 0 to 2 moles of Ba element and adjust the pH with aqueous ammonia,
Adjust the pH to 4 to 7 and coprecipitate as oxalate.

沈殿物をろ過し水洗した後、十分乾燥し、空気中におい
て850℃で9時間仮焼或する。次に、仮焼或の粉末を
1〜2トン/cm”の圧力で戊形後、920℃で酸素雰
囲気中で12時間本焼或を行ない、YBaCuO超電導
体を得た。
The precipitate was filtered, washed with water, thoroughly dried, and calcined in air at 850° C. for 9 hours. Next, the calcined powder was shaped at a pressure of 1 to 2 tons/cm'', and then main firing was performed at 920° C. in an oxygen atmosphere for 12 hours to obtain a YBaCuO superconductor.

このようにして得られる超電導体は、焼戊条件等の作製
条件で組或、粒径を制御することが可能であり、この実
施例で得られた超電導体は、粉末同相法等の他法で得ら
れるYBaCuO系焼結体に比べ粒径が0.5〜1μm
と小さく、均質な焼結体となった。
The structure and particle size of the superconductor obtained in this way can be controlled by controlling the manufacturing conditions such as annealing conditions, and the superconductor obtained in this example can be prepared using other methods such as the powder in-phase method. The particle size is 0.5 to 1 μm compared to the YBaCuO-based sintered body obtained in
The result was a small, homogeneous sintered body.

この超電導体をスライスした後、検出部3がヒータ2と
交叉するようにガラス基板1上に、酸素雰囲気中で48
0℃の温度で0.4時間かけて7リットガラスで接合し
た。この場合の温度としては、オルソーテトラ相転移温
度以下である400〜500℃であればよい。この接合
断面を光学顕微鏡で見たところ、均質でクラックのない
良好な接合が得られていることがわかった。
After slicing this superconductor, it is placed on a glass substrate 1 for 48 minutes in an oxygen atmosphere so that the detection unit 3 crosses the heater 2.
Bonding was performed using 7 liter glass at a temperature of 0° C. over a period of 0.4 hours. In this case, the temperature may be 400 to 500°C, which is below the ortho-tetra phase transition temperature. When the cross-section of this bond was viewed under an optical microscope, it was found that a good bond was obtained that was homogeneous and free of cracks.

その後、スライス表面を50μm程度の厚みまで研磨し
、続いて研磨した超電導体を第l図に示す形状、即ち検
出部3及び両端電極部4、4を有する形状に、16KH
z、25〜50Wの超音波で加工した。この検出部3は
ブリ・ソジ部を溝威し、その大きさは概ね幅0.1II
Ifl+、厚み50μm,長さ0.51IIII1であ
る。
Thereafter, the sliced surface was polished to a thickness of about 50 μm, and the polished superconductor was shaped into the shape shown in FIG.
z, processed with 25-50W ultrasonic waves. This detection part 3 grooves the front and back part, and its size is approximately 0.1 II in width.
Ifl+, thickness 50 μm, length 0.51III1.

尚、一般にYBaCuO系焼結体は脆性があり、微細パ
ターンの加工が困難であるとされていたが、本発明の実
施例では、基板とYBaCuO系焼結体とが機械的に一
体化されているため、超音波加工時に接合部に加工時の
歪みが集中せず、微細加工が可能となった。また、ヒー
タ2と検出部3との間にフリットガラスが絶縁層として
介在する。
It is generally believed that YBaCuO-based sintered bodies are brittle and difficult to process into fine patterns; however, in the embodiments of the present invention, the substrate and YBaCuO-based sintered bodies are mechanically integrated. As a result, distortion during processing is not concentrated at the joint during ultrasonic processing, making micro-processing possible. Furthermore, frit glass is interposed between the heater 2 and the detection section 3 as an insulating layer.

第2図にこの超電導体の抵抗一温度特性を実線で示す。Figure 2 shows the resistance-temperature characteristics of this superconductor as a solid line.

この特性図から明らかなように、超電導体の零抵抗温度
TCIは90Kであり、オンセット温度T c,,.,
は98Kであった。
As is clear from this characteristic diagram, the zero resistance temperature TCI of the superconductor is 90K, and the onset temperature Tc, . ,
was 98K.

また、第2図に電磁波の検出感度を破線特性で示す。こ
の特性図から明らかなように、検出感度は零抵抗温度T
cKとオンセット温度Tc.。0の範囲でピーク特性を
有し、検出感度の極大を呈するのは95Kである。
Further, in FIG. 2, the detection sensitivity of electromagnetic waves is shown by a broken line characteristic. As is clear from this characteristic diagram, the detection sensitivity is the zero resistance temperature T.
cK and onset temperature Tc. . It has a peak characteristic in the range of 0 and exhibits the maximum detection sensitivity at 95K.

そこで、実施例では液体窒素を用いて、電磁波センサー
全体を77Kに冷却するとともにヒーク2により検出部
3の温度を95Kとした。
Therefore, in this embodiment, the entire electromagnetic wave sensor was cooled to 77K using liquid nitrogen, and the temperature of the detection section 3 was set to 95K using the heat 2.

以上の実施例では、基板l上にヒータ2を設けた後に検
出部3及び電極部4、4を設けたが、先に検出部3及び
IE極部4、4を設け、その上に検出部3に交叉するよ
うにヒータ2を設けてもよい。また、実施例では、超電
導体をフリットガラスを用いて基板1上に取付ける例を
示したが、rfマグネトロンスタッパリング法により、
基板1上にYBaCuO薄膜を蒸着により形威し、アニ
ール処理して超電導薄膜を形威して検出部3及びt4[
i部4、4としてもよい。この場合もヒータ3の形威は
、検出部3等の形或前後を問わない。
In the above embodiment, the detection part 3 and the electrode parts 4, 4 were provided after the heater 2 was provided on the substrate l, but the detection part 3 and the IE electrode parts 4, 4 were provided first, and the detection part The heaters 2 may be provided so as to intersect with each other. In addition, in the example, an example was shown in which the superconductor was mounted on the substrate 1 using frit glass, but by the RF magnetron stuttering method,
A YBaCuO thin film is formed on the substrate 1 by vapor deposition, and then annealed to form a superconducting thin film to form the detection parts 3 and t4 [
It may also be the i part 4, 4. In this case as well, the shape of the heater 3 does not matter regardless of the shape of the detection section 3 or the like.

さらに、本発明の検出部3及び電極部4、4を構或する
微粒子セラミックス超電導体はYBaCuO系のものに
限らず、その他のLn系、Tl系、Bi系のものを使用
することができる。同様にヒータ2もPtに限らず、A
u,,Agを使用することもできる。
Further, the fine particle ceramic superconductor constituting the detection section 3 and electrode sections 4, 4 of the present invention is not limited to YBaCuO type, but other Ln type, Tl type, and Bi type can be used. Similarly, the heater 2 is not limited to Pt.
u,,Ag can also be used.

(ト)効 果 本発明は、微粒子セラミックス超電導体にて形威される
検出部及びその両端電極部のうち、電極部はその超電導
体の零抵抗温度Tcxより低い温度に,また検出部は零
抵抗温度Tc.より僅かに高い電磁波検出温度にして電
磁波を検出するものであるから、電極部における熱励起
準粒子電流の発生を抑制することができ、電極部から生
じる雑音を可及的に低減することができる。
(g) Effect The present invention provides a detection section formed of a fine particle ceramic superconductor and electrode sections at both ends thereof, in which the electrode section is kept at a temperature lower than the zero resistance temperature Tcx of the superconductor, and the detection section is kept at a temperature lower than the zero resistance temperature Tcx of the superconductor. Resistance temperature Tc. Since electromagnetic waves are detected at a slightly higher electromagnetic wave detection temperature, it is possible to suppress the generation of thermally excited quasiparticle current in the electrode part, and to reduce noise generated from the electrode part as much as possible. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電磁波センサーの平面図、第2図
は本発明に用いた超電導体の抵抗一温度特性及び電磁波
センサーの感度特性図、第3図は超電導弱結合素子の電
流一電圧特性図である。 l・・・基板、2・・・ヒータ、3・・・検出部、4、
4・・・電極部。
Fig. 1 is a plan view of the electromagnetic wave sensor according to the present invention, Fig. 2 is a resistance-temperature characteristic of the superconductor used in the present invention and a sensitivity characteristic of the electromagnetic wave sensor, and Fig. 3 is a current-voltage characteristic of the superconducting weak coupling element. It is a diagram. l...Substrate, 2...Heater, 3...Detection section, 4,
4... Electrode part.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に、微粒子セラミックス超電導体にて形成
される電磁波の検出部及びその両端電極部と、 前記検出部の温度を前記電極部の温度に比して高めるヒ
ータと、 を具備してなる電磁波センサー。
(1) An electromagnetic wave detection section formed of a fine particle ceramic superconductor and electrode sections at both ends of the electromagnetic wave detection section formed on a substrate, and a heater that increases the temperature of the detection section compared to the temperature of the electrode section. An electromagnetic wave sensor.
(2)基板上に、微粒子セラミックス超電動体にて形成
される電磁波の検出部及びその両端電極部を備え、 前記検出部は前記超電導体の零抵抗温度より高い電磁波
検出温度に設定され、前記電極部は前記零抵抗温度より
低い温度に設定される電磁波センサー。
(2) An electromagnetic wave detection section formed of a fine particle ceramic superelectric body and electrode sections at both ends thereof are provided on the substrate, the detection section is set at an electromagnetic wave detection temperature higher than the zero resistance temperature of the superconductor, and the An electromagnetic wave sensor in which the electrode portion is set at a temperature lower than the zero resistance temperature.
JP1153275A 1989-06-15 1989-06-15 Electromagnetic wave sensor Pending JPH0319290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153275A JPH0319290A (en) 1989-06-15 1989-06-15 Electromagnetic wave sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153275A JPH0319290A (en) 1989-06-15 1989-06-15 Electromagnetic wave sensor

Publications (1)

Publication Number Publication Date
JPH0319290A true JPH0319290A (en) 1991-01-28

Family

ID=15558904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153275A Pending JPH0319290A (en) 1989-06-15 1989-06-15 Electromagnetic wave sensor

Country Status (1)

Country Link
JP (1) JPH0319290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031349A1 (en) * 1999-10-28 2001-05-03 Centre National De La Recherche Scientifique (Cnrs) Electromagnetic wave sensor
KR100889199B1 (en) * 2001-10-15 2009-03-16 다이와 세이꼬 가부시끼가이샤 Fishing bucket

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031349A1 (en) * 1999-10-28 2001-05-03 Centre National De La Recherche Scientifique (Cnrs) Electromagnetic wave sensor
FR2800470A1 (en) * 1999-10-28 2001-05-04 Centre Nat Rech Scient ELECTROMAGNETIC WAVE SENSOR.
US6767128B1 (en) 1999-10-28 2004-07-27 Centre National De La Recherche Scientifique (Cnrs) Electromagnetic wave sensor
KR100889199B1 (en) * 2001-10-15 2009-03-16 다이와 세이꼬 가부시끼가이샤 Fishing bucket

Similar Documents

Publication Publication Date Title
US5162298A (en) Grain boundary junction devices using high tc superconductors
CN104900670B (en) A kind of optical detector based on bismuth copper selenolite thermal electric film transverse direction pyroelectric effect
Tate et al. Transient laser‐induced voltages in room‐temperature films of YBa2Cu3O7− x
WO2018234411A2 (en) Detector of electromagnetic radiation
JPH0319290A (en) Electromagnetic wave sensor
Murata et al. Electrical nanocontact between bismuth nanowire edges and electrodes
Glowacki Texture development of HTS powder-in-tube conductors
JPH034574A (en) Superconductive electromagnetic wave sensor and manufacture thereof
JP3016566B2 (en) Superconducting switch element
JP2925556B2 (en) Superconducting magnetic wave sensor
JP3379533B2 (en) Method for manufacturing superconducting device
JP3059806B2 (en) Superconducting element and manufacturing method thereof
JPH02260472A (en) Josephson junction element
Camerlingo et al. Preliminary results on tunnel junctions on YBCO bulk with an artificial barrier
JP2560088B2 (en) How to join superconductors
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JP4092393B2 (en) High temperature superconducting Josephson junction forming method and high temperature superconducting Josephson device comprising Josephson junction formed thereby
Fardmanesh et al. Thick and thin film Y‐Ba‐Cu‐O infrared detectors
Terpstra et al. Fabrication aspects of microwave devices, including ramp-type high-Tc Josephson junctions and log-periodic antennas
Hakhoumian et al. Microwave induced response in normal state Y-Ba-Cu-O films
Biter et al. High Tc superconductor infrared detectors
JPH02264486A (en) Superconductive film weakly coupled element
JPH03249571A (en) Electromagnetic wave detecting element
JPH0669555A (en) Josephson junction element
Bohandy et al. Thin Films of Oxygen-Deficient Perovskite Superconductors by Laser Ablation