JPH03191068A - Microwave plasma device - Google Patents

Microwave plasma device

Info

Publication number
JPH03191068A
JPH03191068A JP1331732A JP33173289A JPH03191068A JP H03191068 A JPH03191068 A JP H03191068A JP 1331732 A JP1331732 A JP 1331732A JP 33173289 A JP33173289 A JP 33173289A JP H03191068 A JPH03191068 A JP H03191068A
Authority
JP
Japan
Prior art keywords
coaxial tubes
plasma
rectangular waveguide
substrate
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1331732A
Other languages
Japanese (ja)
Inventor
Yuji Mukai
裕二 向井
Yoshiyuki Tsuda
善行 津田
Koichi Kodera
宏一 小寺
Hideaki Yasui
秀明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1331732A priority Critical patent/JPH03191068A/en
Publication of JPH03191068A publication Critical patent/JPH03191068A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a long-sized region for irradiation with plasma and to allow the inline treatment of a large-area substrate by opening one end of plural coaxial tubes arrayed in the longitudinal direction of a microwave waveguide into a vacuum vessel disposed with a substrate to be worked. CONSTITUTION:Microwave electric power 1 for discharge is transmitted in the square waveguide 2 and is branched to 4 pieces of the coaxial tubes 3 arrayed and connected in the longitudinal direction of the waveguide 2. This electric power is controlled in quantity by a variable shorting plate 7 and is transmitted toward the vacuum vessel 6. Gaseous raw materials for film formation supplied into the vessel 6 are ionized to generate the plasma 10 in the vessel. The plasma 10 generated from the respective coaxial tubes 3 is circular in section and spreads and overlaps on each other; therefore, the long-sized plasma long in the direction where the coaxial tubes are arrayed is formed as a whole. The long-sized substrate 12 of the large area for film formation is disposed under this plasma and is transported in the direction perpendicular to the direction where the coaxial tubes 3 are arrayed. The continuous film formation is thereby executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜加工に用いるマイクロ波プラズマを利用し
た成膜装置、エツチング装置、イオン照射装置、および
その他の表面処理装置に関するものであり、より詳細に
は大面積の被加工基板をインライン処理するに通したマ
イクロ波プラズマの発生装置に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a film forming device, an etching device, an ion irradiation device, and other surface treatment devices that utilize microwave plasma for thin film processing. This relates to a microwave plasma generator for in-line processing of a large-area processed substrate.

従来の技術 従来のマイクロ波プラズマを用いた薄膜加工装置として
は、例えば特開昭56−155535号公報など、本件
発明者らによる出願が成されている。これらはマイクロ
波電力と磁界による電子サイクロトロン共鳴現象を利用
する方法であり、10−’ トール台といった高真空で
高密度なプラズマを発生できるが、いずれも単一のプラ
ズマ発生源によるものである。
BACKGROUND OF THE INVENTION Conventional thin film processing apparatuses using microwave plasma have been filed by the inventors of the present invention, such as Japanese Patent Laid-Open No. 155535/1983. These methods utilize an electron cyclotron resonance phenomenon caused by microwave power and a magnetic field, and can generate high-density plasma in a high vacuum such as a 10-' Toll platform, but they all rely on a single plasma generation source.

発明が解決しようとする課題 近年薄膜加工分野では、例えば液晶デイスプレィの大画
面化の要求にみられるように、大面積の基板を処理でき
る装置の開発が望まれている。工業的に大面積の基板を
処理するためにはインライン化を達成しなければならず
、そのためには断面が長尺な形のプラズマを発生させる
必要がある。
Problems to be Solved by the Invention In recent years, in the field of thin film processing, there has been a desire to develop an apparatus capable of processing large-area substrates, as seen in the demand for larger screens for liquid crystal displays, for example. In order to industrially process large-area substrates, it is necessary to achieve in-line processing, and for this purpose, it is necessary to generate plasma with a long cross section.

しかし、上記従来技術では放電室に円筒型の共振器を用
いているため、発生できるプラズマの断面形状は円形で
ある。しかも共振条件により放電室の内径が制限される
ためプラズマの大きさも制限されてしまう。従って、上
記従来技術のマイクロ波プラズマ装置では大面積の基板
をインラインで処理することができないという課題があ
った。
However, in the conventional technique described above, a cylindrical resonator is used in the discharge chamber, so the cross-sectional shape of the plasma that can be generated is circular. Moreover, since the inner diameter of the discharge chamber is limited by the resonance conditions, the size of the plasma is also limited. Therefore, the conventional microwave plasma apparatus described above has a problem in that it is not possible to process a large-area substrate in-line.

課題を解決するだめの手段 上記課題を解決するための本発明は、放電用のマイクロ
波電力を伝達するだめの矩形導波管と、前記矩形導波管
の長さ方向に列設した複数の同軸管を有し、前記複数の
同軸管の一端を真空容器内に向けて開口させ、前記真空
容器内に前記複数の同軸管との距離を一定に保って搬送
する被加工基板を配置したものである。本発明において
、矩形導波管の長さ方向に列設した複数の同軸管の間隔
が矩形導波管内を伝達するマイクロ波電力の管内波長の
1/2の整数倍とし、また、矩形導波管に列設した複数
の同軸管毎にマイクロ波電力の反射電力量調整手段を設
け、前記マイクロ波電力の反射電力量調整手段として、
可動短絡板であるもの、または複数の同軸管の各々の内
導体の真空中に突出する長さ、或は矩形導波管内への突
出する長さを可変としたものを採用することができる。
Means for Solving the Problems The present invention for solving the above problems includes a rectangular waveguide for transmitting microwave power for discharge, and a plurality of rectangular waveguides arranged in a longitudinal direction of the rectangular waveguide. A device having a coaxial tube, one end of the plurality of coaxial tubes opening toward the inside of a vacuum container, and a substrate to be processed to be transported while maintaining a constant distance from the plurality of coaxial tubes in the vacuum container. It is. In the present invention, the interval between the plurality of coaxial tubes arranged in the length direction of the rectangular waveguide is an integral multiple of 1/2 of the tube wavelength of the microwave power transmitted in the rectangular waveguide, and the rectangular waveguide A reflected power amount adjustment means for microwave power is provided for each of the plurality of coaxial tubes arranged in a row, and as the reflected power amount adjustment means for the microwave power,
It is possible to adopt a movable short-circuit plate, or one in which the length of the inner conductor of each of the plurality of coaxial tubes protruding into the vacuum or the length of protruding into the rectangular waveguide is variable.

更に、基板の搬送方向を、複数の同軸管の列設方向に対
し斜め方向とすることも、複数の同軸管を列設した矩形
導波管を延長して折り返し、被加工基板の搬送軸方向に
直交して複数列の同軸管の列設部を形成して、同軸管の
設置間隔を矩形導波管の管内波長の1/2の整数倍に保
ちつつ複数列間の同軸管の設置位置が被加工基板の搬送
方向軸に対し同一軸に重複しないよう配置することも可
能としたものである。
Furthermore, the conveyance direction of the substrate can be diagonal to the direction in which the plurality of coaxial tubes are arranged, or by extending and folding a rectangular waveguide in which a plurality of coaxial tubes are arranged in a row, the direction of conveyance of the substrate to be processed can be A plurality of rows of coaxial tubes are formed perpendicular to the column, and the coaxial tubes are installed between the plurality of rows while maintaining the installation interval of the coaxial tubes at an integral multiple of 1/2 of the tube wavelength of the rectangular waveguide. It is also possible to arrange them so that they are coaxial with respect to the transport direction axis of the substrate to be processed and do not overlap.

作  用 上記構成を有することにより、矩形導波管を伝達してき
たマイクロ波電力は、矩形導波管の管内波長に列設した
複数の同軸管に分岐して供給され真空容器内に入る。真
空容器内では周知のようにマイクロ波電力による同軸管
の内導体と外導体間との放電に加え、同軸管の真空容器
内挿入部分の外周に設けた磁界発生手段による磁界によ
り電子サイクロトロン共鳴を起し、真空容器内に供給さ
れる加工ガスを電離してプラズマを発生させる。発生し
たプラズマは内導体をアンテナとして真空容器内に放射
されるが、プラズマの断面形状は同軸管と同じ形状のプ
ラズマ、例えば断面が円形のプラズマであるが、同軸管
が複数列設されているため同軸管から離れた位置ではプ
ラズマの広がりにより、各々の同軸管から発生したプラ
ズマが互いに重なりあい、全体としてインライン処理に
適する長尺断面のプラズマ照射を得ることができる。従
って、長尺断面のプラズマ照射が得られる位置に被加工
基板を一定高さに保って搬送させれば、大面積の被加工
基板の処理を行うことができる。
Operation With the above configuration, the microwave power transmitted through the rectangular waveguide is branched and supplied to a plurality of coaxial tubes arranged in line at the wavelength within the rectangular waveguide, and then enters the vacuum vessel. As is well known, inside a vacuum vessel, in addition to electric discharge between the inner and outer conductors of the coaxial tube due to microwave power, electron cyclotron resonance is generated by a magnetic field generated by a magnetic field generating means provided on the outer periphery of the part of the coaxial tube inserted into the vacuum vessel. The processing gas supplied into the vacuum vessel is ionized to generate plasma. The generated plasma is radiated into the vacuum vessel using the inner conductor as an antenna, but the cross-sectional shape of the plasma is the same as that of a coaxial tube, for example, a plasma with a circular cross section, but multiple rows of coaxial tubes are installed. Therefore, at a position away from the coaxial tube, the plasma generated from each coaxial tube overlaps with each other due to the spread of the plasma, making it possible to obtain plasma irradiation with a long cross section suitable for in-line processing as a whole. Therefore, if the substrate to be processed is kept at a constant height and transported to a position where plasma irradiation of a long cross section can be obtained, a large area of the substrate to be processed can be processed.

上記構成に加えて前記複数の同軸管の設置間隔が矩形導
波管を伝達するマイクロ波の管内波長の1/2の整数倍
であるように構成すれば、マイクロ波電力は電界強度の
最高点で効率よく各同軸管に伝達されるので効率のよい
装置とすることができる。
In addition to the above configuration, if the installation interval of the plurality of coaxial tubes is configured to be an integral multiple of 1/2 of the tube wavelength of the microwave transmitted through the rectangular waveguide, the microwave power can be reached at the highest point of electric field strength. Since the signal is efficiently transmitted to each coaxial tube, an efficient device can be achieved.

尚、各同軸管に配分されるマイクロ波電力の不均一によ
る成IIりへの影響の是正を、各同軸管に設ける可動短
絡板の位置を移動させ、もしくは内導体を可動として真
空中への突出長さ、または矩形導波管内への突出長さの
調節することによって、マイクロ波電力の真空容器内へ
の供給量を調節して均一化を図っている。
In addition, in order to correct the influence on growth caused by uneven microwave power distributed to each coaxial tube, it is possible to correct the influence on growth by moving the position of the movable shorting plate provided on each coaxial tube, or by moving the inner conductor and placing it in a vacuum. By adjusting the protrusion length or the protrusion length into the rectangular waveguide, the amount of microwave power supplied into the vacuum container is adjusted and made uniform.

また、同軸管の中心部と周辺部とのプラズマ流密度の不
均一による同軸管の列設方向での加工量変動の是正には
、被加工基板の搬送方向を同軸管の列設方向に対し斜め
方向にすることにより、あたかも同軸管の設置間隔を小
さくした状態が得られ、或いは、同軸管の列設部を被加
工基板の搬送軸方向に直交して複数列設けると、同軸管
の設置間隔をより小さくした状態が得られ、長尺断面の
プラズマ照射の均一化が向上する。
In addition, to correct the variation in processing amount in the direction in which the coaxial tubes are arranged due to non-uniform plasma flow density between the center and periphery of the coaxial tubes, it is necessary to change the conveyance direction of the substrate to be processed relative to the direction in which the coaxial tubes are arranged. By placing the coaxial tubes in an oblique direction, it is possible to obtain a condition in which the installation interval of the coaxial tubes is reduced, or by providing multiple rows of coaxial tubes perpendicular to the direction of the conveyance axis of the processed substrate, the installation of the coaxial tubes becomes easier. A state in which the spacing is made smaller is obtained, and uniformity of plasma irradiation on a long cross section is improved.

実施例 本発明の第1の実施例を第1図を参照しながら説明する
Embodiment A first embodiment of the present invention will be described with reference to FIG.

第1図は本発明をアモルファスシリコン薄膜の成膜装置
に適用した実施例の概略構成図で、第2図は第1図のA
−A’断面図である。第1図において、放電用のマイク
ロ波電力1は図外マイクロ波発振器から供給され、矩形
導波管2内を伝達して、矩形導波管2の長さ方向に並べ
て接続した4本の同軸管3に分岐される。矩形導波管2
内では矩形導波管2の長さ方向にマイクロ波の電界が周
期的に強くなる部分が存在する。その間隔は矩形導波管
2内を伝達するマイクロ波の波長即ち管内波長λの1/
2である。矩形導波管2に同軸管3を接続する場合には
、このマイクロ波の電界の強い部分に接続すると、効率
的にマイクロ波電力1が同軸管3に伝達する。従って、
各々の同軸管3は互いに管内波長λの172の間隔で並
べている。
FIG. 1 is a schematic configuration diagram of an embodiment in which the present invention is applied to an amorphous silicon thin film deposition apparatus, and FIG.
-A' sectional view. In FIG. 1, microwave power 1 for discharging is supplied from a microwave oscillator (not shown), transmitted through a rectangular waveguide 2, and connected to four coaxial It is branched into pipe 3. Rectangular waveguide 2
There are parts in the length direction of the rectangular waveguide 2 where the microwave electric field becomes stronger periodically. The interval is 1/1/1 of the wavelength of the microwave transmitted in the rectangular waveguide 2, that is, the inner wavelength λ.
It is 2. When connecting the coaxial tube 3 to the rectangular waveguide 2, the microwave power 1 is efficiently transmitted to the coaxial tube 3 by connecting it to a portion where the microwave electric field is strong. Therefore,
The respective coaxial tubes 3 are arranged at intervals of 172 times, which is the tube wavelength λ.

同軸管3は各々外導体4と内導体5がら構成され、その
一端は真空容器6内に向けて開口し、他端には可動短絡
板7が取り付けられている。この可動短絡板7は同軸管
3がら反射するマイクロ波電力を調節するためのもので
あり、換言すれば各同軸管に分岐されるマイクロ波電力
の量を調節するためのものである。また同軸管3内には
途中に真空をシールし、且つマイクロ波電力を透過する
ためのアルミナからなるマイクロ波透過窓9が設けられ
ている。
Each coaxial tube 3 is composed of an outer conductor 4 and an inner conductor 5, one end of which opens into a vacuum container 6, and a movable shorting plate 7 attached to the other end. This movable shorting plate 7 is for adjusting the microwave power reflected from the coaxial tube 3, or in other words, for adjusting the amount of microwave power branched to each coaxial tube. Further, a microwave transmission window 9 made of alumina is provided in the coaxial tube 3 in the middle to seal a vacuum and transmit microwave power.

真空容器6には、放電ガス供給口8がら成膜原料である
シランガスが供給されている。各々の同軸管3には、矩
形導波管2がら分岐し、可動短絡板7によりその量を調
節されたマイクロ波電力が真空容器6の方向へ伝達され
る。外導体4の周囲には電子サイクロトロン共鳴を起こ
すための永久磁石11を配置しており、この磁界とマイ
クロ波電力によって、同軸管3の真空部分と真空容器6
内ではシランガスが電離しプラズマlOが発生する。内
導体5の真空容器6内に突出した部分はアンテナとして
作用し、伝達されたマイクロ波を真空容器6内へ放射す
るので、同時にプラズマ10が真空容器6内に放射され
る。この各々の同軸管3内で発生するプラズマ10の断
面は円形である。例えば、第1図のB−B′断面でのプ
ラズマの断面形状は第3図(a)のように個々の円であ
る。しかし、c−c’断面のように同軸管3から離れた
位置では、各々の同軸管3から発生したプラズマは広が
り、また互いに重なり合うため第2図(b)のように、
全体として同軸管の列設方向に長い長尺なプラズマとな
るので、このプラズマの下に配置した被成膜基板12に
はアモルファスシリコンの薄膜が堆積する。被成膜基板
12が第2図に示したような大面積の長尺基板であれば
、同軸管の列設方向と直角な矢印の方向に搬送すると、
連続的にアモルファスシリコンを成膜することができる
Silane gas, which is a film forming raw material, is supplied to the vacuum vessel 6 through a discharge gas supply port 8 . The rectangular waveguide 2 branches into each coaxial tube 3, and microwave power whose amount is adjusted by a movable shorting plate 7 is transmitted toward the vacuum container 6. A permanent magnet 11 is arranged around the outer conductor 4 to cause electron cyclotron resonance, and this magnetic field and microwave power cause the vacuum part of the coaxial tube 3 and the vacuum container 6 to
Inside, silane gas is ionized and plasma IO is generated. The portion of the inner conductor 5 protruding into the vacuum vessel 6 acts as an antenna and radiates the transmitted microwaves into the vacuum vessel 6, so that plasma 10 is simultaneously radiated into the vacuum vessel 6. The plasma 10 generated within each coaxial tube 3 has a circular cross section. For example, the cross-sectional shape of the plasma taken along the line BB' in FIG. 1 is an individual circle as shown in FIG. 3(a). However, at a position away from the coaxial tube 3 as in the c-c' cross section, the plasma generated from each coaxial tube 3 spreads and overlaps with each other, so as shown in FIG. 2(b),
As a whole, the plasma becomes elongated in the direction in which the coaxial tubes are arranged, so that a thin film of amorphous silicon is deposited on the deposition target substrate 12 placed below this plasma. If the film-forming substrate 12 is a long substrate with a large area as shown in FIG. 2, if it is transported in the direction of the arrow perpendicular to the direction in which the coaxial tubes are arranged,
Amorphous silicon can be continuously deposited.

本実施例では、矩形導波管2に同軸管3を4本接続した
例について説明したが、同軸管の数は必要とする基板の
大きさに合わせればよく、また、基板12の長さについ
ては真空容器6にl[容できる容積限度にまでは自由で
ある。
In this embodiment, an example in which four coaxial tubes 3 are connected to a rectangular waveguide 2 has been described, but the number of coaxial tubes may be adjusted to the size of the required substrate, and the length of the substrate 12 The vacuum container 6 is free to hold up to the maximum capacity.

尚、各々の同軸管3に伝達されるマイクロね電力の割合
が不適当であると、被成膜基板12」に形成される薄膜
の成膜厚や改質が不均一と4・るので、各々の同軸管3
に伝達されるマイクr被電力を調節するための調節手段
が不可欠で渋る。このような調節手段よしては、第1図
にガずように可動短絡Fi7の設定位置を同軸管3σ軸
方向に移動させる手段、または第4図に示したように、
内導体5の真空容器6の中に突出する部分5′の長さを
変えても良く、或いは矩ル導波管2内に突出する部分5
″の長さを変えても、いずれにても可能である。
It should be noted that if the ratio of the micro-power transmitted to each coaxial tube 3 is inappropriate, the thickness and modification of the thin film formed on the film-forming substrate 12 will be non-uniform. each coaxial tube 3
Adjustment means for adjusting the power transmitted to the microphone r is essential and difficult. Such adjustment means include means for moving the setting position of the movable short circuit Fi7 in the direction of the axis of the coaxial tube 3σ as shown in FIG.
The length of the portion 5' of the inner conductor 5 that protrudes into the vacuum vessel 6 may be changed, or the length of the portion 5 that protrudes into the rectangular waveguide 2.
It is also possible to change the length of ``.

次に本発明の第2、第3、第4の実施例に1いて説明す
る。第5図と第6図は、各々本発明の第2と第3の実施
例に関する図面であり、11の実施例の第2図に相当す
る断面図のみを牙したものである。これらの実施例は、
第1の実施例において基板上に成膜される成膜厚の分布
をより均一にすることを目的とするものである。
Next, second, third and fourth embodiments of the present invention will be explained. FIG. 5 and FIG. 6 are drawings relating to the second and third embodiments of the present invention, respectively, and only show a cross-sectional view corresponding to FIG. 2 of the eleventh embodiment. These examples are:
The purpose of this embodiment is to make the distribution of the film thickness formed on the substrate more uniform in the first embodiment.

前述した第1の実施例においては、各同軸管3の直下部
ではプラズマ流が強く、プラズマ流のやや弱い各同軸管
3の間の直下部に比べて成膜厚が若干厚くなってしまう
。この成膜厚分布を強調して図示したものが第7図の(
a)である。
In the first embodiment described above, the plasma flow is strong directly below each coaxial tube 3, and the film thickness is slightly thicker than that directly below between the coaxial tubes 3, where the plasma flow is somewhat weaker. This film thickness distribution is emphasized and illustrated in Figure 7 (
a).

この成膜厚分布の不均一を小さくするためには、同軸管
3の設置間隔を小さくすることで解決できるが、前述し
た通り同軸管3の設置間隔は矩形導波管2の管内波長に
よって規制されるため、第2、第3の実施例においては
次のような解決策を講じている。
In order to reduce this non-uniformity in the film thickness distribution, it can be solved by reducing the installation interval of the coaxial tubes 3, but as mentioned above, the installation interval of the coaxial tubes 3 is regulated by the tube wavelength of the rectangular waveguide 2. Therefore, the following solutions are taken in the second and third embodiments.

まず第2の実施例では、第5図に示すように被加工基板
12の搬送方向を同軸管3の列設方向に対して任意角度
の搬送方向としている。この場合、同軸管3どうしの間
隔は、第1の実施例と同様に管内波長λの172である
が、このような搬送方向をとることにより被加工基板1
2の搬送方向から見たときの同軸管3の設置間隔Wは、
あたかも同軸管3の設置間隔をλ/2より小さくしたと
同じ効果が得られるため、第7図(b)に示すように成
膜厚の分布の不均一を小さくすることができる。
First, in the second embodiment, as shown in FIG. 5, the direction in which the substrate to be processed 12 is transported is at an arbitrary angle with respect to the direction in which the coaxial tubes 3 are arranged. In this case, the distance between the coaxial tubes 3 is 172 times the tube wavelength λ as in the first embodiment, but by adopting such a conveyance direction, the substrate to be processed 1
The installation interval W of the coaxial tubes 3 when viewed from the conveyance direction of 2 is:
Since the same effect can be obtained as if the installation interval of the coaxial tubes 3 were made smaller than λ/2, the non-uniformity in the distribution of the film thickness can be reduced as shown in FIG. 7(b).

次に第3の実施例では、第6図に示すように同軸管3を
列設した矩形導波管2を延長して折り返し同軸管3の列
設部を増設すると、2列の同軸管3の列設部が被加工基
板の搬送方向に重複して配置されることになるので、各
同軸管3の設置間隔を矩形導波管2の管内波長の1/2
の整数倍に保ちつつ、被加工基板12の搬送軸方向に対
し同一軸に重複しないよう第1列の同軸管3の列設間隔
の中間に第2列の同軸管3を列設配置すると、同軸管3
の設置間隔は矩形導波管2の管内波長λの1/2であっ
ても、被加工基板12の搬送軸方向から見た同軸管3の
間隔が、矩形導波管12の管内波長λの1/4にするこ
とができ、第7図(C)に示すように成膜厚分布の不均
一をさらに小さくすることができる。
Next, in the third embodiment, as shown in FIG. 6, if the rectangular waveguide 2 in which coaxial tubes 3 are arranged in rows is extended to add a row of folded coaxial tubes 3, two rows of coaxial tubes 3 are formed. Since the rows of coaxial tubes 3 will be arranged overlappingly in the conveyance direction of the processed substrate, the installation interval of each coaxial tube 3 will be set to 1/2 of the tube wavelength of the rectangular waveguide 2.
When the second row of coaxial tubes 3 are arranged in the middle of the row spacing of the first row of coaxial tubes 3 so as not to overlap on the same axis with respect to the conveyance axis direction of the substrate to be processed 12 while maintaining an integral multiple of coaxial tube 3
Even if the installation interval of the rectangular waveguide 2 is 1/2 of the inner wavelength λ of the rectangular waveguide 2, the interval of the coaxial tubes 3 viewed from the direction of the conveyance axis of the substrate 12 to be processed is equal to the inner wavelength λ of the rectangular waveguide 12. The thickness can be reduced to 1/4, and the non-uniformity of the film thickness distribution can be further reduced as shown in FIG. 7(C).

次に、本発明の第4の実施例を第8図を参照しながら説
明する。この実施例は、これまでの実施例と同様に本発
明を、アモルファスシリコン薄膜の成膜装置に用いた例
であり、第8図は概略構成図、第9図は第8図のD−D
’線の断面図である。これまでの実施例では、同軸管の
真空部分を放電室としていたが、この第4の実施例では
、周囲に永久磁石11を配置した矩形の放電室13を設
けると共に、マイクロ波透過窓9を同軸管3と放電室1
3の間に設け、内導体5を放電室13内に突出している
。この内導体5の突出した部分はアンテナとして作用し
、伝達されたマイクロ波電力を放電室13内に放射する
。そのため、矩形の放電室13内にほぼ均一なプラズマ
10を発生でき、インライン処理に敵した矩形断面の均
一なプラズマを発生することができる。
Next, a fourth embodiment of the present invention will be described with reference to FIG. This example is an example in which the present invention is used in a film forming apparatus for amorphous silicon thin film, as in the previous examples, and FIG. 8 is a schematic configuration diagram, and FIG.
' is a cross-sectional view of the line. In the previous embodiments, the vacuum part of the coaxial tube was used as the discharge chamber, but in this fourth embodiment, a rectangular discharge chamber 13 with a permanent magnet 11 arranged around it is provided, and a microwave transmission window 9 is provided. Coaxial tube 3 and discharge chamber 1
3, and an inner conductor 5 protrudes into the discharge chamber 13. This protruding portion of the inner conductor 5 acts as an antenna and radiates the transmitted microwave power into the discharge chamber 13. Therefore, substantially uniform plasma 10 can be generated within the rectangular discharge chamber 13, and uniform plasma with a rectangular cross section suitable for in-line processing can be generated.

以上説明した実施例では、本発明をアモルファスシリコ
ン薄膜の成膜装置に用いた場合について説明したが、も
ちろん他の薄膜の成膜装置に用いてもよく、またエツチ
ング装置やイオン照射装置、及びその他の表面処理装置
に利用で4 きることは言うまでもない。
In the embodiments described above, the present invention is applied to an amorphous silicon thin film forming apparatus, but it may of course be used in other thin film forming apparatuses, and may also be used in etching apparatuses, ion irradiation apparatuses, and other devices. Needless to say, it can be used in surface treatment equipment.

発明の効果 本発明によれば、長尺な断面形状をもつプラズマ照射領
域を得ることができると共に、このプラズマ照射領域を
通過するように被加工基板を搬送するので、大面積の被
加工基板にプラズマ照射加工を施す場合に、その幅に適
合するように同軸管を複数配置してプラズマ照射領域を
広げ、その長さ方向に適合するように前記搬送距離を定
めるごとにより、大面積の被加工基板のプラズマ照射加
工をインライン処理することができる。
Effects of the Invention According to the present invention, it is possible to obtain a plasma irradiation area with a long cross-sectional shape, and since the substrate to be processed is transported through this plasma irradiation area, it is possible to process a large-area substrate. When performing plasma irradiation processing, it is possible to widen the plasma irradiation area by arranging multiple coaxial tubes to match the width, and to set the transport distance to match the length direction. Plasma irradiation processing of the substrate can be performed in-line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の概略構成図、第2図は
第1図A−A’線での断面図、第3図はプラズマの形状
の説明図、第4図はマイクロ波電力を調節する方法の説
明図、第5図は本発明の第2の実施例の説明図、第6図
は本発明の第3の実施例の説明図、第7図は本発明の第
1から第3の実施例による成膜厚分布の説明図、第8図
は本発明の第4の実施例の概略構成図、第9図は第8図
のD−D’線の断面図である。 マイクロ波電力 矩形導波管 同軸管 真空容器 可動短絡板 マイクロ波透過窓 プラズマ 被成膜基板
Fig. 1 is a schematic configuration diagram of the first embodiment of the present invention, Fig. 2 is a sectional view taken along the line A-A' in Fig. 1, Fig. 3 is an explanatory diagram of the shape of plasma, and Fig. 4 is a micro 5 is an explanatory diagram of the second embodiment of the present invention, FIG. 6 is an explanatory diagram of the third embodiment of the present invention, and FIG. 7 is an explanatory diagram of the method of adjusting the wave power. FIG. 8 is a schematic configuration diagram of the fourth embodiment of the present invention, and FIG. 9 is a cross-sectional view taken along line DD' in FIG. 8. be. Microwave power rectangular waveguide coaxial tube vacuum container movable short circuit plate microwave transmission window plasma deposition substrate

Claims (7)

【特許請求の範囲】[Claims] (1)放電用のマイクロ波電力を伝達するための矩形導
波管と、前記矩形導波管の長さ方向に列設した複数の同
軸管を有し、前記複数の同軸管の一端を真空容器内に向
けて開口させ、前記真空容器内に、前記複数の同軸管の
開口部との距離を一定に保って搬送する被加工基板を配
置したことを特徴とするマイクロ波プラズマ装置。
(1) It has a rectangular waveguide for transmitting microwave power for discharge, and a plurality of coaxial tubes arranged in a longitudinal direction of the rectangular waveguide, and one end of the plurality of coaxial tubes is evacuated. 1. A microwave plasma apparatus, characterized in that the vacuum container has an opening toward the inside of the container, and a substrate to be processed is placed in the vacuum container to be transported while maintaining a constant distance from the openings of the plurality of coaxial tubes.
(2)矩形導波管の長さ方向に列設した複数の同軸管の
設置間隔が、矩形導波管内を伝達するマイクロ波の管内
波長の1/2の整数倍である請求項1記載のマイクロ波
プラズマ装置。
(2) The installation interval of the plurality of coaxial tubes arranged in the length direction of the rectangular waveguide is an integral multiple of 1/2 of the tube wavelength of the microwave transmitted inside the rectangular waveguide. Microwave plasma equipment.
(3)矩形導波管に列設した複数の同軸管毎にマイクロ
波電力の反射電力量調節手段を設けた請求項1記載のマ
イクロ波プラズマ装置。
(3) The microwave plasma apparatus according to claim 1, further comprising a means for adjusting the amount of reflected microwave power for each of the plurality of coaxial tubes arranged in a row in the rectangular waveguide.
(4)マイクロ波電力の反射電力量調節手段が可動短絡
板である請求項3記載のマイクロ波プラズマ装置。
(4) The microwave plasma apparatus according to claim 3, wherein the means for adjusting the amount of reflected power of the microwave power is a movable short circuit plate.
(5)マイクロ波電力の反射電力量調節手段が内導体が
真空中に突出する長さ、または矩形導波管内への突出す
る長さを可変とした請求項3記載のマイクロ波プラズマ
装置。
(5) The microwave plasma apparatus according to claim 3, wherein the means for adjusting the amount of reflected microwave power varies the length of the inner conductor protruding into the vacuum or into the rectangular waveguide.
(6)被加工基板の搬送方向を、複数の同軸管の列設方
向に対し斜め方向にした請求項1記載のマイクロ波プラ
ズマ装置。
(6) The microwave plasma apparatus according to claim 1, wherein the direction of conveyance of the substrate to be processed is oblique to the direction in which the plurality of coaxial tubes are arranged.
(7)複数の同軸管を列設した矩形導波管を延長して折
り返し、被加工基板の搬送軸方向に直交して複数列の同
軸管の列設部を形成して、同軸管の設置間隔を矩形導波
管の管内波長の1/2の整数倍に保ちつつ複数列間の同
軸管位置が被加工基板の搬送軸方向に対し重複しないよ
う配置した請求項1記載のマイクロ波プラズマ装置。
(7) A rectangular waveguide with multiple coaxial tubes arranged in a row is extended and folded back to form a section where multiple rows of coaxial tubes are arranged perpendicular to the direction of the conveyance axis of the processed substrate, and the coaxial tubes are installed. The microwave plasma apparatus according to claim 1, wherein the coaxial tubes are arranged so that the positions of the coaxial tubes between the plurality of rows do not overlap in the direction of the conveyance axis of the substrate to be processed, while maintaining the spacing at an integral multiple of 1/2 of the tube wavelength of the rectangular waveguide. .
JP1331732A 1989-12-20 1989-12-20 Microwave plasma device Pending JPH03191068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331732A JPH03191068A (en) 1989-12-20 1989-12-20 Microwave plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331732A JPH03191068A (en) 1989-12-20 1989-12-20 Microwave plasma device

Publications (1)

Publication Number Publication Date
JPH03191068A true JPH03191068A (en) 1991-08-21

Family

ID=18246984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331732A Pending JPH03191068A (en) 1989-12-20 1989-12-20 Microwave plasma device

Country Status (1)

Country Link
JP (1) JPH03191068A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839928A1 (en) * 1996-10-30 1998-05-06 Schott Glaswerke Remote plasma CVD method
WO2000043568A1 (en) * 1999-01-22 2000-07-27 Toyo Kohan Co., Ltd. Microwave plasma cvd apparatus
US6109208A (en) * 1998-01-29 2000-08-29 Mitsubishi Denki Kabushiki Kaisha Plasma generating apparatus with multiple microwave introducing means
JP2005528755A (en) * 2002-06-04 2005-09-22 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Sheet plasma generator
JP2007505451A (en) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト ECR plasma source with linear plasma discharge opening
JP2009021220A (en) * 2007-06-11 2009-01-29 Tokyo Electron Ltd Plasma processing device, antenna, and usage method for plasma processing device
JP2011117076A (en) * 2009-11-02 2011-06-16 Toyo Seikan Kaisha Ltd Microwave induced plasma treatment apparatus and microwave induced plasma treatment method
JP2015534214A (en) * 2012-09-11 2015-11-26 アッシュ・ウー・エフ Apparatus for generating plasma that is axially high from a gaseous medium by electron cyclotron resonance (ECR)
EP3309815A1 (en) * 2016-10-12 2018-04-18 Meyer Burger (Germany) AG Plasma treatment device with two microwave plasma sources coupled together and method for operating such a plasma treatment device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839928A1 (en) * 1996-10-30 1998-05-06 Schott Glaswerke Remote plasma CVD method
US5985378A (en) * 1996-10-30 1999-11-16 Schott Glaswerke Remote-plasma-CVD method for coating or for treating large-surface substrates and apparatus for performing same
US6109208A (en) * 1998-01-29 2000-08-29 Mitsubishi Denki Kabushiki Kaisha Plasma generating apparatus with multiple microwave introducing means
WO2000043568A1 (en) * 1999-01-22 2000-07-27 Toyo Kohan Co., Ltd. Microwave plasma cvd apparatus
JP2005528755A (en) * 2002-06-04 2005-09-22 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Sheet plasma generator
JP2007505451A (en) * 2003-09-08 2007-03-08 ロート・ウント・ラウ・アクチェンゲゼルシャフト ECR plasma source with linear plasma discharge opening
JP2009021220A (en) * 2007-06-11 2009-01-29 Tokyo Electron Ltd Plasma processing device, antenna, and usage method for plasma processing device
JP2011117076A (en) * 2009-11-02 2011-06-16 Toyo Seikan Kaisha Ltd Microwave induced plasma treatment apparatus and microwave induced plasma treatment method
JP2015534214A (en) * 2012-09-11 2015-11-26 アッシュ・ウー・エフ Apparatus for generating plasma that is axially high from a gaseous medium by electron cyclotron resonance (ECR)
EP3309815A1 (en) * 2016-10-12 2018-04-18 Meyer Burger (Germany) AG Plasma treatment device with two microwave plasma sources coupled together and method for operating such a plasma treatment device
WO2018069299A1 (en) * 2016-10-12 2018-04-19 Meyer Burger (Germany) Ag Plasma treatment device comprising two intercoupled microwave plasma sources and method for operating such a plasma treatment device
US10685813B2 (en) 2016-10-12 2020-06-16 Meyer Burger (Germany) Gmbh Plasma treatment device with two microwave plasma sources coupled to one another, and method for operating a plasma treatment device of this kind
TWI756276B (en) * 2016-10-12 2022-03-01 德商梅耶柏格(德國)有限責任公司 Plasma treatment device with two microwave plasma sources coupled to one another, and method for operating a plasma treatment device of this kind

Similar Documents

Publication Publication Date Title
US6422172B1 (en) Plasma processing apparatus and plasma processing method
KR100472582B1 (en) Plasma Treatment Equipment
KR102007059B1 (en) Antenna for plasma generation, plasma processing device and plasma processing method
US5948168A (en) Distributed microwave plasma reactor for semiconductor processing
US9734990B2 (en) Plasma apparatus and substrate-processing apparatus
US7296533B2 (en) Radial antenna and plasma device using it
TW202320122A (en) Modular microwave plasma source and plasma processing tool
US9548187B2 (en) Microwave radiation antenna, microwave plasma source and plasma processing apparatus
US20120090782A1 (en) Microwave plasma source and plasma processing apparatus
US20040011466A1 (en) Plasma processing apparatus
JP2005235755A (en) Microwave feeder, plasma processing apparatus using it, and plasma processing method
US11501955B2 (en) Modular high-frequency source with integrated gas distribution
KR20160114508A (en) Microwave plasma source and plasma processing apparatus
JPH03191068A (en) Microwave plasma device
US9934974B2 (en) Microwave plasma device
RU2507628C2 (en) Apparatus for plasma treatment of large areas
US20050067934A1 (en) Discharge apparatus, plasma processing method and solar cell
JPH08337887A (en) Plasma treatment device
JP4426632B2 (en) Plasma processing equipment
WO2020166968A1 (en) Linear ecr plasma generation device using two independent microwave generators
US20230326716A1 (en) Plasma processing apparatus, plasma processing method, and dielectric window
US20230352274A1 (en) Plasma processing apparatus
US11355317B2 (en) Methods and apparatus for dynamical control of radial uniformity in microwave chambers
JP3732287B2 (en) Plasma processing equipment
JP2007028387A (en) Microwave directional coupler, plasma generation device and plasma treatment device