JPH03190100A - Deflection magnet of acceleration ring - Google Patents

Deflection magnet of acceleration ring

Info

Publication number
JPH03190100A
JPH03190100A JP33020189A JP33020189A JPH03190100A JP H03190100 A JPH03190100 A JP H03190100A JP 33020189 A JP33020189 A JP 33020189A JP 33020189 A JP33020189 A JP 33020189A JP H03190100 A JPH03190100 A JP H03190100A
Authority
JP
Japan
Prior art keywords
magnetic pole
pieces
lower magnetic
end adjustment
end part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33020189A
Other languages
Japanese (ja)
Inventor
Kenji Endo
研二 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP33020189A priority Critical patent/JPH03190100A/en
Publication of JPH03190100A publication Critical patent/JPH03190100A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent partial heat caused by swirl current loss of end part control pieces by making the end part control pieces to be mounted on the opposed end faces of the upper and lower poles sandwitching a gap part, from the solid iron being the same as that of the upper and lower poles, and mounting the pieces through insulation layer. CONSTITUTION:An end part control piece 51 is mounted on an upper pole 11 through an insulation layer 61 while an end part control piece 52 is mounted on a lower pole through an insulation layer 62. The material thereof is the same solid iron as that of the upper and lower poles. A swirl current 210 which flows along the upper and lower poles 11, 12 is blocked from flowing to the pieces 51, 52. Only the swirl current generated due to change in the magnetic field in the pieces remains so that the temperature increase is reduced to a substantialluy ignorable level.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、荷電粒子を加速して高エネルギー粒子を作
成するためのシンクロトロン、特に高エネルギー電子に
よるシンクロトロン放射を利用するために高エネルギー
電子を生成するための加速リングの、電子を円弧状に走
行させてその方向を変える偏向電磁石に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a synchrotron for accelerating charged particles to create high-energy particles, and in particular a high-energy synchrotron for utilizing synchrotron radiation by high-energy electrons. This invention relates to a bending electromagnet for an acceleration ring for generating electrons, which causes electrons to travel in an arc and change their direction.

〔従来の技術〕[Conventional technology]

シンクロトロンは偏向電磁石を円形に配置して荷電粒子
を回転させながら加速して行く装置であり、特に高エネ
ルギー粒子を得るのに適した粒子加速器として高エネル
ギー粒子に関する研究に使用されて来た。近年、シンク
ロトロンで生成した高エネルギー電子のシンクロトロン
放射によって生ずる高エネルギー電磁波を利用すること
が種々の分野で進められている。このような実利用のた
めのシンクロトロンとしては、比較的小規模のものでよ
いが、低価格であることが要求される。
A synchrotron is a device that rotates and accelerates charged particles using bending electromagnets arranged in a circle, and has been used in research on high-energy particles as a particle accelerator particularly suitable for obtaining high-energy particles. In recent years, progress has been made in various fields to utilize high-energy electromagnetic waves generated by synchrotron radiation of high-energy electrons generated by synchrotrons. Although a synchrotron for such practical use may be relatively small-scale, it is required to be low-priced.

種々の分野で利用されるシンクロトロンに必要とされる
性能の1つとして、高エネルギー電子を継続的に供給す
ることのできる装置である必要があることから、電子を
加速して高エネルギー電子を得るための加速リングと称
されるシンクロトロンと、この加速リングで生成された
高エネルギー電子を蓄積し必要に応じて取り出して使用
するための蓄積リングと称されるシンクロトロンとの2
つのシンクロトロンで構成される装置が採用され蓄積リ
ングでは電子のエネルギー値を一定に保持すればよいの
で、蓄積リングを構成する偏向電磁石が生起する磁束は
一定である。一方、加速リングは周期的に高エネルギー
電子を生成して蓄積リングに供給するために、その偏向
電磁石が生起する磁束の磁束密度は高エネルギーを生成
する周期に比例して周期的に変化するものが必要である
One of the performance requirements of a synchrotron used in various fields is that it must be able to continuously supply high-energy electrons, so it is necessary to accelerate the electrons to produce high-energy electrons. There are two types of synchrotrons: a synchrotron called an accelerating ring for obtaining high-energy electrons, and a synchrotron called a storage ring for storing high-energy electrons generated in this accelerating ring and taking them out and using them as needed.
Since a device consisting of two synchrotrons is employed and the energy value of the electrons in the storage ring needs to be kept constant, the magnetic flux generated by the bending electromagnets forming the storage ring is constant. On the other hand, since the acceleration ring periodically generates high-energy electrons and supplies them to the storage ring, the magnetic flux density of the magnetic flux generated by the bending electromagnet changes periodically in proportion to the period of high-energy generation. is necessary.

この周期的に変化する磁束密度の波形は、直線状に上昇
する波頭部とその後の値が一定の平坦部と、更にその後
の減衰部との3つの部分からなる台形状の波形を1サイ
クルとする周期波形であり、その周波数は0.1 Hz
以下の非常に低いものから50Hz程度の商用周波数レ
ベルのものまである。台形状の波形の波頭部で電子を加
速して商工ふルギー電子を生成し平坦部で生成された高
エネルギー電子を蓄積リングに注入し、その後、次のサ
イクルのために波尾部で零に戻る。このような操作が周
期的に繰り返されることにより継続的に高エネルギー電
子が生成供給される。
This periodically changing magnetic flux density waveform is a trapezoidal waveform consisting of three parts: a linearly rising wave front, a flat part where the value is constant after that, and a decay part after that. It is a periodic waveform with a frequency of 0.1 Hz
The frequency ranges from the very low frequencies below to those at the commercial frequency level of about 50 Hz. Accelerate electrons at the wave front of the trapezoidal waveform to generate chamber fulgy electrons, inject the high-energy electrons generated at the plateau into the storage ring, and then reduce to zero at the wave tail for the next cycle. return. By repeating such operations periodically, high-energy electrons are continuously generated and supplied.

第2図は従来の加速リングの偏向電磁石の平面図、第3
図は同じ(立面図、第4図は同じく側面図である。これ
らの図において、鉄心1は第4図に示すように断面がC
字状をしていて空隙部14を挟んで上磁極11、下磁極
12、及びこれら上下2つの磁極11.12を磁気的、
機械的に連結する継鉄13とからなっている。上磁極1
1には上コイル21が、下磁極12には下コイル22が
挿入されていて、これら上コイル21と下コイル22と
からなる励磁コイル2に励磁電流を流すことによって第
2図に示す空隙部14を貫通する磁束100を発生させ
、この空隙部14の中央部を紙面に直交する図示しない
電子ビームダクトの中を電子ビームが走行する。この電
子ビームは磁束100によってその走行経路が曲げられ
て円形軌道を描くが、偏向電磁石はこのように電子ビー
ムの走行方向を変えるのを目的とするもので、シンクロ
トロンはこのような偏向電磁石を複数個設けて電子ビー
ムが丁度1周するように配置して電子ビームの周回経路
を形成する0図示の偏向電磁石は実際には電子ビームの
円形軌道に合わせて扇状をしているのであるが、これら
の図では図示の簡略化のために円弧の代わりに直線で示
しである。ちなみに、第2図では、鉄心lは下に凸の扇
状をしていてこれに伴って励磁コイル2も長い2本の辺
が円弧状になっているのが実際である。
Figure 2 is a plan view of the bending electromagnet of a conventional accelerating ring;
The figures are the same (elevation view, and Figure 4 is a side view. In these figures, the core 1 has a cross section of C as shown in Figure 4.
The upper magnetic pole 11, the lower magnetic pole 12, and these two upper and lower magnetic poles 11.
It consists of a yoke 13 that is mechanically connected. Upper magnetic pole 1
1 has an upper coil 21 inserted into the lower magnetic pole 12, and a lower coil 22 is inserted into the lower magnetic pole 12. By passing an excitation current through the excitation coil 2 consisting of the upper coil 21 and the lower coil 22, the air gap shown in FIG. A magnetic flux 100 is generated that passes through the gap 14, and the electron beam travels through an electron beam duct (not shown) that is perpendicular to the plane of the paper through the center of the gap 14. The traveling path of this electron beam is bent by the magnetic flux 100 and it draws a circular trajectory.The purpose of the bending electromagnet is to change the traveling direction of the electron beam in this way, and the synchrotron uses such a bending electromagnet. The bending electromagnet shown in the figure is actually fan-shaped to match the circular orbit of the electron beam. In these figures, straight lines are shown instead of circular arcs for simplification of illustration. Incidentally, in FIG. 2, the iron core l has a downwardly convex fan shape, and accordingly, the two long sides of the excitation coil 2 are actually circular arc shapes.

鉄心lの大きさは、例えば、第2図や第3図の左右の方
向である長さ方向は3m、第4図の左右の幅寸法は50
0■、空隙部14の空隙長は50鋤−1空隙14の幅寸
法は200■の程度である。
The size of the iron core l is, for example, 3 m in the length direction, which is the left and right direction in Figures 2 and 3, and 50 m in the left and right width dimension in Figure 4.
The length of the gap 14 is about 50 mm, and the width of the gap 14 is about 200 mm.

電子の走行経路を精度良く設定するためには空隙部14
内の磁束分布が高精度である必要があり、そのために鉄
心1の寸法に高精度が要求される。
In order to accurately set the travel path of electrons, the gap 14
It is necessary that the magnetic flux distribution within the core 1 be highly accurate, and therefore the dimensions of the iron core 1 must be highly accurate.

偏向電磁石による電子ビームの走行方向の角度変化は、
電子ビームに直行する磁束密度成分の走行方向に沿った
積分値で決まるが、前述のように偏向電磁石を高精度に
製作してもある程度の誤差が生ずることを避けるわけに
はゆかず、磁束密度の積分値を所定の値になるように調
整する手段が必要である。このような観点から上磁極1
1.下磁極12それぞれの両端面に端部調整片41,4
2゜43.44.45,46,47.48が設けられて
いる。端部調整片48は第2図では端部調整片46の、
第3図では端部調整片47のそれぞれ向こう側にあって
見えない位置にあって図示されていない、なお、全ての
端部調整片に共通の事項については端部調整片を引用す
る際の参照符号を統一符号として4を使用する。
The angle change in the traveling direction of the electron beam due to the bending electromagnet is
It is determined by the integral value along the traveling direction of the magnetic flux density component perpendicular to the electron beam, but as mentioned above, even if the bending electromagnet is manufactured with high precision, it is impossible to avoid a certain degree of error. A means is required to adjust the integral value to a predetermined value. From this point of view, the upper magnetic pole 1
1. End adjusting pieces 41, 4 are provided on both end faces of the lower magnetic pole 12.
2°43.44.45,46,47.48 are provided. The end adjustment piece 48 is the same as the end adjustment piece 46 in FIG.
In FIG. 3, they are located on the other side of the end adjustment pieces 47 and are not shown in the figure. Note that matters common to all end adjustment pieces are referred to when referring to the end adjustment pieces. 4 is used as a unified reference code.

上磁極11の第4図に示す端面には、図の空隙部14の
中心に対して振り分けに直方体状の端部調整片41.4
2が取付けられている。端部調整片の形状は実際にはこ
のような単純なものではなく、偏向電磁石の端部の磁界
分布を調整するために空隙側の表面形状や寸法は複雑に
調整されている。上下磁極11.12の空隙部14に面
する表面も所定の磁界分布を得るために曲面からなって
いるのが実際である。上磁極11の反対側の端面には端
部調整片45.46が、下磁極12の第4図に示す端面
には図示のように端部調整片43゜44が、その反対側
の端面には端部調整片47゜48が取付けられている。
On the end surface of the upper magnetic pole 11 shown in FIG.
2 is installed. The shape of the end adjustment piece is actually not as simple as this, and the surface shape and dimensions on the gap side are adjusted in a complicated manner in order to adjust the magnetic field distribution at the end of the bending electromagnet. In fact, the surfaces of the upper and lower magnetic poles 11, 12 facing the air gap 14 are also curved in order to obtain a predetermined magnetic field distribution. End adjustment pieces 45 and 46 are provided on the opposite end surface of the upper magnetic pole 11, and end adjustment pieces 43 and 44 are provided on the opposite end surface of the lower magnetic pole 12 as shown in FIG. End adjustment pieces 47° and 48 are attached.

鉄心1の材料としては、蓄積リングの偏向電磁石の場合
は磁束100に量的変化がないので、固塊状の純鉄が採
用され、これを機械加工して所定の寸法、形状の鉄心を
製作する。 ここでいう純鉄とは、通常の炭素鋼に比べ
て含有炭素量の小さい鉄材のことで、ヒステリシス損の
小さいいわゆる軟らかい磁気特性を持ち、けい素鋼板の
代わりに電磁石の鉄心として時に使用されるものであり
、加工性がよいことから、機械加工を必要とし、かつ安
価な鉄心材料を必要とする際に使用されるものである。
As for the material of the iron core 1, since there is no quantitative change in the magnetic flux 100 in the case of the storage ring bending electromagnet, pure iron in the form of a solid lump is used, and this is machined to produce the iron core with predetermined dimensions and shape. . Pure iron here refers to iron material with a lower carbon content than ordinary carbon steel, which has so-called soft magnetic properties with low hysteresis loss, and is sometimes used as the iron core of electromagnets instead of silicon steel sheets. Because it has good workability, it is used when machining is required and an inexpensive iron core material is required.

一方、加速リングの場合は前述のように磁束は時間的に
変化するので、電磁誘導によって鉄心内に発生する渦電
流を抑制するために、回転機や変圧器に使用されている
のと同じ、けい素鋼板を積層した積層鉄心が使用される
。同じ寸法、形状のものであれば、多くの場合積層鉄心
の方が高価になるので、たとえ加速リングの偏向電磁石
であっても渦電流の影響が小さいときには固塊純鉄が使
用される場合がある。このような場合には端部調整片4
の材料も鉄心1と同じ固塊純鉄が使用されるのが普通で
ある。
On the other hand, in the case of accelerating rings, the magnetic flux changes over time as mentioned above, so in order to suppress eddy currents generated in the iron core due to electromagnetic induction, the same as used in rotating machines and transformers, A laminated core made of laminated silicon steel plates is used. If the dimensions and shape are the same, laminated iron cores are often more expensive, so solid pure iron is sometimes used even for bending electromagnets in acceleration rings when the influence of eddy currents is small. be. In such a case, the end adjustment piece 4
The same material as iron core 1, solid pure iron, is usually used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

鉄心1は前述のようにかなり大きな寸法なので、渦電流
の影響が小さくても鉄心1の温度が過大になる場合があ
る。運転中に励磁コイル2によって励磁されて磁束が発
生し、この磁束の時間的変化によって鉄心1に渦電流が
流れて渦電流損が発生する。第2図の平面図で示すと、
紙面に向かって直角に侵入する磁束100に対して、こ
の磁束100を打ち消そうとする図示の渦状に流れる渦
電流200が流れる。第3図に示すように上下の磁極1
1.12の表面の渦電流200.210は空隙14に沿
った矢印で示す方向に流れる。
Since the iron core 1 has a fairly large size as described above, the temperature of the iron core 1 may become excessive even if the influence of eddy currents is small. During operation, the magnetic flux is generated by excitation by the excitation coil 2, and eddy currents flow through the iron core 1 due to temporal changes in this magnetic flux, causing eddy current loss. As shown in the plan view of Figure 2,
An eddy current 200 flows in a spiral shape as shown in the figure, which attempts to cancel the magnetic flux 100 that enters at right angles toward the plane of the paper. As shown in Figure 3, the upper and lower magnetic poles 1
Eddy currents 200, 210 on the surface of 1.12 flow along the air gap 14 in the direction indicated by the arrow.

この渦電流200,210,220は周知のように表面
に近いほど大きな値になるという傾向がある。したがっ
て、上下の磁極11,12の端面に取付けられている端
部調整片4にも渦電流が流れ込み、その結果、上下磁極
11.12よりも温度が高くなることがある。上下磁極
11.12は内部では渦電流が小さくて渦電流損の発生
も僅かなので全体としての温度上昇は余り大きくならな
いのに対して、端部調整片4の場合は、上下磁極11.
12から突出して取付けられているので、前述のように
渦電流が表面はど大きな値になるという点から上下磁極
11.12の表面の渦電流密度よりも大きな電流密度の
渦電流が流れることになり、上下磁極11.12の温度
上昇値より高い温度になるという現象が生ずる。端部調
整片4の温度上昇値が大きいと、温度差による内部応力
が発生して端部調整片4が変形したり、磁気特性が変−
化したりすることによって高精度の磁束分布が維持でき
なくなるという問題が生ずる。
As is well known, the eddy currents 200, 210, and 220 tend to have larger values closer to the surface. Therefore, eddy currents also flow into the end adjusting pieces 4 attached to the end faces of the upper and lower magnetic poles 11 and 12, and as a result, the temperature may become higher than that of the upper and lower magnetic poles 11 and 12. In the upper and lower magnetic poles 11.12, eddy currents are small and the eddy current loss is small, so the temperature rise as a whole is not very large.
Since the eddy current is attached protruding from the upper and lower magnetic poles 11 and 12, the eddy current has a larger current density on the surface than the upper and lower magnetic poles 11 and 12, because the eddy current has a larger value on the surface as described above. Therefore, a phenomenon occurs in which the temperature becomes higher than the temperature rise value of the upper and lower magnetic poles 11 and 12. If the temperature rise value of the end adjustment piece 4 is large, internal stress will occur due to the temperature difference, causing the end adjustment piece 4 to deform or change its magnetic properties.
A problem arises in that it becomes impossible to maintain a highly accurate magnetic flux distribution.

この発明は、このような問題を解決し、渦電流による端
部調整片の温度上昇を抑制し安定な加速リングの偏向電
磁石を提供することを目的とする。
It is an object of the present invention to solve such problems and to provide a stable deflection electromagnet for an acceleration ring that suppresses the temperature rise of the end adjusting piece due to eddy currents.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するためにこの発明によれば、固塊鉄か
らなる断面がC字状の鉄心を有し空隙部に電子ビームを
通すビームダクトを有する加速リングの偏向電磁石であ
って、空隙部を挟みそれぞれに励磁コイルが巻挿された
上磁極と下磁極との前記電子ビームの走行方向に直角な
両端面に取付けられる端部調整片を固塊鉄からなるもの
とし、この端部調整片を絶縁層を介して前記下磁極と上
磁極との両端面に取付けるものとする。
In order to solve the above problems, the present invention provides a bending electromagnet for an acceleration ring, which has an iron core made of solid iron and has a C-shaped cross section, and a beam duct for passing an electron beam through a gap. An end adjusting piece is made of solid iron and is attached to both end faces perpendicular to the traveling direction of the electron beam of the upper magnetic pole and the lower magnetic pole, each of which has an excitation coil wound therebetween. are attached to both end surfaces of the lower magnetic pole and the upper magnetic pole via an insulating layer.

〔作用〕[Effect]

この発明の構成において、空隙部を挟む上磁極と下磁極
との電子ビームの走行方向に直角な両端面に取付けられ
る端部調整片を、上磁極や下磁極と同じ固塊鉄製とし、
これを絶縁層を介して取付けることにより、上M1橿や
下磁極から端部調整片に流れ込む渦電流を遮断して端部
調整片に流れる渦電流を自身を通る磁束によるものだけ
に限定することにより、端部調整片の渦電流損は大幅に
低減するので、この端部調整片が局部的に過熱するのを
防止することができる。
In the configuration of the present invention, the end adjustment pieces attached to both end faces perpendicular to the traveling direction of the electron beam of the upper magnetic pole and the lower magnetic pole that sandwich the air gap are made of solid iron, the same as the upper magnetic pole and the lower magnetic pole,
By attaching this via an insulating layer, the eddy current flowing from the upper M1 rod and the lower magnetic pole to the end adjustment piece is blocked, and the eddy current flowing to the end adjustment piece is limited to only that caused by the magnetic flux passing through itself. As a result, the eddy current loss of the end adjustment piece is significantly reduced, so that it is possible to prevent the end adjustment piece from locally overheating.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示す端部調整片取付は部を拡大した要
部立面図である。この図において、上ifi橿11.下
磁極12、励磁コイル2の一部がそれぞれ図示されてい
るが、これらは第3図と同じである。また、端部調整片
51.53及びこの図に示さない端部調整片52,54
,55,5657.58は第2図、第3図、第4図に示
した端部調整片4と材質、形状及び寸法については略同
じである。端部調整片51,52,53.54゜55.
56,57.58に共通の事項については、従来技術に
おける端部調整片4と同様に統一参照符号として5を使
用する。
The present invention will be explained below based on examples. FIG. 1 is an enlarged elevational view of a main part showing an embodiment of the present invention in which the end adjustment piece is attached. In this figure, the upper ifi lever 11. Parts of the lower magnetic pole 12 and exciting coil 2 are shown, but these are the same as in FIG. 3. Also, end adjustment pieces 51, 53 and end adjustment pieces 52, 54 not shown in this figure.
, 55, 5657.58 is substantially the same as the end adjustment piece 4 shown in FIGS. 2, 3, and 4 in terms of material, shape, and dimensions. End adjustment pieces 51, 52, 53.54°55.
For items common to 56, 57, and 58, 5 is used as a unified reference numeral, similar to the end adjustment piece 4 in the prior art.

図示のように、端部調整片51は絶縁層61を介して上
磁極11に取付け、端部調整片52は絶縁層62を介し
て上磁極12に取付けてあり、全ての端部調整片5は絶
縁層6を介して取付けである。絶縁層6とは図示の絶縁
層61.62を含む全ての絶縁層に対する統一参照符号
である。
As shown in the figure, the end adjusting piece 51 is attached to the upper magnetic pole 11 via an insulating layer 61, the end adjusting piece 52 is attached to the upper magnetic pole 12 via an insulating layer 62, and all the end adjusting pieces 5 is attached via the insulating layer 6. Insulating layer 6 is a uniform reference symbol for all insulating layers, including the illustrated insulating layers 61, 62.

第3図に示す渦電流210.220はなるべく導体の表
面により多くてかれる性質があるので、端部調整片5が
従来と技術と同じく下磁極11や上磁極12と電気的に
一体になっている場合には渦電流210、220は端部
調整片51.52に流れ込むが、絶縁層61,62を設
けであるために、渦電流210、220は端部調整片5
1.52に流入するのを遮断されて渦電流210の場合
、図示のように下磁極11の左端面に沿って紙面に垂直
方向の渦電流211に方向を転換して流れる。端部調整
片51゜52にも磁束は流れるからこの磁束の時間的変
化によって誘起される渦電流は存在し、この渦電流23
0は端部調整片51に図示したように端部調整片51内
で往復する渦電流となる。この渦電流230の大きさは
下磁極11を流れる渦電流210に比べてはくかに小さ
な電流密度なので、この渦電流230による端部調整片
51の温度上昇は実質的に無視できる程度である。他の
端部調整片52.及び第1図に図示しない他の6つの端
部調整片5でも同じである。
Since the eddy currents 210 and 220 shown in FIG. 3 have the property of being generated as much as possible on the surface of the conductor, the end adjusting piece 5 is electrically integrated with the lower magnetic pole 11 and the upper magnetic pole 12 as in the conventional technology. However, since the insulating layers 61 and 62 are provided, the eddy currents 210 and 220 flow into the end adjustment pieces 51 and 52.
1.52, the eddy current 210 changes its direction and flows along the left end surface of the lower magnetic pole 11 into an eddy current 211 perpendicular to the plane of the paper as shown. Since magnetic flux also flows through the end adjustment pieces 51 and 52, eddy currents induced by temporal changes in this magnetic flux exist, and this eddy current 23
0 becomes an eddy current that reciprocates within the end adjustment piece 51 as shown in the figure. Since the magnitude of this eddy current 230 is much smaller than the current density of the eddy current 210 flowing through the lower magnetic pole 11, the temperature increase in the end adjustment piece 51 due to this eddy current 230 is substantially negligible. . Other end adjustment piece 52. The same applies to the other six end adjustment pieces 5 not shown in FIG.

絶縁層6を設けたことによって上下磁極11゜12と端
部調整片5との間に民生する電圧は1■を越えない程度
の小電圧なので、絶縁層6は上下磁極11.12と端部
調整片5とが金属接触しないための間隔片の役目を果た
せばよいので、11以下の厚さで充分である。したがっ
て、端部調整片5を通る磁束に対してこの絶縁層6は余
り大きな影響を与えることはない、また、絶縁jli6
の存在を考慮してあらかじめ端部調整片5を製作するこ
とによってこの影響は実質的に問題になることはない。
By providing the insulating layer 6, the voltage that is generated between the upper and lower magnetic poles 11, 12 and the end adjustment piece 5 is a small voltage that does not exceed 1. Since it is sufficient to serve as a spacing piece to prevent metal contact between the adjustment piece 5 and the adjustment piece 5, a thickness of 11 or less is sufficient. Therefore, this insulating layer 6 does not have much influence on the magnetic flux passing through the end adjustment piece 5, and the insulating layer 6
By manufacturing the end adjusting piece 5 in advance in consideration of the existence of the above, this effect does not become a substantial problem.

端部調整片5の上下磁極11.12への取付けはボルト
締め構造とするのが妥当である。この場合、取付はボル
トは上下磁極11.12に開けられたボルト穴に挿入し
て端部調整片5を締付は固定する構成となるので、取付
はボルトは上下磁極11.12と同じ電位となることか
ら、取付はボルトと端部調整片とを絶縁する必要なある
が、このような取付はボルトの絶縁構成は大容量の回転
機や変圧器の鉄心の一体化構造に多用されているもので
あり、この技術の流用により前述の端部調整片5のE下
磁極11.12への取付は構成の実施は容易である。
It is appropriate that the end adjusting piece 5 be attached to the upper and lower magnetic poles 11, 12 by bolting. In this case, the bolts are installed in the bolt holes drilled in the upper and lower magnetic poles 11.12, and the end adjustment pieces 5 are tightened and fixed, so the bolts are installed at the same potential as the upper and lower magnetic poles 11.12. Therefore, it is necessary to insulate the bolt and the end adjustment piece during installation, but this type of installation requires insulation of the bolt, which is often used in large-capacity rotating machines and transformer core integrated structures. By using this technique, it is easy to attach the end adjustment piece 5 to the E lower magnetic pole 11, 12.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、空隙部を挟む上磁極と下磁極
の両端面に取付けられる端部調整片を、上磁極や下磁極
と同じ固塊鉄製とし、この端部調整片と上下磁極との間
に絶縁層を設けて端部調整片に上下磁極からの渦電流が
流れ込まないようにしたことにより、端部調整片に流れ
る渦電流は端部調整片自身を通る磁束によって誘起され
るものだけになる。この渦電流の大きさは絶縁層がなく
て上下磁極から流れ込む渦電流の大きさに比べてはるか
に小さいので、端部調整片の過熱を防止することができ
る。そのため、上下磁極との温度差による熱応力の発生
とこれに伴う端部調整片の変形が生じるたり、端部調整
片の磁気特性が変化したりすることによる磁束分布の乱
れが生じて高精度の磁束分布を維持できないというよう
な問題が解消され、端部調整片は安定した端部調整機能
を果たすことができるようになり、その結果、信頷性の
高い加速リングの偏向電磁石とすることができるとうい
効果が得られる。
As described above, in this invention, the end adjustment pieces attached to both end faces of the upper and lower magnetic poles sandwiching the gap are made of solid iron, the same as the upper and lower magnetic poles, and the end adjustment pieces and the upper and lower magnetic poles are made of solid iron. By providing an insulating layer between them to prevent eddy current from flowing into the end adjustment piece from the upper and lower magnetic poles, the eddy current flowing through the end adjustment piece is induced by the magnetic flux passing through the end adjustment piece itself. It becomes only Since the magnitude of this eddy current is much smaller than the magnitude of the eddy current flowing from the upper and lower magnetic poles without an insulating layer, overheating of the end adjusting piece can be prevented. Therefore, thermal stress occurs due to the temperature difference between the upper and lower magnetic poles, resulting in deformation of the end adjustment piece, and changes in the magnetic properties of the end adjustment piece, resulting in disturbances in magnetic flux distribution, resulting in high accuracy. The problem of not being able to maintain the magnetic flux distribution is solved, and the end adjustment piece can perform a stable end adjustment function, resulting in a highly reliable accelerator ring bending electromagnet. You can get great results if you can.

【図面の簡単な説明】 第1図はこの発明の実施例を示す偏向電磁石の要部立面
図、第2図は従来の偏向電磁石の平面図、第3図は同じ
く立面図、第4図は同じく側面図である。 ・・・鉄心、11・・・上磁掻、12・・・下磁橿、3
・・・継鉄、14・・・空隙部、2・・・励磁コイル、
■・・・上コイル、22・・・下コイル、41.42.
43.44,45,46,47゜8.5.51.52・
・・端部調整片。 第3回 第2図 第4図
[Brief Description of the Drawings] Fig. 1 is an elevational view of the main parts of a bending electromagnet showing an embodiment of the present invention, Fig. 2 is a plan view of a conventional bending electromagnet, Fig. 3 is an elevational view of the same, and Fig. The figure is also a side view. ...Iron core, 11...Upper magnetic rake, 12...Lower magnetic rod, 3
...Yoke, 14...Gap, 2...Exciting coil,
■... Upper coil, 22... Lower coil, 41.42.
43.44,45,46,47゜8.5.51.52・
・End adjustment piece. 3rd Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)固塊鉄からなる断面がC字状の鉄心を有し空隙部に
電子ビームを通すビームダクトを有する加速リングの偏
向電磁石であって、空隙部を挟みそれぞれに励磁コイル
が巻挿された上磁極と下磁極との前記電子ビームの走行
方向に直角な両端面に取付けられる端部調整片を固塊鉄
からなるものとし、この端部調整片を絶縁層を介して前
記下磁極と上磁極との両端面に取付けたことを特徴とす
る加速リングの偏向電磁石。
1) An accelerating ring deflection electromagnet with an iron core made of solid iron having a C-shaped cross section and a beam duct for passing an electron beam through a gap, with an excitation coil wound around each gap. The end adjusting pieces attached to both end faces of the upper magnetic pole and the lower magnetic pole perpendicular to the traveling direction of the electron beam are made of solid iron, and the end adjusting pieces are attached to the lower magnetic pole and the upper magnetic pole through an insulating layer. A bending electromagnet of an acceleration ring characterized by being attached to both end faces of the magnetic pole.
JP33020189A 1989-12-20 1989-12-20 Deflection magnet of acceleration ring Pending JPH03190100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33020189A JPH03190100A (en) 1989-12-20 1989-12-20 Deflection magnet of acceleration ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33020189A JPH03190100A (en) 1989-12-20 1989-12-20 Deflection magnet of acceleration ring

Publications (1)

Publication Number Publication Date
JPH03190100A true JPH03190100A (en) 1991-08-20

Family

ID=18229968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33020189A Pending JPH03190100A (en) 1989-12-20 1989-12-20 Deflection magnet of acceleration ring

Country Status (1)

Country Link
JP (1) JPH03190100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101986742B1 (en) * 2018-06-01 2019-09-30 이무관 Air injector for rubber balloon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101986742B1 (en) * 2018-06-01 2019-09-30 이무관 Air injector for rubber balloon

Similar Documents

Publication Publication Date Title
JP2667832B2 (en) Deflection magnet
JP4445973B2 (en) Undulator and method of operating the undulator
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
US6713976B1 (en) Beam accelerator
US6215124B1 (en) Multistage ion accelerators with closed electron drift
US6208080B1 (en) Magnetic flux shaping in ion accelerators with closed electron drift
JPH06132119A (en) Superconductive magnet
US20160071702A1 (en) Arc-plasma film formation device
US4761584A (en) Strong permanent magnet-assisted electromagnetic undulator
JPH03190100A (en) Deflection magnet of acceleration ring
EP1082540A2 (en) Magnetic flux shaping in ion accelerators with closed electron drift
Taniuchi et al. dc septum magnet based on permanent magnet for next-generation light sources
JPH03184300A (en) Deflection electromagnet for acceleration ring
JP4279647B2 (en) Electromagnetic field line shielding mechanism
JP3324748B2 (en) Magnetic field variable magnet
JP2865951B2 (en) Electromagnet device
US2617026A (en) Induction accelerator for electrons
JPH0878200A (en) Method and device for controlling magnetic field made by eddy current
JPH03177000A (en) Deflecting magnet for synchrotron
US3805202A (en) Betatron electromagnet
JP2004335253A (en) Electromagnet for fixed field alternating gradient accelerator
RU2008525C1 (en) Polychannel plasma engine with closed electron drift
JPH01189900A (en) Beam duct of accelerator
JPH04345738A (en) Deflecting electromagnet
Elleaume Undulators and wigglers for the new generation of synchrotron sources