JPH03190909A - Polymerization of alpha-olefin - Google Patents

Polymerization of alpha-olefin

Info

Publication number
JPH03190909A
JPH03190909A JP32837289A JP32837289A JPH03190909A JP H03190909 A JPH03190909 A JP H03190909A JP 32837289 A JP32837289 A JP 32837289A JP 32837289 A JP32837289 A JP 32837289A JP H03190909 A JPH03190909 A JP H03190909A
Authority
JP
Japan
Prior art keywords
polymerization
catalyst
chromium
hydrocarbon
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32837289A
Other languages
Japanese (ja)
Inventor
Yukitoshi Iwashita
岩下 幸年
Shigeo Tsuyama
津山 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP32837289A priority Critical patent/JPH03190909A/en
Publication of JPH03190909A publication Critical patent/JPH03190909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain the title polymer without making an oligomer as a by- product by polymerizing an olefin using a highly active Phillips type catalyst comprising a solid prepared by supporting a Cr compound on an inorganic oxide and baking and an inactive hydrocarbon-soluble organomagnesium complex compound. CONSTITUTION:An olefin is polymerized by using a catalyst comprising (A) a solid component prepared by supporting a chromium compound (e.g. chromium trioxide) on an inorganic oxide (e.g. silica) and baking and (B) an inactive hydrocarbon-soluble organomagnesium complex compound shown by the formula [alpha and beta are integer larger than 0; p, q, r, s and t are 0 or larger than 0, 0<=(s+t)/(alpha+beta)<=1.5 and p+q+r+s+t=malpha+2beta (m is valence of M); M is Zn, B, Be or Li) R<1> to R<3> are 1-20C hydrocarbon; X and Y are OR<4> (R<4> is H or hydrocarbon, OSiR<5>R<6>R<7> (R<5> to R<7> are as shown for R<4>), etc. ] and prepared by blending in a molar ratio of (M+Mg)/Cr of 0.1-10 to give the objective polymer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オレフィン、とくにエチレンもしくはエチレ
ンと他のα−オレフィンの重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for the polymerization of olefins, particularly ethylene or ethylene and other α-olefins.

詳しくは、本発明は、無機酸化物に担持されたクロム成
分からなる固体と、特定の有機マグネシウムを含む成分
とを予め接触処理して得た触媒を用いることを特徴とす
る、活性の高い改良されたオレフィンの重合方法に関す
る。
Specifically, the present invention is an improvement with high activity characterized by using a catalyst obtained by contacting a solid consisting of a chromium component supported on an inorganic oxide and a component containing a specific organomagnesium. The present invention relates to a method for polymerizing olefins.

(従来の技術) 酸化クロム等のクロム化合物をシリカ、シリカアルミナ
等の無機酸化物担体に担持させ、焼成することによって
得られるエチレン重合用触媒は、いわゆるフィリップス
型触媒として広く知られている。
(Prior Art) An ethylene polymerization catalyst obtained by supporting a chromium compound such as chromium oxide on an inorganic oxide carrier such as silica or silica alumina and firing it is widely known as a so-called Phillips type catalyst.

しかし、この触媒を使用する場合に、触媒の活性および
重合体の平均分子量は重合温度に大きく依存し、市販に
適した分子量数万〜数十万の重合体を十分な触媒活性の
もとて製造するためには、−船釣に重合温度を100〜
200°Cにする必要があった。
However, when using this catalyst, the activity of the catalyst and the average molecular weight of the polymer greatly depend on the polymerization temperature, and it is difficult to obtain a commercially available polymer with a molecular weight of tens of thousands to hundreds of thousands with sufficient catalytic activity. In order to manufacture it, the polymerization temperature must be set at 100~
It was necessary to raise the temperature to 200°C.

このような温度範囲で重合を行う場合に、生成する重合
体は反応溶媒に溶解した状態となるため、反応系の粘度
が著しく上昇し、その結果として、生成重合体濃度を2
0%以上に」−げることか困難であった。従って、重合
がいわゆるスラリー重合おなる+ 00 ’C以下の重
合温度において、高い触媒活性を示す触媒の開発が強く
求められていた。
When polymerization is carried out in such a temperature range, the produced polymer is dissolved in the reaction solvent, so the viscosity of the reaction system increases significantly, and as a result, the concentration of the produced polymer decreases by 2.
It was difficult to get the amount above 0%. Therefore, there has been a strong demand for the development of a catalyst that exhibits high catalytic activity at a polymerization temperature of +00'C or less, where polymerization is so-called slurry polymerization.

さらに加えて、生産コストの低減のために、重合後の工
程においての触媒除去工程を省略できることが重要であ
り、このためには、さらに高い活性を示す触媒の開発が
必要とされていた。
Furthermore, in order to reduce production costs, it is important to be able to omit the catalyst removal step in the post-polymerization process, and for this purpose, it has been necessary to develop a catalyst that exhibits even higher activity.

そこで、このフィリップス型触媒の重合活性を改良すべ
く、有機アルミニウム化合物や有機亜鉛化合物等をM4
の合わせた触媒系が数多く提案され、(例えば、特公昭
36−22144号公報、特公昭43−27415号公
報、特公昭47−23668号公報、特公昭49−34
759号公報など)、触媒活性の向上が計られてきた。
Therefore, in order to improve the polymerization activity of this Phillips-type catalyst, organic aluminum compounds, organic zinc compounds, etc. were added to M4.
Many catalyst systems have been proposed (for example, Japanese Patent Publication No. 36-22144, Japanese Patent Publication No. 43-27415, Japanese Patent Publication No. 47-23668, Japanese Patent Publication No. 49-34
No. 759, etc.), efforts have been made to improve the catalytic activity.

更に、フィリ・ンプス型触媒と有機マグネシウム錯化合
物と組み合わせてなる触媒系が開示され、(例えば、特
公昭59−5602号公報、特公昭59−5604号公
報、特公昭59−50242号公報など)、さらに、触
媒活性が改良されてきた。
Furthermore, a catalyst system comprising a combination of a Fili-impus type catalyst and an organomagnesium complex compound has been disclosed (for example, Japanese Patent Publication No. 59-5602, Japanese Patent Publication No. 59-5604, Japanese Patent Publication No. 59-50242, etc.). , Furthermore, the catalytic activity has been improved.

(発明が解決しようとする課H) しかしながら、前記特公昭59−5604号公報に記載
の発明は、確かに触媒活性は改良され優れた技術である
が、重合に際してオリゴマーやワックス分が多量に副生
ずる欠点があった。このことは、コストおよびプロセス
の安定運転という観点から解決すべき大きな課題であっ
た。
(Problem H to be solved by the invention) However, although the invention described in the above-mentioned Japanese Patent Publication No. 59-5604 is an excellent technique with improved catalytic activity, a large amount of oligomers and wax components are added as by-products during polymerization. There were some drawbacks. This was a major problem to be solved from the viewpoint of cost and stable operation of the process.

(課題を解決するための手段) 本発明者らは、前記課題に対して種々検討を重ねた結果
、シリカ等の担体に担持されたクロム化合物を焼成活性
化した固体と、特定の有機マグネシウム化合物とを組み
合わせた前記特公昭595604号公報に記載の触媒系
において、予め両者を接触し、重合に用いることで、オ
リゴマーおよびワックス分の発生を著しく低減できるこ
とを見出し、本発明に到達した。
(Means for Solving the Problems) As a result of various studies regarding the above problems, the present inventors have developed a solid product obtained by calcination activation of a chromium compound supported on a carrier such as silica, and a specific organomagnesium compound. In the catalyst system described in Japanese Patent Publication No. 595,604, in which the two are combined, it has been discovered that the generation of oligomers and wax components can be significantly reduced by contacting the two in advance and using them for polymerization, and the present invention has been achieved based on this discovery.

すなわち、本発明は; (a)クロム化合物を無機酸化物担体に担持し焼成した
固体成分と、 (b)−形式 %式%) で示される不活性炭化水素可溶有機マグネシウム錯化合
物(式中、α、βばOより大きい数であり、p、9、r
、s、tは0またはOより大で、0≦(s+t)/(α
十β)≦1. 5かつp+q+r+s+t=mα+2β
の関係を有し、Mは亜鉛、ホウ素、ヘリリウムおよびリ
チウムから選ばれた原子であり、 mはMの原子価を表し、 R1、R2、R3は同一または異なった炭素原子数1〜
20の炭化水素基であり、 X、Yは同一または異なったOR’、03iR5R6R
7、NRBR9および5RIQから選ばれた基を表し、 R’、R5、R’=、R’、RIl、R9ば水素原子ま
たは炭化水素基であり、 Rloは炭化水素基を表す)とから成る触媒を用いるオ
レフィン重合方法において、 予め(a)と(b)とを(M+Mg)/Crモル比で0
.1〜10の範囲で接触し、重合に用いることを特徴と
するオレフィンの重合方法に係わるものである。
That is, the present invention comprises; (a) a solid component obtained by supporting and calcining a chromium compound on an inorganic oxide carrier; and (b) an inert hydrocarbon-soluble organomagnesium complex compound (in the formula , α, β are larger numbers than O, and p, 9, r
, s, t are 0 or greater than O, and 0≦(s+t)/(α
1β)≦1. 5 and p+q+r+s+t=mα+2β
M is an atom selected from zinc, boron, helium, and lithium, m represents the valence of M, and R1, R2, and R3 are the same or different carbon atoms from 1 to
20 hydrocarbon groups, X and Y are the same or different OR', 03iR5R6R
7. represents a group selected from NRBR9 and 5RIQ, R', R5, R'=, R', RIl, R9 are hydrogen atoms or hydrocarbon groups, and Rlo represents a hydrocarbon group). In the olefin polymerization method using
.. The present invention relates to a method for polymerizing olefins, which is characterized in that they are used in the polymerization by contacting in a range of 1 to 10.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いる無機酸化物担体としては、シリカ、シリ
カ−アルミナ、トリア、ジルコニア等を用いることがで
きるが、シリカ、シリカ−アルミナが特るこ好ましい。
As the inorganic oxide carrier used in the present invention, silica, silica-alumina, thoria, zirconia, etc. can be used, but silica and silica-alumina are particularly preferred.

担持するり1コム化合物としては、クロムの酸化物、ハ
ロゲン化物、オキシハロゲン化物、硝酸塩、硫酸塩、シ
ュウ酸塩、酢酸塩、アルコラード等が挙げられ、具体的
には、二酸化クロム、塩化クロミル、重クロム酸カリウ
J1、クロム酸アンモニウム、硝酸クロム、酢酸クロl
1、クロムアセチルアセトナート よって少なくとも部分的に酸化クロムを形成する化合物
が挙げられる。三酸化クロム、酢酸クロム、クロムアセ
チルアセトナ−I・は、特に好ましく用いられる。
Examples of supported chromium compounds include chromium oxides, halides, oxyhalides, nitrates, sulfates, oxalates, acetates, alcoholades, etc. Specifically, chromium dioxide, chromyl chloride, Potassium dichromate J1, ammonium chromate, chromium nitrate, chloroacetate
1. Compounds that form chromium oxide at least partially with chromium acetylacetonate. Chromium trioxide, chromium acetate, and chromium acetylacetoner I. are particularly preferably used.

次に、クロム化合物の担持および焼成について説明する
Next, supporting and firing of the chromium compound will be explained.

担体にクロム化合物を担持させるには、含浸、溶媒留去
、昇華付着等の公知の方法によって行われる。担持する
クロムの量は、担体に対するクロム原子の重量%で、0
.05〜5%、好ましくは0、1〜3%の範囲である。
The chromium compound can be supported on the carrier by known methods such as impregnation, solvent distillation, and sublimation deposition. The amount of chromium supported is 0% by weight of chromium atoms relative to the support.
.. It ranges from 0.05% to 5%, preferably from 0.1% to 3%.

焼成活性化は、一般に酸素の存在下で行うが、不活性ガ
スの存在下あるいは減圧下で行うことも可能である。好
ましくは、水分を実質的に含まない空気が用いられる。
Firing activation is generally performed in the presence of oxygen, but it can also be performed in the presence of an inert gas or under reduced pressure. Preferably, air substantially free of moisture is used.

焼成温度は300°C以上、好ましくは400〜900
°Cの範囲で数分〜数十時間、好ましくは30分〜10
時間行われる。焼成時には充分乾燥空気を供給し、流動
状態下で焼成活性化を行うことが推奨される。
Firing temperature is 300°C or higher, preferably 400-900°C
°C for several minutes to several tens of hours, preferably 30 minutes to 10
Time is done. It is recommended to supply sufficient dry air during firing and to perform firing activation in a fluidized state.

なお、担持もしくは焼成時にチタネート頚やフッ素含有
塩類等を添加し2て、活性や分子量等を調節する公知の
方法を併用することも勿論可能である。
Of course, it is also possible to use a known method in which the activity, molecular weight, etc. are adjusted by adding titanate necks, fluorine-containing salts, etc. at the time of supporting or firing.

次に、本発明に用いられる一般式: %式%) で示される不活性炭化水素可溶有機マグネシウム錯化合
物について説明する。
Next, the inert hydrocarbon soluble organomagnesium complex compound represented by the general formula: % formula % used in the present invention will be explained.

−1−記式中、Mは亜鉛、ホウ素、ベリリウムおよびリ
チウムから選ばれた原子であり、特に好ましくは亜鉛で
ある。
-1- In the formula, M is an atom selected from zinc, boron, beryllium and lithium, and particularly preferably zinc.

R1 、Rz 、Riで表される炭化水素基は、アルキ
ル基、シクロアルキル基、またはアリール基であり、例
えば、メチル、エチル、プロピル、ブチル、アミル、ヘ
キシル、オクチル、デシル、ドデシル、シクロヘキシル
、フェニル基等が挙げられ、アルキル基が好んで用いら
れる。
The hydrocarbon group represented by R1, Rz, and Ri is an alkyl group, a cycloalkyl group, or an aryl group, such as methyl, ethyl, propyl, butyl, amyl, hexyl, octyl, decyl, dodecyl, cyclohexyl, phenyl. groups, etc., and alkyl groups are preferably used.

X1Yで表される極性基はアルコキシ基、シロキシ基、
アミノ基またはスルフィド基であり、好ましくはアルコ
キシ基もしくはシロキシ基である。
The polar group represented by X1Y is an alkoxy group, a siloxy group,
It is an amino group or a sulfide group, preferably an alkoxy group or a siloxy group.

金属原子に対する極性基の比(s+t)/(α+β)は
、0以上、1.5以下、好ましくは1以下である。
The ratio of polar groups to metal atoms (s+t)/(α+β) is 0 or more and 1.5 or less, preferably 1 or less.

」:記の不活性炭化水素可溶有機マグネシウム錯化合物
は、既に公表されている本出願人らの公開公報、公告公
報にしたがって合成される。(例えば特公昭52−36
791号公報、特公昭5236796号公報、特公昭5
6−43046号公報など。) 不活性炭化水素媒体としては、ヘキサン、ヘプタンのご
とき脂肪族炭化水素:ヘンゼン、l・ルエンのごとき芳
香族炭化水素二ジクロヘキサン、メチルシクロヘキサン
のごとき脂環式炭化水素等が挙げられ、脂肪族炭化水素
もしくは脂環式炭化水素が好んで用いられる。
The inert hydrocarbon-soluble organomagnesium complex compound described above is synthesized according to the published publications and publications of the present applicants. (For example, Tokuko Sho 52-36
Publication No. 791, Special Publication No. 5236796, Special Publication No. 5
Publication No. 6-43046, etc. ) Examples of the inert hydrocarbon medium include aliphatic hydrocarbons such as hexane and heptane; aromatic hydrocarbons such as henzene and l.luene; and alicyclic hydrocarbons such as didichlorohexane and methylcyclohexane. Hydrocarbons or cycloaliphatic hydrocarbons are preferably used.

次に、固体触媒成分(すなわち担体に担持され焼成活性
化されたクロム含有固体)と有機マグネシウム成分とを
接触する方法について説明する。
Next, a method of bringing the solid catalyst component (ie, the chromium-containing solid supported on a carrier and activated by firing) into contact with the organomagnesium component will be described.

接触方法は、炭化水素媒体に懸濁した固体触媒成分に有
機マグネシウム錯体成分を添加してもよいし、有機マグ
ネシウム錯体に固体触媒成分を添加してもよい。
In the contact method, the organomagnesium complex component may be added to a solid catalyst component suspended in a hydrocarbon medium, or the solid catalyst component may be added to an organomagnesium complex.

本発明においては、固体触媒成分と有機マグネシウム錯
体成分とを予め接触させ、かつその際の両者のモル比が
特定の範囲にあることが本発明の効果、即ちオリゴマー
・ワックス副生低減効果を得るために重要である。
In the present invention, the effect of the present invention, that is, the effect of reducing oligomer wax by-products, is obtained by bringing the solid catalyst component and the organomagnesium complex component into contact with each other in advance, and at that time, the molar ratio of the two is within a specific range. It is important for

(Mg+M)/Crとしての両者の金属モル比は、0.
1〜10の範囲であり、好ましくは1〜5の範囲が用い
られる。
The molar ratio of both metals as (Mg+M)/Cr is 0.
The range is from 1 to 10, preferably the range from 1 to 5 is used.

接触濃度、接触温度については、特に限定はなく、温度
は通常用いられる室温から100°Cの範囲を用いるこ
とができる。また、接触媒体としては、ヘキサン、ヘプ
タンのごとき脂肪族炭化水素;ベンゼン、l・ルエンの
ごとき芳香族炭化水素ニジクロヘキサン、メヂルシクロ
ヘキサンのごとき脂環式炭化水素等が挙げられ、脂肪族
炭化水素もしくは脂環式炭化水素が好んで用いられる。
There are no particular limitations on the contact concentration and the contact temperature, and the temperature can be within the commonly used range of room temperature to 100°C. Examples of the contact medium include aliphatic hydrocarbons such as hexane and heptane; aromatic hydrocarbons such as benzene and l-luene; alicyclic hydrocarbons such as dichlorohexane and medylcyclohexane; Hydrogen or alicyclic hydrocarbons are preferably used.

次に、本発明の触媒を用いてオレフィンを重合する方法
に関して説明する。
Next, a method for polymerizing olefin using the catalyst of the present invention will be explained.

本発明の触媒を用いて重合しうるオレフィンはα−オレ
フィンであり、特にエチレンである。ざらに本発明の触
媒はエチレンとプロピレン、ブテン−1、ヘキセン−1
等のモノオレフィンとの共重合、あるいはさらにブタジ
ェン、イソプレン等のジエンの共存下での重合に用いる
ことも可能である。
Olefins that can be polymerized using the catalysts of the invention are alpha-olefins, especially ethylene. In general, the catalyst of the present invention contains ethylene, propylene, butene-1, hexene-1
It is also possible to use it for copolymerization with monoolefins such as, or in the presence of dienes such as butadiene and isoprene.

本発明の触媒を用い、共重合を実施することによって密
度0,9」〜0.97g/cfflの範囲の重合体を製
造することが可能である。
By carrying out copolymerization using the catalyst of the present invention, it is possible to produce a polymer having a density in the range of 0.9'' to 0.97 g/cffl.

重合方法としては、通常の懸濁重合、溶液重合、気相重
合が可能である。懸濁重合、溶液重合の場合は、触媒を
重合溶媒、例えば、プロパン、ブタン、ペンタン、ヘキ
サン、ヘプタンのごとき脂肪族炭化水素:ベンゼン、ト
ルエン、キシレンのごとき芳香族炭化水素二ジクロヘキ
サン、メチルシクロヘギザンのごとき脂環式炭化水素と
共に反応器に導入し、不活性雰囲気下にエチレンを1〜
200kg/cIIiに圧入して、室温〜320°Cの
温度で1 重合を進めることができる。
As the polymerization method, usual suspension polymerization, solution polymerization, and gas phase polymerization are possible. In the case of suspension polymerization and solution polymerization, the catalyst is a polymerization solvent such as aliphatic hydrocarbons such as propane, butane, pentane, hexane, and heptane; aromatic hydrocarbons such as benzene, toluene, and xylene; Ethylene is introduced into the reactor together with an alicyclic hydrocarbon such as hegizane, and ethylene is
The polymerization can be carried out at a temperature of room temperature to 320° C. by injecting 200 kg/cIIi under pressure.

一方、気相重合は、エチレンを1〜50kg/cTFl
の圧力で室温〜I 20 ’Cの温度条件下で、エチレ
ンと触媒の接触が良好となるよう流動床、移動床、ある
いは攪拌によって混合を行う等の手段を講して重合を行
うことが可能である。
On the other hand, in gas phase polymerization, ethylene is added at 1 to 50 kg/cTFl.
Polymerization can be carried out at a pressure of from room temperature to 120'C using means such as a fluidized bed, moving bed, or stirring to ensure good contact between ethylene and the catalyst. It is.

本発明の触媒は高性能であり、85°C110kg/ 
cJ程度の比較的低温、低圧の重合条件下においても充
分に高い活性を示し、かつ重合に際してのオリゴマーや
ワックス分の副生が少ない。この場合に生成する重合体
は重合系にスラリー状態で存在するため、重合系の粘度
上昇もきわめて少ない。
The catalyst of the present invention has high performance and can be used at 85°C110kg/
It exhibits sufficiently high activity even under relatively low temperature and low pressure polymerization conditions of approximately cJ, and little oligomer or wax content is produced as by-products during polymerization. Since the polymer produced in this case exists in the polymerization system in a slurry state, the increase in viscosity of the polymerization system is extremely small.

従って、重合系の重合体濃度を30%以」二にすること
ができ、かつオリゴマーやワックス分の副生も少ないこ
とから、製造コストの低減、生産効率向上等の利点が大
きい。また高活性のため、生成ポリマーからの触媒残渣
除去工程は省略できる。
Therefore, the polymer concentration in the polymerization system can be reduced to 30% or more, and the amount of by-products such as oligomers and wax is small, so there are great advantages such as reduction in manufacturing costs and improvement in production efficiency. Furthermore, due to its high activity, the step of removing catalyst residue from the produced polymer can be omitted.

重合は1反応帯を用いる通常の1段重合で行ってもよい
し、または複数個の反応帯を用いる、いわゆる多段重合
で行ってもよい。
The polymerization may be carried out by conventional one-stage polymerization using one reaction zone, or by so-called multi-stage polymerization using a plurality of reaction zones.

2 本発明の触媒を用いて重合したポリマーは、通常の1段
重合でも広い分子量分布をもち、分子量も比較的高く、
吹込成形やフィルム成形の用途に極めて適している。
2 The polymer polymerized using the catalyst of the present invention has a wide molecular weight distribution even in normal one-stage polymerization, and has a relatively high molecular weight.
Extremely suitable for blow molding and film forming applications.

2個以上の異なった反応条件下で重合を行う多段重合で
は、さらに広い分子量分布のポリマーの製造が可能であ
る。
Multi-stage polymerization, in which polymerization is carried out under two or more different reaction conditions, makes it possible to produce polymers with a wider molecular weight distribution.

ポリマーの分子量を調節するために、重合温度の調節、
重合系への水素の添加、あるいは連鎖移動を起こしやす
い有機金属化合物の添加等の公知の技術を用いることも
勿論可能である。さらに、チタン酸エステルを添加して
密度調節、分子量調節を行う等の方法を組合せて重合を
実施することもまた可能である。
Adjustment of polymerization temperature to adjust the molecular weight of the polymer,
Of course, it is also possible to use known techniques such as adding hydrogen to the polymerization system or adding an organometallic compound that tends to cause chain transfer. Furthermore, it is also possible to carry out polymerization by combining methods such as adding a titanate ester to control density and molecular weight.

以下、本発明の実施例を示すが、本発明は、これらの実
施例によって何ら制限されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to these Examples in any way.

なお、■ 実施例中の触媒活性とは、モノマ圧力10k
g/cflにおいて、固体触媒中のクロム1と・1時間
当たりのポリマー生成量(g)を表す。
In addition, ■catalytic activity in the examples refers to monomer pressure of 10k
In g/cfl, chromium in the solid catalyst is expressed as the amount of polymer produced (g) per hour.

■ Mlはメルトインデンクスを表し、ΔSTM−D−
1238に従い、温度190°C1荷重216kgにて
測定したものである。
■ Ml represents melt index, ΔSTM-D-
1238, at a temperature of 190° C. and a load of 216 kg.

■ FRは温度190°C1荷重21.6kgにて測定
した値をMlで除した商であり、分子量分布の広さを表
す指標として当業者に知られているものである。
(2) FR is the quotient obtained by dividing the value measured at a temperature of 190° C. and a load of 21.6 kg by Ml, and is known to those skilled in the art as an index representing the breadth of molecular weight distribution.

■ 副生ずるオリゴマー量は、副生ずるオリゴマーの内
1−ヘキセンを代表として選び、重合後反応器内に生成
したポリマーに対する量比(wt%)をもって表し、1
−ヘキセンはガスクロマトグラフによって分析したもの
である。
■ The amount of by-produced oligomers is expressed by selecting 1-hexene as a representative of the by-produced oligomers and expressing it as a ratio (wt%) to the polymer produced in the reactor after polymerization.
-Hexene was analyzed by gas chromatography.

■ ワックス量は、ポリマー中の熱ヘプタン溶液(wt
%)を表したものである。
■ The amount of wax is determined by the hot heptane solution (wt) in the polymer.
%).

(実施例1) (1)固体成分(alの合成: 三酸化クロム0.4gを蒸留水BOmftに溶解し、こ
の溶液中にシリカ(富士デヴイソン社Grade952
)20gを浸漬し、室温にて1時間攪拌した。このスラ
リーを加熱して水を溜去し、続いて120 ’Cにて1
0時間減圧乾燥を行った。この固体を乾燥空気流下、6
00°Cで5時間焼成して固体成分(a)を得た。得ら
れた固体成分(a)はクロムを1重量%含有し、窒素雰
囲気上室温にて貯蔵した。
(Example 1) (1) Synthesis of solid component (al): 0.4 g of chromium trioxide was dissolved in distilled water BOmft, and silica (Fuji Davison Grade 952) was added to this solution.
) 20g was immersed and stirred at room temperature for 1 hour. This slurry was heated to distill off the water and then heated to 120'C for 1
Drying was carried out under reduced pressure for 0 hours. This solid was dried under a stream of dry air for 6
The solid component (a) was obtained by firing at 00°C for 5 hours. The obtained solid component (a) contained 1% by weight of chromium and was stored at room temperature under a nitrogen atmosphere.

(2)有機マグネシウム成分(b)の合成ニジ−n−ブ
チルマグネシウム13.80gとジエチル亜鉛2.06
gとを、n−ヘゲクン200滅と共に500 mlのフ
ラスコに入れ、80°Cにて2時間攪拌下で反応させる
ことにより、組成ニア、nMgb(C2H5)z(n 
 C4H7)+2に相当する有機マグネシウム錯体を、
(Zn+Mg)基準で117mmo ]含有する溶液と
して得た。
(2) Synthesis of organomagnesium component (b) 13.80 g of n-butylmagnesium and 2.06 g of diethylzinc
By putting 200 g of n-Hagekun into a 500 ml flask and reacting at 80°C with stirring for 2 hours, the composition nMgb(C2H5)z(n
An organomagnesium complex corresponding to C4H7)+2,
It was obtained as a solution containing 117 mmol (Zn+Mg).

(3)固体成分(a)と有機マグネシウム錯体(+))
との接触。
(3) Solid component (a) and organomagnesium complex (+))
contact with.

(1)で得た固体成分(a)5g (Cry、96mm
5 g of solid component (a) obtained in (1) (Cry, 96 mm
.

1)をn−ヘプタン100 mflに懸濁し、室温攪拌
5 のもと、(2)で得た有機マグネシウム錯体溶液を(Z
n+Mg)基準で2.94mmo+、即ち(Zn+Mg
)/Crモル比で3.0相当分滴下し、1時間反応させ
た。
1) was suspended in 100 mfl of n-heptane, and under stirring at room temperature, the organomagnesium complex solution obtained in (2) was added to (Z
2.94 mmo+ on the basis of (Zn+Mg), i.e. (Zn+Mg)
)/Cr molar ratio equivalent to 3.0, and the mixture was reacted for 1 hour.

(4)重合: (3)で得た固体2On+gを、脱水脱酸素したヘキサ
ノ0.8!と共に、内部を真空脱気し窒素置換した1、
5Pの反応器に入れた。反応器の内温を85°Cに保ち
、エチレンを10kg/cffl加え、水素で全圧を1
4kg/c+1とした。エチレンを補給することで、全
圧を14kg/CIflに保ちつつ2時間重合を行い2
00gのポリマーを得た。
(4) Polymerization: 2On+g of the solid obtained in (3) was dehydrated and deoxygenated to give 0.8! At the same time, the inside was vacuum degassed and replaced with nitrogen 1.
It was placed in a 5P reactor. Maintain the internal temperature of the reactor at 85°C, add 10 kg/cffl of ethylene, and reduce the total pressure to 1 with hydrogen.
It was set to 4kg/c+1. By replenishing ethylene, polymerization was carried out for 2 hours while maintaining the total pressure at 14 kg/CIfl.
00g of polymer was obtained.

触媒活性は、500.000gポリマー/gCr−hr
であり、 オリゴマー量は0.2wt%であり、 ワックス量は3.7wt%であり、 ポリマーのMlは0.28、FRは140であった。
Catalyst activity is 500.000g polymer/gCr-hr
The amount of oligomer was 0.2 wt%, the amount of wax was 3.7 wt%, Ml of the polymer was 0.28, and FR was 140.

(実施例2) 実施例1で合成した組成: 6 ZnMg6(Cz Hs)z(n−Ca H9L2の有
機マグネシウム錯体50mmo l  (Mg+Zn基
準)を含有するヘプタン溶液90戚を200滅のフラス
コに入れ、これに25mmolのn−ヘキシルアルコー
ルを含有するヘプタン溶液を10°Cで攪拌下に30分
かけて滴下した。この溶液の一部を分取し、乾燥空気で
酸化し、次いで加水分解することにより、アルキル基お
よびアルコキシ基を全てアルコールとし、ガスクロマト
グラフにて分析した。エタノール、n−ブクノール、n
−ヘキシルアルコールの分析値から上記錯体の組成は、
ZnM g 6(C2HsL、6o(n  Ca HJ
n、q。
(Example 2) Composition synthesized in Example 1: A heptane solution containing 50 mmol (based on Mg+Zn) of an organomagnesium complex of 6 ZnMg6(CzHs)z(n-Ca H9L2) was placed in a 200-ml flask. A heptane solution containing 25 mmol of n-hexyl alcohol was added dropwise to this solution over 30 minutes with stirring at 10°C.A portion of this solution was separated, oxidized with dry air, and then hydrolyzed. , alkyl groups and alkoxy groups were all alcohols, and analyzed by gas chromatography.Ethanol, n-buknol, n
-The composition of the above complex is determined from the analytical value of hexyl alcohol.
ZnM g 6(C2HsL, 6o(n Ca HJ
n, q.

(0,、C6Hl3)s、soであることが判明した。It was found that (0,,C6Hl3)s,so.

このアルコキシ含有有機マグネシウム錯体溶液を有機マ
グネシウム成分(b)として用い、その他はすべて実施
例1と同様にして触媒合成および重合を行い、220g
のポリマーを得た。
Using this alkoxy-containing organomagnesium complex solution as the organomagnesium component (b), catalyst synthesis and polymerization were carried out in the same manner as in Example 1, and 220 g
of polymer was obtained.

触媒活性は、550,000gポリマー/gCr−hr
であり、 オリゴマー量は031wt%であり、 ワックス量は3. 2wt%であり、 ポリマーのMlは0.41、PRは150であった。
Catalyst activity is 550,000g polymer/gCr-hr
The amount of oligomer is 0.31 wt%, and the amount of wax is 3. 2 wt%, the Ml of the polymer was 0.41, and the PR was 150.

(比較例) 実施例1の(1)で合成した固体成分20mgと(2)
にて合成した有機マグネシウム成分0.]、mmol〔
これは(Z n + M g ) / Crモル比26
に相当する〕とを予め接触させることなく反応器に入れ
る以外、すべて実施例1と同様に重合を行った。
(Comparative example) 20 mg of the solid component synthesized in (1) of Example 1 and (2)
Organomagnesium component synthesized in 0. ], mmol [
This is (Z n + M g )/Cr molar ratio 26
Polymerization was carried out in the same manner as in Example 1, except that the polymer was placed in the reactor without prior contact with [corresponding to]].

重合結果は、ポリマー収it260gであり、触媒活性
は650.000であり、 オリゴマー量 2.5wt%であり、 ワックス量 13.0wt%であり、 MIo、32であり、FR150であった。
The polymerization results were as follows: polymer yield was 260 g, catalyst activity was 650.000, oligomer amount was 2.5 wt%, wax amount was 13.0 wt%, MIo was 32, and FR was 150.

(実施例3〜11) 実施例1および実施例2における有機マグネシウム錯体
の成分ならびに量を変えた他、すべて実施例1と同様に
してエチレンの重合を行った。その結果は、第1表に示
した。
(Examples 3 to 11) Ethylene polymerization was carried out in the same manner as in Example 1 except that the components and amounts of the organomagnesium complexes in Examples 1 and 2 were changed. The results are shown in Table 1.

(実施例〕2) 固体成分の合成において、英国C,rosfreld 
Cata lys ts  社製Grade EP 2
00 (Cr O,6呵χ、八E O。
(Example 2) In the synthesis of solid components, C. Rosfreld, UK
Grade EP 2 manufactured by Catalys ts
00 (Cr O, 6 呵χ, 8E O.

9wtχ含有シリカ)を用い、焼成温度を800°Cに
した以外、実施例1と同様にして触媒合成および重合を
行った。
Catalyst synthesis and polymerization were performed in the same manner as in Example 1, except that silica containing 9wtχ was used and the calcination temperature was 800°C.

重合結果はポリマー収量210gであり、触媒活性87
,500、オリゴマー量0.2wし%、ワックス量3.
7wt%であり、ポリマーばMIo、32、FRl、2
0を有した。
The polymerization result was a polymer yield of 210 g and a catalyst activity of 87.
, 500, oligomer amount 0.2w%, wax amount 3.
7 wt%, and the polymer MIo,32,FRl,2
It had 0.

(実施例13) エチレンの代わりに1−ブテンを15mo 1%含有す
るエチレンおよび1−ブターンの混合ガスを用い、ヘキ
サノの代わりにイソブタンを重合溶媒として用い、80
°Cにて混合ガス分圧]、 Okg / cfl、水素
分圧1 kg / a6、溶媒蒸気圧を含め23kg/
cfIとし、その他は、実施例12の触媒を用い、実施
例1と同様にして重合した。
(Example 13) A mixed gas of ethylene and 1-butane containing 15 mo 1% of 1-butene was used instead of ethylene, and isobutane was used instead of hexano as a polymerization solvent.
Mixed gas partial pressure at °C], Okg/cfl, hydrogen partial pressure 1 kg/a6, 23 kg/a6 including solvent vapor pressure
cfI, and using the catalyst of Example 12, polymerization was carried out in the same manner as in Example 1.

重合結果はポリマー収量190gであり、触媒活性79
2.000であり、 オリゴマー量 Q、3wt%であり、 9 ポリ゛7−のMI O122であり、密度 0゜ 0 925であった。
The polymerization result was a polymer yield of 190g and a catalyst activity of 79g.
2.000, the oligomer amount Q was 3 wt%, it was MIO122 of 9 poly(7-), and the density was 0°0925.

(発明の効果) 本発明においては、α−オレフィン重合用触媒として、
無機化合物に担持されたクロム成分と、特定の有機マグ
ネシウム化合物とを予め接触反応処理させて得た高活性
のフィリンプス型触媒を用いることにより、オリゴマー
等の副生物の生成が少ない効果が得られる。
(Effect of the invention) In the present invention, as a catalyst for α-olefin polymerization,
By using a highly active Phillips-type catalyst obtained by subjecting a chromium component supported on an inorganic compound to a contact reaction with a specific organic magnesium compound in advance, the effect of reducing the production of by-products such as oligomers can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の態様を示す概略フローチャートであ
る。 (ほか1名)
FIG. 1 is a schematic flowchart illustrating aspects of the invention. (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)(a)クロム化合物を無機酸化物担体に担持し焼
成した固体成分と、 (b)一般式 (M)α(Mg)β(R^1)_p(R^2)_q(R
^3)_rX_sY_t で示される不活性炭化水素可溶有機マグネシウム錯化合
物(式中、α、βは0より大きい数であり、p、q、r
、s、tは0または0より大で、0≦(s+t)/(α
+β)≦1.5かつ p+q+r+s+t=mα+2βの関係を有し、Mは亜
鉛、ホウ素、ベリリウムおよびリチウムから選ばれた原
子であり、 mはMの原子価を表し、 R^1、R^2、R^3は同一または異なった炭素原子
数1〜20の炭化水素基であり、 X、Yは同一または異なったOR^4、OSiR^5R
^6R^7、NR^8R^9およびSR^1^0から選
ばれた基を表し、 R^4、R^5、R^6、R^7、R^8、R^9は水
素原子または炭化水素基であり、 R^1^0は炭化水素基を表す)とから成る触媒を用い
るオレフィンの重合方法において、 予め(a)と(b)とを(M+Mg)/Crモル比で0
.1〜10の範囲で接触し、重合に用いることを特徴と
するオレフィンの重合方法。
(1) (a) A solid component obtained by supporting and firing a chromium compound on an inorganic oxide carrier, (b) General formula (M) α (Mg) β (R^1)_p(R^2)_q(R
^3) Inert hydrocarbon soluble organomagnesium complex compound represented by _rX_sY_t (where α, β are numbers larger than 0, p, q, r
, s, t are 0 or greater than 0, and 0≦(s+t)/(α
+β)≦1.5 and p+q+r+s+t=mα+2β, M is an atom selected from zinc, boron, beryllium, and lithium, m represents the valence of M, R^1, R^2, R^3 is the same or different hydrocarbon group having 1 to 20 carbon atoms, and X and Y are the same or different OR^4, OSiR^5R
Represents a group selected from ^6R^7, NR^8R^9 and SR^1^0, where R^4, R^5, R^6, R^7, R^8, and R^9 are hydrogen atoms or a hydrocarbon group, and R^1^0 represents a hydrocarbon group), in which (a) and (b) are preliminarily set at a (M+Mg)/Cr molar ratio of 0.
.. A method for polymerizing olefins, characterized in that contact is carried out in the range of 1 to 10, and used for polymerization.
(2)(b)の有機マグネシウム錯化合物において、M
が亜鉛またはリチウムである請求項(1)記載のオレフ
ィンの重合方法。
(2) In the organomagnesium complex compound of (b), M
The method for polymerizing olefins according to claim 1, wherein is zinc or lithium.
(3)(b)の有機マグネシウム錯化合物において、X
、YがOR^4、OSiR^5R^6R^7から選ばれ
た基である請求項(1)もしくは(2)記載のオレフィ
ンの重合方法。
(3) In the organomagnesium complex compound of (b), X
, Y is a group selected from OR^4, OSiR^5R^6R^7, the method for polymerizing olefins according to claim (1) or (2).
JP32837289A 1989-12-20 1989-12-20 Polymerization of alpha-olefin Pending JPH03190909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32837289A JPH03190909A (en) 1989-12-20 1989-12-20 Polymerization of alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32837289A JPH03190909A (en) 1989-12-20 1989-12-20 Polymerization of alpha-olefin

Publications (1)

Publication Number Publication Date
JPH03190909A true JPH03190909A (en) 1991-08-20

Family

ID=18209514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32837289A Pending JPH03190909A (en) 1989-12-20 1989-12-20 Polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPH03190909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469775A (en) * 1991-11-16 1995-11-28 Festo Kg Linear drive with a buffer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469775A (en) * 1991-11-16 1995-11-28 Festo Kg Linear drive with a buffer device

Similar Documents

Publication Publication Date Title
EP0018108B1 (en) Process and catalyst for polymerising olefins and products therefrom
US3969429A (en) Method of producing butene-1
US4454242A (en) Catalyst for polymerization of olefins
JP2002080521A (en) Ethylenic polymer and method for producing the same
US5137997A (en) Olefin polymerization catalysts and processes
JP2003096127A (en) Production method for ethylene polymer
US4252927A (en) Process for polymerizing 1-olefins with a chromium-containing catalyst and a modifier comprising a trihydrocarbyl aluminum and an α-ω
JPH03190909A (en) Polymerization of alpha-olefin
JPH03188108A (en) Method for polymerizing alpha-olefin
JPH0725826B2 (en) Method for producing ethylene polymer
JPS595602B2 (en) Catalyst for polymerization of olefins
EP0030438B1 (en) Olefin polymerization catalyst and olefin polymerization method and products using such catalyst
JPS648645B2 (en)
JPS5915407A (en) Polymerization of 1-olefin
JPS595604B2 (en) Swash plate type axial plunger type hydraulic actuator
KR840001486B1 (en) Catalyst for polymerizing olefins
JPH03192104A (en) Polymerization of alpha-olefin
KR840001487B1 (en) High activity catalyst for the polymerization olefins
JPS5950242B2 (en) Highly active catalyst for olefin polymerization
JPS59168003A (en) Catalyst for use in polymerization of 1-olefin
JP2000086718A (en) Olefin polymerization
JP2000198811A (en) Polymerization of olefin
JP6823802B2 (en) Method for producing ethylene polymerization catalyst and method for producing ethylene polymer
JPS62116608A (en) Polymerization of alpha-olefin
JPS64972B2 (en)