JPH03189352A - Fuel injection device for independent suction engine - Google Patents

Fuel injection device for independent suction engine

Info

Publication number
JPH03189352A
JPH03189352A JP32826689A JP32826689A JPH03189352A JP H03189352 A JPH03189352 A JP H03189352A JP 32826689 A JP32826689 A JP 32826689A JP 32826689 A JP32826689 A JP 32826689A JP H03189352 A JPH03189352 A JP H03189352A
Authority
JP
Japan
Prior art keywords
cylinder
pressure
fuel injection
fuel
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32826689A
Other languages
Japanese (ja)
Inventor
Mitsunori Teramura
光功 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32826689A priority Critical patent/JPH03189352A/en
Publication of JPH03189352A publication Critical patent/JPH03189352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To equalize a fuel injection amount of each cylinder by controlling a fuel feed pressure to a fuel injection valve by using only the pressure of a single intake air pipe, and correcting a fuel injection time amount of each cylinder by means of a correction factor set based on displacement in time of a pressure fluctuation cycle between cylinders. CONSTITUTION:An ECU 20 controls a fuel feed pressure to fuel injection valves 6a-6d of all cylinders based on an intake air pipe pressure P1 of a single cylin der, for example, a cylinder 1 as a representative so that a specified differential pressure P0 therebetween is kept. In this case, a pressure in the intake air pipe of each cylinder during injection of fuel of each cylinder and a pressure in the intake air pipe of a current representative cylinder 1 are previously measured under various conditions. From the values, a difference Pi between a fuel feed pressure during injection of fuel of each cylinder and a pressure in an intake air pipe is calculated. Further, based on the calculating result, a fuel injection correction factor alphai=(P0/ Pi) of each cylinder under each operation condition is calculated, a calculating result is stored in an ROM 22, and based on the correction factor, a fuel injection time of each cylinder is corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジンの燃料噴射装置に関し、詳細には各シ
リンダの吸気管毎にそれぞれ独立したスロットルバルブ
を備えた独立吸気エンジンの燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection device for an engine, and more particularly to a fuel injection device for an independent intake engine having an independent throttle valve for each intake pipe of each cylinder. .

〔従来の技術〕[Conventional technology]

従来、各気筒の吸気管集合部に全気筒共通のスロットル
バルブを有する通常の集合吸気エンジンの燃料噴射装置
では、吸気管集合部のスロットルバルブ下流(エンジン
側)の圧力をプレッシャレギュレータに導き、各シリン
ダの燃料噴射弁への燃料供給圧力を調整する方法がとら
れている。これは、電子制御式燃料噴射装置では燃料噴
射量の制御は噴射弁からの燃料噴射時間tを調節するこ
とにより行なっているため噴射弁の単位時間当りの燃料
噴射量(以下「噴射流量」という)Qを一定に保つ必要
があるためである。すなわち、燃料噴射弁からの燃料噴
射量Wは−=Qxtで表わされるが、エンジンの負荷に
応じて噴射時間tを制御することにより燃料噴射量を調
節するためにはQが一定に保たれなければならない。と
ころが噴射流量Qは燃料噴射弁への燃料供給圧力P1と
燃料噴射弁のノズル出口部分の圧力(すなわちエンジン
吸気管圧力)P2との関数になっておりq=c、/TV
−下r/ρで表わされる(但し、Cはノズルの流量係数
、ρは燃料密度である。)ここでエンジン吸気管圧力P
1はエンジンの運転条件により大きく変動するためQを
常に一定に保つためには燃料供給圧力P2とエンジン吸
気管圧力Pとの差(pz  p+)を一定に制御する必
要がある。
Conventionally, in a fuel injection system for a common intake engine that has a common throttle valve for all cylinders at the intake pipe assembly section of each cylinder, the pressure downstream of the throttle valve (engine side) at the intake pipe assembly section is guided to a pressure regulator, and each A method is used to adjust the fuel supply pressure to the fuel injection valve of the cylinder. This is because in an electronically controlled fuel injection system, the fuel injection amount is controlled by adjusting the fuel injection time t from the injection valve. ) This is because it is necessary to keep Q constant. That is, the fuel injection amount W from the fuel injection valve is expressed as -=Qxt, but Q must be kept constant in order to adjust the fuel injection amount by controlling the injection time t according to the engine load. Must be. However, the injection flow rate Q is a function of the fuel supply pressure P1 to the fuel injection valve and the pressure at the nozzle outlet of the fuel injection valve (i.e. engine intake pipe pressure) P2, and q=c, /TV
- lower r/ρ (where C is the nozzle flow coefficient and ρ is the fuel density) where the engine intake pipe pressure P
1 varies greatly depending on the operating conditions of the engine, so in order to keep Q constant, it is necessary to control the difference (pz p+) between the fuel supply pressure P2 and the engine intake pipe pressure P to be constant.

このため従来の集合吸気エンジンではスロットルバルブ
下流の吸気管圧力P、を燃料供給圧を制御するプレッシ
ャレギュレータに導き、燃料供給圧P2を、P2と吸気
管圧力P、との差が一定になるように制御しているもの
である。
For this reason, in a conventional common intake engine, the intake pipe pressure P downstream of the throttle valve is guided to a pressure regulator that controls the fuel supply pressure, and the fuel supply pressure P2 is adjusted so that the difference between P2 and the intake pipe pressure P is constant. It is controlled by

しかし、各シリンダの吸気管毎にスロットルバルブを有
する独立吸気エンジンにおいては各スロットルバルブ下
流の吸気管圧力は互いに時間的に異なるサイクルで変動
している。このため前記プレッシャレギュレータへ導く
吸気管圧力を1つのシリンダからとった場合、全部の燃
料噴射弁への燃料供給圧力がその1つのシリンダの吸気
管圧力変動サイクルのみに合わせて調整されてしまい、
他のシリンダの燃料噴射弁では燃料噴射時に燃料供給圧
と吸気管圧力との差圧P、−P、が適正な値にならず燃
料噴射量にばらつきを生じることになる。
However, in an independent intake engine having a throttle valve for each intake pipe of each cylinder, the intake pipe pressures downstream of each throttle valve fluctuate in cycles different from each other in time. For this reason, if the intake pipe pressure leading to the pressure regulator is taken from one cylinder, the fuel supply pressure to all fuel injection valves will be adjusted according to only the intake pipe pressure fluctuation cycle of that one cylinder,
With the fuel injection valves of other cylinders, the differential pressures P and -P between the fuel supply pressure and the intake pipe pressure do not reach appropriate values during fuel injection, resulting in variations in the fuel injection amount.

従って他のシリンダでは適正な空燃比を得られず出力の
低下、排気ガス成分の悪化を招く問題を生じる。
Therefore, in other cylinders, a proper air-fuel ratio cannot be obtained, resulting in a problem of decreased output and deterioration of exhaust gas components.

一方、上記プレッシャレギュレータへ導く吸気管圧力を
1つのシリンダからとらずに、各吸気管と連通ずる配管
を介してプレッシャレギュレータへ吸気圧力を導入する
ことも考えられるが、この場合この配管を通じて各吸気
管が連通してしまい、各吸気管の圧力変動が相互に影響
を及ぼすようになるため独立吸気のメリットが失われる
問題がある。上記問題を解決するために本出願人は実開
昭61−157168号公報で負圧遅延弁を付設した連
通管を用いて独立吸気エンジンの燃料圧力を調節するよ
うにした燃料供給圧力調整位置を提唱している。
On the other hand, instead of taking the intake pipe pressure that leads to the pressure regulator from one cylinder, it is also possible to introduce the intake pressure to the pressure regulator through piping that communicates with each intake pipe, but in this case, each intake pipe There is a problem in that the advantages of independent intake are lost because the pipes are connected and pressure fluctuations in each intake pipe influence each other. In order to solve the above problem, the present applicant proposed a fuel supply pressure adjustment position in Japanese Utility Model Application Publication No. 61-157168, which uses a communication pipe equipped with a negative pressure delay valve to adjust the fuel pressure of an independent intake engine. is advocating.

同公報に記載の装置は、各シリンダのスロットル弁下流
側にそれぞれ吸気負圧取出しボートを設けこれらの負圧
取出しボートをそれぞれオリフィスと、吸気管内負圧に
応動して開弁する逆止弁とからなる負圧遅延弁を介して
燃料のプレッシャレギュレータに接続したものである。
The device described in the publication has an intake negative pressure take-out boat on the downstream side of the throttle valve of each cylinder, and each of these negative pressure take-off boats serves as an orifice and a check valve that opens in response to the negative pressure in the intake pipe. The fuel pressure regulator is connected to the fuel pressure regulator via a negative pressure delay valve.

二〇負圧遅延弁を介して各シリンダを連通させたことに
より連通管内の圧力は特定のシリンダの急激な吸気圧変
化を受けず、プレッシャレギュレータには全部のシリン
ダの吸気圧の平均値の一定圧力が印加される。
20 By communicating each cylinder via a negative pressure delay valve, the pressure in the communication pipe is not subject to sudden changes in the intake pressure of a specific cylinder, and the pressure regulator has a constant average value of the intake pressure of all cylinders. Pressure is applied.

従って燃料噴射弁への供給圧力は特定のシリンダの吸気
管圧力変動の影響を受けることなく、各シリンダについ
て同じ条件となり、各シリンダでの燃料噴射量のハラつ
きを解消できる。又、前記負圧遅延弁により各吸気管の
圧力変動が他のシリンダの吸気管に伝播することを防止
できるため、各吸気管の独立性が影響を受けることがな
い。又、特開昭61101868号公報には、各シリン
ダの吸入空気量のバラつきが大きい場合に各シリンダの
吸気管にそれぞれ吸気管圧力を検出するブーストセンサ
を設け、このブーストセンサの信号により各シリンダの
燃料噴射量を個別に調節して各シリンダに充填される空
気量に応じて燃料を増減するようにした燃料噴射装置が
記載されている。
Therefore, the pressure supplied to the fuel injection valve is not affected by fluctuations in the intake pipe pressure of a particular cylinder, and the conditions are the same for each cylinder, thereby eliminating variations in the amount of fuel injected in each cylinder. Furthermore, since the negative pressure delay valve can prevent pressure fluctuations in each intake pipe from propagating to the intake pipes of other cylinders, the independence of each intake pipe is not affected. Furthermore, in Japanese Patent Application Laid-Open No. 61101868, when there is a large variation in the amount of intake air in each cylinder, a boost sensor is provided in the intake pipe of each cylinder to detect the intake pipe pressure, and the signal from this boost sensor is used to detect the pressure in each cylinder. A fuel injection device is described in which the fuel injection amount is individually adjusted to increase or decrease the amount of fuel depending on the amount of air filled in each cylinder.

〔発明が解決しようとする課題] しかし前述の実開昭61−157168号公報に記載の
装置は、各吸気管のスロットル弁下流側に負圧取出しボ
ートを設け、それぞれ負圧遅延弁を介して連通管に接続
する必要がある。この負圧遅延弁は非常に小型のチエツ
ク弁とオリフィスとから構成され、取付、加工に精度が
必要となり工数増加の原因となる。また各シリンダの吸
気管を連通管で接続する必要があり構成が煩雑になる問
題がある。
[Problems to be Solved by the Invention] However, the device described in the above-mentioned Japanese Utility Model Application Publication No. 157168/1983 provides a negative pressure take-out boat downstream of the throttle valve of each intake pipe, and Must be connected to a communication pipe. This negative pressure delay valve is composed of a very small check valve and an orifice, and requires precision in mounting and processing, which causes an increase in man-hours. Further, it is necessary to connect the intake pipes of each cylinder with a communicating pipe, which causes a problem that the configuration becomes complicated.

更に、プレッシャレギュレータに与えられる吸気圧力は
負圧遅延弁を通っているため応答性が悪(、エンジンの
運転条件の急激な変化に対して遅れを生じる傾向がある
Furthermore, since the intake pressure applied to the pressure regulator passes through a negative pressure delay valve, its response is poor (it tends to be delayed in response to sudden changes in engine operating conditions).

一方、特開昭62−101868号公報に記載の発明に
よれば上記の問題は生じないものの、各シリンダの吸気
管毎に精密な圧力測定が必要となり高価な圧力センサを
用いねばならず、又、制御プログラムも複雑になる問題
がある。本発明は、上記に鑑み、簡単な構成で各シリン
ダの燃料噴射量を均一に制御できる独立吸気エンジンの
燃料噴射装置を提供することを目的としている。
On the other hand, although the invention described in JP-A No. 62-101868 does not cause the above problem, it requires precise pressure measurement for each intake pipe of each cylinder, and requires the use of expensive pressure sensors. , there is a problem that the control program is also complicated. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a fuel injection device for an independent intake engine that can uniformly control the amount of fuel injected into each cylinder with a simple configuration.

〔課題を解決するための手段] 本発明は、1つの吸気管の圧力のみを用いて燃料噴射弁
への燃料供給圧力を制御し、予め各シリンダ間での圧力
変動サイクルの時間的ずれを基に設定した修正係数によ
り各シリンダの燃料噴射弁の燃料噴射時間量を修正して
各シリンダの燃料噴射量のアンバランスをなくすことを
特徴としている。
[Means for Solving the Problem] The present invention controls the fuel supply pressure to the fuel injection valve using only the pressure of one intake pipe, and controls the fuel supply pressure to the fuel injection valve based on the time lag of the pressure fluctuation cycle between each cylinder in advance. The present invention is characterized in that the fuel injection time amount of the fuel injection valve of each cylinder is corrected using a correction coefficient set to eliminate an imbalance in the fuel injection amount of each cylinder.

すなわち、本発明によればそれぞれのシリンダの吸気管
毎に独立したスロットル弁を有する独立吸気エンジンの
燃料噴射装置において、前記シリンダのうち1つのシリ
ンダのスロットル弁下流の吸気管内圧力を検出する代表
吸気圧力検出手段と、上記により検出した代表吸気圧力
と所定の圧力差を生じるように全シリンダへの燃料供給
圧力を制御する燃料供給圧調整手段と、エンジンの負荷
条件に応じて前記1つのシリンダの燃料噴射時間を設定
する代表燃料噴射時間設定手段と各シリンダの燃料噴射
に際して予め各シリンダ毎に設定された修正係数を用い
て、前記代表燃料噴射時間設定手段により設定された代
表燃料噴射時間から各シリンダ毎の燃料噴射時間を設定
する燃料噴射時間修正手段とを備えたことを特徴とする
独立吸気エンジンの燃料噴射装置が提供される。
That is, according to the present invention, in a fuel injection system for an independent intake engine having an independent throttle valve for each intake pipe of each cylinder, the representative intake air pressure is detected in the intake pipe downstream of the throttle valve of one of the cylinders. a pressure detection means; a fuel supply pressure adjustment means for controlling the fuel supply pressure to all the cylinders so as to produce a predetermined pressure difference from the representative intake pressure detected as described above; Using a representative fuel injection time setting means for setting the fuel injection time and a correction coefficient previously set for each cylinder when injecting fuel into each cylinder, each of the representative fuel injection times is set from the representative fuel injection time set by the representative fuel injection time setting means. A fuel injection device for an independent intake engine is provided, which is characterized by comprising a fuel injection time correction means for setting a fuel injection time for each cylinder.

〔作 用〕[For production]

燃料供給圧調整手段は1つのシリンダ(以下「代表シリ
ンダ」と呼ぶ)の吸気管圧力を基に全部のシリンダの燃
料噴射弁への燃料供給圧力を制御する。従って燃料供給
圧力は上記代表シリンダの吸気管圧力変動サイクルに従
って変動する、このため各シリンダで燃料噴射が行なわ
れる時の燃料供給圧力はそれぞれ異なり、代表シリンダ
以外のシリンダでは適正な圧力から外れた値になる。
The fuel supply pressure adjusting means controls the fuel supply pressure to the fuel injection valves of all cylinders based on the intake pipe pressure of one cylinder (hereinafter referred to as "representative cylinder"). Therefore, the fuel supply pressure fluctuates according to the intake pipe pressure fluctuation cycle of the representative cylinder mentioned above. Therefore, the fuel supply pressure when fuel injection is performed in each cylinder is different, and the value deviates from the appropriate pressure in cylinders other than the representative cylinder. become.

本発明では予め実測等により、各シリンダの燃料噴射時
の燃料供給圧力を求め、適正値からの偏差を各シリンダ
毎の修正係数として燃料噴射時間修正手段に記憶してい
る。
In the present invention, the fuel supply pressure at the time of fuel injection for each cylinder is determined in advance by actual measurement or the like, and the deviation from the appropriate value is stored in the fuel injection time correction means as a correction coefficient for each cylinder.

各シリンダの燃料噴射量は、上記修正係数に応じて各気
筒の燃料噴射弁からの燃料噴射時間を制御することによ
り均一にすることができる。
The fuel injection amount of each cylinder can be made uniform by controlling the fuel injection time from the fuel injection valve of each cylinder according to the correction coefficient.

〔実施例〕 第1図に本発明の第1の実施例の略示図を示す。〔Example〕 FIG. 1 shows a schematic diagram of a first embodiment of the invention.

図において1はエンジンシリンダ、2は吸気弁、3は排
気弁を示し、4は吸気管、5は各シリンダの吸気管毎に
設けられたスロットル弁を示す。また6aから6dまで
は各シリンダの吸気ポートに設けられた燃料噴射弁であ
る。燃料は図示しない燃料供給ポンプから燃料配管8を
通って供給され、プレッシャレギュレータ9により圧力
を調整された後各シリンダの燃料噴射弁6aがら6dま
でに分配される。プレッシャレギュレータ9には代表シ
リンダの吸気管4のスロットル下流部に設けられた吸気
圧力ボート10から吸気管4の圧力が供給されており、
プレッシャレギュレータ9は、各燃料噴射弁6aから6
dに供給する燃料圧力P2が前記吸気圧力ポート10の
圧力P、より一定圧力ΔPだけ高くなるように調節して
いる。すなわちP、−P、=ΔP(一定)の関係を保っ
ている。
In the figure, 1 is an engine cylinder, 2 is an intake valve, 3 is an exhaust valve, 4 is an intake pipe, and 5 is a throttle valve provided for each intake pipe of each cylinder. Moreover, 6a to 6d are fuel injection valves provided at the intake ports of each cylinder. Fuel is supplied from a fuel supply pump (not shown) through a fuel pipe 8, and after its pressure is regulated by a pressure regulator 9, it is distributed to the fuel injection valves 6a to 6d of each cylinder. The pressure regulator 9 is supplied with the pressure of the intake pipe 4 from an intake pressure boat 10 provided downstream of the throttle of the intake pipe 4 of the representative cylinder.
The pressure regulator 9 is connected to each fuel injection valve 6a to 6.
The fuel pressure P2 supplied to the intake pressure port 10 is adjusted to be higher than the pressure P of the intake pressure port 10 by a constant pressure ΔP. That is, the relationship P, -P, = ΔP (constant) is maintained.

また20はエンジン制御を行なうディジタルコンピュー
タからなる電子制御ユニットであり双方向性バス21に
より相互に接続されたROM(リードオンリメモリ)2
2、RAM (ランダムアクセスメモリ)23、CPU
 (マイクロプロセッサ)24、入力ポート25および
出力ポート26を備えている。
Further, 20 is an electronic control unit consisting of a digital computer that controls the engine, and ROM (read only memory) 2 interconnected by a bidirectional bus 21.
2, RAM (Random Access Memory) 23, CPU
(microprocessor) 24, an input port 25, and an output port 26.

入力ポート25にはエンジン回転数、負荷等のエンジン
制御用データが入力され、出力ポート26からは駆動回
路27を介して各燃料噴射弁6aがら6dに燃料噴射パ
ルスが送られ、パルス幅に応じて燃料噴射弁を開弁させ
る。ずなわち、ECU 20はエンジンの運転条件に応
じて燃料噴射弁6aから6dの燃料噴射時間(開弁時間
)を制御し、各シリンダに供給する燃料の量を制御して
いる。
Engine control data such as engine speed and load are input to the input port 25, and fuel injection pulses are sent from the output port 26 to each of the fuel injection valves 6a to 6d via the drive circuit 27, depending on the pulse width. to open the fuel injection valve. That is, the ECU 20 controls the fuel injection time (valve opening time) of the fuel injection valves 6a to 6d according to the operating conditions of the engine, and controls the amount of fuel supplied to each cylinder.

次に第2図は各シリンダの吸気管内の圧力変動の関係を
示している。
Next, FIG. 2 shows the relationship between pressure fluctuations in the intake pipes of each cylinder.

図において縦軸は吸気管内圧力と燃料供給圧力を、横軸
はクランク角を示しており、図の曲線は独立吸気の4気
筒エンジンの場合の各吸気管内圧力変動を示す。独立吸
気エンジンであるため各吸気管は他の吸気管の圧力変化
の影響を受けず、各シリンダの吸気管の圧力変化は路間
−の波形になり、−周期720度の4つの圧力変動がク
ランク角度で180度の位相差を持って並んでいる。ま
た、図において1.〜I4は各シリンダにおける燃料噴
射のタイミングである。
In the figure, the vertical axis shows the intake pipe internal pressure and fuel supply pressure, and the horizontal axis shows the crank angle, and the curves in the figure show each intake pipe internal pressure fluctuation in the case of an independently intake four-cylinder engine. Since this is an independent intake engine, each intake pipe is not affected by pressure changes in other intake pipes, and the pressure changes in the intake pipes of each cylinder have a waveform of - between paths, resulting in four pressure fluctuations with a period of 720 degrees. They are lined up with a phase difference of 180 degrees at the crank angle. Also, in the figure 1. ~I4 is the timing of fuel injection in each cylinder.

さて、前述のように各燃料噴射弁への燃料供給圧力P2
は1つの代表シリンダ(本図ではNα1シリンダ)の吸
気管圧力P、と一定差圧ΔP0を保つように制御されて
いるため、P2は図に示すようにNo、 1シリンダの
吸気圧変動と同じ波形の変化を示している。従って各シ
リンダの燃料噴射時における吸気管内圧力との差ΔP6
  (i=l〜4)は、第1シリンダではΔP1−ΔP
0となるが第2から第4シリンダではΔP0より小さく
なっている。
Now, as mentioned above, the fuel supply pressure P2 to each fuel injection valve
is controlled to maintain a constant differential pressure ΔP0 with the intake pipe pressure P of one representative cylinder (Nα1 cylinder in this figure), so P2 is the same as the intake pressure fluctuation of No. 1 cylinder as shown in the figure. Shows changes in waveform. Therefore, the difference ΔP6 between each cylinder and the intake pipe internal pressure at the time of fuel injection
(i=l~4) is ΔP1-ΔP in the first cylinder
0, but it is smaller than ΔP0 in the second to fourth cylinders.

前述のように燃料噴射弁の噴射流量Qはf■rに比例す
るため、この場合、第2〜第4シリンダの燃料噴射弁の
噴射流量はそれぞれ第1シリンダの噴射流量より少なく
なることがわかる。従って通常のエンジンにおけるよう
に各シリンダの燃料噴射弁の燃料噴射時間を同一にした
場合、各シリンダで燃料噴射量に大きなバラつきが出て
、図の第1シリンダ以外では所要空燃比を得ることがで
きない。
As mentioned above, since the injection flow rate Q of the fuel injection valve is proportional to f r, it can be seen that in this case, the injection flow rate of the fuel injection valves of the second to fourth cylinders is each smaller than the injection flow rate of the first cylinder. . Therefore, if the fuel injection time of each cylinder's fuel injection valve is the same as in a normal engine, there will be large variations in the fuel injection amount in each cylinder, and it will be difficult to obtain the required air-fuel ratio in cylinders other than the first in the figure. Can not.

本発明の燃料噴射装置では、予め各シリンダの燃料噴射
時の吸気管内圧力と、そのときの第1シリンダ吸気管内
圧力とを種々の運転条件下で計測してこれらの価から各
シリンダの燃料噴射時の燃料供給圧力と吸気管内との差
ΔP、(第2図)を算出しておく。更にこれらを基に各
運転条件におけるそれぞれの気筒の燃料噴射修正係数。
In the fuel injection device of the present invention, the pressure inside the intake pipe of each cylinder at the time of fuel injection and the pressure inside the first cylinder intake pipe at that time are measured in advance under various operating conditions, and the fuel injection of each cylinder is determined based on these values. The difference ΔP between the fuel supply pressure and the inside of the intake pipe (Fig. 2) is calculated in advance. Furthermore, based on these, fuel injection correction coefficients are determined for each cylinder under each operating condition.

ρ■巴便−N乞−=α、を算出して数値テーブルの形で
ECU 20のROM 22に記憶させ、この修正係数
に基づいて各シリンダの燃料噴射時間を修正することを
特徴としている。すなわち、代表シリンダの燃料噴射時
間をt。とじた場合燃料噴射量WはW=C(τ[Xto
となる、また他のシリンダでは噴射時間をt、とすると
燃料噴射量W、はW、=〜ζ9?x t 、となる。こ
こで各シリンダの燃料噴射時間1.を前記修正係数α、
を用いて1.=αi x t。
The present invention is characterized in that ρ■Babin-Nkari-=α is calculated and stored in the ROM 22 of the ECU 20 in the form of a numerical table, and the fuel injection time of each cylinder is corrected based on this correction coefficient. That is, the fuel injection time of the representative cylinder is t. When closed, the fuel injection amount W is W=C(τ[Xto
For other cylinders, if the injection time is t, then the fuel injection amount W is W, =~ζ9? x t . Here, the fuel injection time for each cylinder is 1. is the correction coefficient α,
Using 1. =αi x t.

トt ル(!:ニヨリWi =cI■[x ti =C
9rN乙)(α= X to ) = 輿F■四X  
 P   P = X toとなりH8=C7TP〒X
t。=Wきなって、各シリンダでの燃料量W、をWと等
しくすることができる。第3図はECII 20による
上記燃料噴射制御をフローチャートに示したものである
Toru(!: grin Wi =cI■[x ti =C
9rN Otsu) (α = X to ) = Palanquin F■4X
P P = X to, H8 = C7TP〒X
t. =W, so the amount of fuel W in each cylinder can be made equal to W. FIG. 3 is a flowchart showing the above fuel injection control by ECII 20.

図においてスタート後ECLI 20はステップ101
でエンジン回転数、吸入空気量、クランク角等のエンジ
ン制御用データを入力ボート25を介して入力しRAM
 23に記憶する。次いでステップ102でこれらのデ
ータに基き所要燃料噴射量Wを決定し、ステップ103
で代表シリンダ(本実施例では第1シリンダ)の燃料噴
射時間t、=ty/c7T1τを設定する。次いでステ
ップ101で読み込んだクランク角から次に燃料噴射を
行うシリンダ番号iを判定しくステップ104)、エン
ジン回転数、吸入空気量等の運転条件を基に、ROM 
23に記憶した噴射時間修正係数のテーブルのルックア
ップを行ないそのシリンダの修正係数α1を求める(ス
テップ105)。
In the figure, after starting ECLI 20, step 101
Enter engine control data such as engine speed, intake air amount, and crank angle via the input boat 25 and store it in the RAM.
23. Next, in step 102, the required fuel injection amount W is determined based on these data, and in step 103
The fuel injection time t, = ty/c7T1τ, of the representative cylinder (first cylinder in this embodiment) is set. Next, from the crank angle read in step 101, the cylinder number i to which the next fuel injection is to be performed is determined (step 104), based on the operating conditions such as engine speed and intake air amount,
A lookup is performed on the table of injection time correction coefficients stored in 23 to determine the correction coefficient α1 for that cylinder (step 105).

次にステップ103で求めた代表シリンダの燃料噴射時
間toとステップ105で求めた修正係数α8からその
シリンダの燃料噴射時間1.=1゜Xα、を設定しくス
テップ106)、燃料噴射を行なう(ステップ107)
。この操作は各シリンダの燃料噴射毎、すなわちエンジ
ンの1回転当り2回ずつ行なわれる。
Next, from the fuel injection time to of the representative cylinder obtained in step 103 and the correction coefficient α8 obtained in step 105, the fuel injection time of that cylinder is 1. =1°Xα, step 106), and perform fuel injection (step 107).
. This operation is performed for each fuel injection of each cylinder, that is, twice per revolution of the engine.

第4図、第5図は本発明の別の実施例を示している。本
実施例では各シリンダの吸気管にはスロットル弁をバイ
パスするバイパス通路31とソレノイド駆動の開閉弁3
2とが設けられている。また第1シリンダのスロットル
弁5下流部には吸気圧力ボート10が設けられ第1シリ
ンダ吸気管4の圧力を基にプレッシャレギュレータ9で
燃料供給圧力を調節しているのは第1図の実施例と同様
である。
4 and 5 show another embodiment of the invention. In this embodiment, the intake pipe of each cylinder includes a bypass passage 31 that bypasses the throttle valve and a solenoid-driven on-off valve 3.
2 is provided. Further, the embodiment shown in FIG. 1 has an intake pressure boat 10 provided downstream of the throttle valve 5 of the first cylinder, and adjusts the fuel supply pressure with a pressure regulator 9 based on the pressure of the first cylinder intake pipe 4. It is similar to

本実施例では、バイパス通路31はエンジンのアイドル
回転時の空気充填率向上のために用いられるものである
。通常の独立吸気エンジンではアイドル運転時にスロッ
トル弁5が全閉となるとスロットル弁5の下流は大きな
負圧になるため、エンジン吸気行程で吸気弁2が開弁す
るとシリンダ1内に残留した既燃ガスが吸気管5に逆流
する。特に高出力エンジン等で吸気弁2と排気弁3との
バルブオーバラップが大きいエンジンでは上記逆流する
既燃ガスの量も多い。この既燃ガスはエンジンの吸気行
程で再度シリンダに吸入されるため、結果としてシリン
ダに残留する既燃ガスの量が増大することになり燃焼条
件が悪化してしまう。
In this embodiment, the bypass passage 31 is used to improve the air filling rate when the engine is idling. In a normal independent intake engine, when the throttle valve 5 is fully closed during idling operation, there will be a large negative pressure downstream of the throttle valve 5. Therefore, when the intake valve 2 opens during the engine intake stroke, the burned gas remains in the cylinder 1. flows back into the intake pipe 5. Particularly in high-output engines and other engines in which the valve overlap between the intake valve 2 and the exhaust valve 3 is large, the amount of burned gas that flows backward is large. This burnt gas is sucked into the cylinder again during the intake stroke of the engine, and as a result, the amount of burnt gas remaining in the cylinder increases, deteriorating combustion conditions.

本実施例のバイパス通路31はアイドル運転時吸気管へ
の既燃ガス逆流を防止するために設けられており、アイ
ドル運転時に吸気弁開弁前の一定期間だけバイパス通路
31のバルブ32を開弁させることにより吸気管内負圧
を急激に低下(吸気管内圧を上昇)させ、吸気弁開弁時
の既燃ガス逆流を減少させるものである。第5図はこの
エンジンのアイドル運転時の吸気圧変化を示しており、
バイパス通路31を持たないエンジンの吸気圧変化(図
に点線で示す)に対し、吸気弁開弁時に先立って大きな
圧力上昇があることがわかる。このようなエンジンでは
、アイドリング時に各シリンダの燃料噴射時における吸
気管内圧力と代表シリンダの吸気管圧力との差が通常の
エンジンよりも大きくなっている。従って代表シリンダ
の吸気管圧力で燃料供給圧力を制御した場合の燃料供給
圧力と各シリンダ吸気圧力の差ΔP′は通常のエンジン
の場合(図のΔP)より小さくなるため、各シリンダで
は燃料噴射流量は大きくバラついてしまう。従ってこの
ようなエンジンには特に本発明の燃料噴射装置を用いる
効果が大きい。
The bypass passage 31 of this embodiment is provided to prevent burnt gas from flowing back into the intake pipe during idle operation, and the valve 32 of the bypass passage 31 is opened only for a certain period of time before the intake valve is opened during idle operation. By doing so, the negative pressure inside the intake pipe is rapidly lowered (the pressure inside the intake pipe is increased), and the backflow of burned gas when the intake valve is opened is reduced. Figure 5 shows the change in intake pressure during idling operation of this engine.
It can be seen that with respect to the change in intake pressure of an engine without the bypass passage 31 (shown by a dotted line in the figure), there is a large pressure increase prior to the opening of the intake valve. In such an engine, the difference between the intake pipe pressure at the time of fuel injection in each cylinder and the intake pipe pressure in the representative cylinder during idling is larger than in a normal engine. Therefore, when the fuel supply pressure is controlled by the intake pipe pressure of the representative cylinder, the difference ΔP' between the fuel supply pressure and the intake pressure of each cylinder is smaller than that of a normal engine (ΔP in the figure), so each cylinder has a fuel injection flow rate of will vary widely. Therefore, the use of the fuel injection device of the present invention is particularly effective for such engines.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述のように独立吸気エンジンの1つのシリ
ンダの吸気管負圧を用いて燃料供給圧力を制御し、各シ
リンダの燃料噴射時間を予め設定した修正係数を用いて
修正することにより各シリンダ間の燃料噴射量のバラつ
きをなくしているため、連通管、負圧遅延弁等の複雑な
構成が不要となり、簡単な構成で応答性と精度のすぐれ
た制御を可能としている。
As described above, the present invention controls the fuel supply pressure using the intake pipe negative pressure of one cylinder of an independently aspirated engine, and corrects each cylinder's fuel injection time using a preset correction coefficient. Since variations in the amount of fuel injected between cylinders are eliminated, complicated configurations such as communication pipes and negative pressure delay valves are not required, and control with excellent responsiveness and precision is possible with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料噴射装置の一実施例の構成を示す
略示図、第2図は第1図の各シリンダの吸気管圧力変動
を示す図、第3図は本発明の燃料噴射装置の制御を示す
フローチャート、第4図は本発明の別の実施例を示す略
示図、第5図は第4図の各シリンダの吸気管圧力変動を
示す図である。 4・・・吸気管、      5・・・スロットル弁、
6a〜6d・・・燃料噴射弁、 9・・・プレッシャレギュレータ、 10・・・吸気圧力ボート、20・・・ECU、31・
・・吸気バイパス通路、 32・・・ソレノイド弁。 第1図 20・・・ECU 第 3 図 第 図 32…ソレノイド弁
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the fuel injection device of the present invention, FIG. 2 is a diagram showing intake pipe pressure fluctuations of each cylinder in FIG. 1, and FIG. 3 is a diagram showing the fuel injection system of the present invention. FIG. 4 is a flowchart showing the control of the device, FIG. 4 is a schematic diagram showing another embodiment of the present invention, and FIG. 5 is a diagram showing intake pipe pressure fluctuations of each cylinder in FIG. 4. 4... Intake pipe, 5... Throttle valve,
6a to 6d...Fuel injection valve, 9...Pressure regulator, 10...Intake pressure boat, 20...ECU, 31...
...Intake bypass passage, 32...Solenoid valve. Fig. 1 20... ECU Fig. 3 Fig. 32... Solenoid valve

Claims (1)

【特許請求の範囲】 1、それぞれのシリンダの吸気管毎に独立したスロット
ル弁を有する独立吸気エンジンの燃料噴射装置において
、 前記シリンダのうち1つのシリンダのスロットル弁下流
の吸気管内圧力を検出する代表吸気圧力検出手段と、上
記により検出した代表吸気圧力と所定の圧力差を生じる
ように全シリンダへの燃料供給圧力を制御する燃料供給
圧調整手段と、エンジンの負荷条件に応じて前記1つの
シリンダの燃料噴射時間を設定する代表燃料噴射時間設
定手段と各シリンダの燃料噴射に際して予め各シリンダ
毎に設定された修正係数を用いて、前記代表燃料噴射時
間設定手段により設定された代表燃料噴射時間から各シ
リンダ毎の燃料噴射時間を設定する燃料噴射時間修正手
段とを備えたことを特徴とする独立吸気エンジンの燃料
噴射装置。
[Scope of Claims] 1. In a fuel injection system for an independent intake engine having an independent throttle valve for each intake pipe of each cylinder, a representative system for detecting the pressure inside the intake pipe downstream of the throttle valve of one of the cylinders. intake pressure detection means; fuel supply pressure adjustment means for controlling the fuel supply pressure to all cylinders so as to produce a predetermined pressure difference from the representative intake pressure detected as described above; From the representative fuel injection time set by the representative fuel injection time setting means, using a representative fuel injection time setting means for setting the fuel injection time and a correction coefficient set in advance for each cylinder when injecting fuel into each cylinder. 1. A fuel injection device for an independent intake engine, comprising: fuel injection time correction means for setting fuel injection time for each cylinder.
JP32826689A 1989-12-20 1989-12-20 Fuel injection device for independent suction engine Pending JPH03189352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32826689A JPH03189352A (en) 1989-12-20 1989-12-20 Fuel injection device for independent suction engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32826689A JPH03189352A (en) 1989-12-20 1989-12-20 Fuel injection device for independent suction engine

Publications (1)

Publication Number Publication Date
JPH03189352A true JPH03189352A (en) 1991-08-19

Family

ID=18208306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32826689A Pending JPH03189352A (en) 1989-12-20 1989-12-20 Fuel injection device for independent suction engine

Country Status (1)

Country Link
JP (1) JPH03189352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068349A (en) * 1996-07-01 1998-03-10 Cummins Engine Co Inc Fuel control system for internal combustion engine
JP2002221060A (en) * 2001-01-30 2002-08-09 Tokyo Gas Co Ltd Premixed compression self-ignition engine having a plurality of cylinders
JP2002242726A (en) * 2001-02-14 2002-08-28 Tokyo Gas Co Ltd Premixed compression self-igniting engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068349A (en) * 1996-07-01 1998-03-10 Cummins Engine Co Inc Fuel control system for internal combustion engine
JP2002221060A (en) * 2001-01-30 2002-08-09 Tokyo Gas Co Ltd Premixed compression self-ignition engine having a plurality of cylinders
JP2002242726A (en) * 2001-02-14 2002-08-28 Tokyo Gas Co Ltd Premixed compression self-igniting engine

Similar Documents

Publication Publication Date Title
JP3154038B2 (en) Apparatus for estimating intake pressure of internal combustion engine and fuel supply apparatus
US5215068A (en) Two cycle internal combustion engine with multple cylinder fuel injection
US6009862A (en) Exhaust gas recirculation control system and method
JP3378640B2 (en) Idling control method
US6871632B2 (en) Method for regulating the fuel injection of an internal combustion engine
US4938198A (en) Internal combustion engine
JPH0316499B2 (en)
EP0240311A2 (en) Fuel-injection control system for an internal combustion engine
JPH03189352A (en) Fuel injection device for independent suction engine
EP0065288B1 (en) A fuel supply or injection device for a multicylinder engine
JPH04183949A (en) Engine fuel control device
JPH06173805A (en) Fuel feeding device for internal combustion engine
JP2858284B2 (en) Fuel supply control device for internal combustion engine
JP2764515B2 (en) Fuel supply device for internal combustion engine
JP2566803B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS6232233A (en) Fuel injection device for engine
JP2747591B2 (en) Fuel injection system for multi-cylinder internal combustion engine
JPH0754585Y2 (en) Fuel pressure regulator for internal combustion engine
JPH0235866B2 (en) KAKYUKITSUKI ENJIN
JP2873735B2 (en) Engine control device
JPH08291732A (en) Fuel injection control device for internal combustion engine
JPS62203941A (en) Fuel injector for engine
JPH02291464A (en) Intake air amount detection for internal combustion engine
JPH04191446A (en) Fuel control device of engine
JPH0441966A (en) Air supply device for internal combustion engine