JPH03189333A - Water cooling type gas turbine unit - Google Patents

Water cooling type gas turbine unit

Info

Publication number
JPH03189333A
JPH03189333A JP32609289A JP32609289A JPH03189333A JP H03189333 A JPH03189333 A JP H03189333A JP 32609289 A JP32609289 A JP 32609289A JP 32609289 A JP32609289 A JP 32609289A JP H03189333 A JPH03189333 A JP H03189333A
Authority
JP
Japan
Prior art keywords
blade
cooling water
gas turbine
water
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32609289A
Other languages
Japanese (ja)
Inventor
Jinichi Nishiwaki
西脇 仁一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP32609289A priority Critical patent/JPH03189333A/en
Publication of JPH03189333A publication Critical patent/JPH03189333A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Abstract

PURPOSE:To recover cooling water so effectively for reusing by installing a filling pipe, spraying the cooling water as water droplets, and a return pipe inhaling cooling water vapor generated by heat absorption both in a blade with small holes scattered, and setting up a connecting passage for these pipes and a turbine jacket. CONSTITUTION:When cooling water in a tank 15 is fed to a conduit 19, under pressure, by a pump 16, it enters a filling pipe 11 by way of a coupling 20 and a passage 21, and is spouted spraylike out of each small hole 12, cooling a blade, and a part of it flows out of each small hole 7 of the blade. The cooling water remaining in the blade turns into superheated steam and it is taken to the outside of a gas turbine from a conduit 24 by way of a return pipe 22, a passage 23 and the coupling 20. Since the cooling water recovered from the gas turbine is turned to high pressure steam, this steam is guided to a steam turbine 28, thereby generating its power. With this constitution, heat absorbed out of the blade by the cooling water is thus recoverable as power.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ガスタービンにおいて、高温の燃焼ガス流
に曝されて高温となる、ノズルを形成する静翼、ロータ
の周囲に植立した動翼(静翼、動翼はガスタービンへの
取付は方は異なるが、同様構造であるから、区別する必
要のないときは、本明細書ではブレード総称する。)を
、エンタルピの大きな水を利用して冷却する水冷却式ガ
スタービンにおいて、ブレードの熱を移して高温の蒸気
となフた冷却水を有効に利用して熱効率を向上させるよ
うにした水冷却式ガスタービン装置に関する。
Detailed Description of the Invention (Industrial Field of Application) This invention relates to a gas turbine in which a stationary vane forming a nozzle and a movable rotor installed around a rotor are exposed to a high-temperature combustion gas flow and become hot. Blades (stationary blades and rotor blades are attached to the gas turbine in different ways, but they have the same structure, so unless it is necessary to distinguish them, they will be collectively referred to as blades in this specification) to utilize water with high enthalpy. The present invention relates to a water-cooled gas turbine device in which heat from blades is transferred to turn into high-temperature steam, and lid cooling water is effectively used to improve thermal efficiency.

(従来の技術) ガスタービンは、第4図中に暗示するようにコンプレッ
サ1で圧縮した空気を燃焼器2に送り、燃料3を燃焼さ
せて高温の燃焼ガスを造り、これをガスタービン4の静
翼4aの形成するノズルを通してロータ4cの周囲に植
立した動翼4bに吹付けてロータ4cを回転させ、回転
軸4dでロータに連結された発電機等の負荷5を駆動す
る動力装置である。コンプレッサ1は、回転軸4dに連
結されガスタービン4の出力の一部を使って駆動される
(Prior art) As implied in FIG. 4, a gas turbine sends air compressed by a compressor 1 to a combustor 2, burns fuel 3, and produces high-temperature combustion gas, which is then sent to a gas turbine 4. A power device that rotates the rotor 4c by spraying air through a nozzle formed by the stationary blades 4a onto the moving blades 4b planted around the rotor 4c, and drives a load 5 such as a generator connected to the rotor by a rotating shaft 4d. be. The compressor 1 is connected to a rotating shaft 4d and is driven using part of the output of the gas turbine 4.

ガスタービンの熱効率は作用する燃焼ガス温度が高い程
高くなるので、ブレード材料を耐熱強度が高くなるよう
に改良すると共に、これを冷却して、より高温の燃焼ガ
スが使用できるようにしている。
The thermal efficiency of a gas turbine increases as the combustion gas temperature increases, so blade materials are improved to have higher heat-resistant strength and are cooled so that higher-temperature combustion gas can be used.

このため従来は、ブレードを中空に造り、内部に圧縮空
気を送給してブレードを内面から空気冷却すると共に、
これをブレードに穿設した多数の小孔からブレードの外
面に沿って流出させ、又、ブレード後縁部に形成したス
リットから流出させて、圧縮空気による接触伝熱による
ブレード外面の冷却及びブレード外面を流れる空気膜に
ょる遮熱作用と、ブレード後縁部内に設けたフィンを介
しての冷却とによりブレードの温度が高くならないよう
にしていた。
For this reason, conventionally, the blades were made hollow and compressed air was fed inside to cool the blades from the inside.
This flows out along the outer surface of the blade through numerous small holes drilled in the blade, and also flows out from a slit formed at the trailing edge of the blade, cooling the outer surface of the blade by contact heat transfer with compressed air. The temperature of the blade was kept from rising by the heat shielding effect of the air film flowing through the blade and by cooling via fins provided in the trailing edge of the blade.

ブレード材料の耐熱性能の進歩は、急速には進まず、現
状では550〜650tの程度であるが、このような空
気冷却技術は次第に発達した結果、燃焼ガス温度は従来
900℃以下であったものが、1350℃の高温のもの
を使用できるようになって来ている。このように空気冷
却を強力に行なうと、コンプレッサの吐出する圧縮空気
の20%以上に当る空気を使用するようになり、従って
ガスタービンの出力をブレード冷却のために余分に使わ
なければならなくなる。
Advances in the heat resistance of blade materials have not progressed rapidly, and currently only about 550 to 650 tons. However, as a result of the gradual development of air cooling technology, the temperature of combustion gas has decreased from below 900 degrees Celsius. However, it has become possible to use a high temperature one of 1350°C. When air cooling is performed intensively in this manner, the air used is more than 20% of the compressed air discharged by the compressor, and therefore, the output of the gas turbine must be used in excess for blade cooling.

そこでブレード冷却効果を一層高めるために、本発明者
は、空気よりも比熱が大きく、大きな蒸発の潜熱を利用
できる水をブレード冷却に利用することを考えた(特願
昭63−204640号、同204641号、特願平1
−84696号、同312914号、同265039号
)。
Therefore, in order to further enhance the blade cooling effect, the present inventor considered using water, which has a higher specific heat than air and can utilize a large latent heat of evaporation, for blade cooling (Japanese Patent Application No. 63-204640, No. 204641, Patent Application No. 1
-84696, 312914, 265039).

第5図はこのようなブレードを水冷却するガスタービン
の構造を例示するブレードの断面図である。中空にした
ブレード6には多数の小孔7が穿設されており、支持フ
ィン8により隔壁9がブレード内に支持されている。隔
壁9内には多数の注水孔10を穿設した注水管11が挿
入されていて、隔壁9の内面に向けて水を噴出する。こ
のジェット水は先ず隔壁9に衝突してこれを冷却すると
共に、隔壁との衝突により微小水滴となるが、隔壁9の
温度はブレード6よりも低いから、水滴が隔壁に接触す
る前に爆発的に飛散して十分な冷却が行なえな(なるラ
イデンフロスト現象を生じることが少なく、又ブレード
に直接水を噴射する場合のようにブレードに大きな熱歪
を生じさせることが避けられる。
FIG. 5 is a sectional view of a blade illustrating the structure of a gas turbine in which such a blade is water-cooled. A large number of small holes 7 are bored in the hollow blade 6, and a partition wall 9 is supported within the blade by support fins 8. A water injection pipe 11 having a large number of water injection holes 10 is inserted into the partition wall 9 and squirts water toward the inner surface of the partition wall 9. This jet water first collides with the partition wall 9 to cool it and turns into minute water droplets due to the collision with the partition wall, but since the temperature of the partition wall 9 is lower than the blade 6, the water droplets explode before they come into contact with the partition wall. It is less likely to cause the Leidenfrost phenomenon in which water is scattered and insufficient cooling can be performed, and it is also possible to avoid causing large thermal distortions to the blades as would be the case when water is injected directly onto the blades.

支持フィン8を通って伝わ)た熱、ブレードからの輻射
熱等のため温度上昇した隔壁9はこれにより冷却され、
これに伴なってブレード6の温度も低下する。隔壁9を
冷却し温度上昇して蒸気となった冷却水及び残存する微
小水滴は、隔壁の小孔12からブレード内に流出してブ
レードの内面を直接、及び支持フィン8を介して間接に
冷却し、その一部は小孔7からブレード外に流出し、燃
焼ガス流に押されてブレード外面に沿って流れ、伝熱に
よりブレード外面を冷却すると共にブレード外面に熱遮
断膜を形成してブレードが燃焼ガスに加熱される程度を
少なくする。隔壁の小孔12からブレード内に噴出した
冷却水の一部は、後部のフィン13の間を通りブレード
内面を冷却した後、圧部のスリット14から流出する。
The partition wall 9, whose temperature has increased due to heat transmitted through the support fins 8, radiant heat from the blades, etc., is thereby cooled.
Along with this, the temperature of the blade 6 also decreases. The cooling water that cools the partition wall 9 and becomes steam due to its temperature rising and the remaining minute water droplets flow into the blade through the small holes 12 in the partition wall and cool the inner surface of the blade directly and indirectly via the support fins 8. A part of it flows out of the blade from the small holes 7, flows along the outer surface of the blade due to the flow of combustion gas, cools the outer surface of the blade by heat transfer, and forms a heat-insulating film on the outer surface of the blade. reduce the degree to which the gas is heated by the combustion gas. A portion of the cooling water jetted into the blade from the small holes 12 in the partition wall passes between the rear fins 13 and cools the inner surface of the blade, and then flows out from the slit 14 in the pressure section.

ブレードに冷却水を供給するには、第4図に暗示するよ
うに、タンク15に入れた冷却水をポンプ16により制
御弁17を経てケーシング18内の通路19を通して静
翼4a内の注水管11に圧送し、動翼4bには、回転軸
4dに設けたカップリング20を介して軸内の通路21
を通して圧送する。
To supply cooling water to the blades, as shown in FIG. 4, the cooling water in the tank 15 is pumped through the control valve 17 and through the passage 19 in the casing 18 to the water injection pipe 11 in the stationary blade 4a. The rotor blades 4b are connected to a passage 21 in the shaft via a coupling 20 provided on the rotating shaft 4d.
to be pumped through.

(発明が解決しようとする課題) ブレード冷却に使用する水は、ブレードに穿設した小孔
やブレード圧部に形成したスリット等からガス流中に放
出されるが、ブレード冷却の程度を高めるため、冷却水
を多量に使用すると、冷却済みの水の回収、処理を円滑
に行なうことが重要問題となる。
(Problem to be solved by the invention) Water used for blade cooling is released into the gas flow through small holes drilled in the blade or slits formed in the blade pressure part. When a large amount of cooling water is used, it becomes an important issue to smoothly collect and treat the cooled water.

ブレードを冷却した水は、多くの熱量を含み、高温の蒸
気となっているので、これを利用することは、熱経済の
上からも重要である。
The water that cools the blades contains a large amount of heat and is turned into high-temperature steam, so the use of this water is important from the standpoint of thermal economy.

本発明は、この冷却水を有効に回収し利用するガスター
ビン装置を得ようとしたものである。
The present invention aims to provide a gas turbine device that effectively recovers and utilizes this cooling water.

(課題を解決するための手段) この発明は、高温のブレードから熱を奪い高温の蒸気と
なった冷却水を戻り管により取出し、この蒸気によって
蒸気タービンを駆動し、冷却水の持つ熱エネルギを動力
として回収することにより、ガスタービン装置全体とし
ての熱効率を高めるようにして前記の課題を解決したも
のである。
(Means for Solving the Problems) This invention extracts cooling water that has taken heat from high-temperature blades and turned into high-temperature steam through a return pipe, drives a steam turbine with this steam, and uses the thermal energy of the cooling water. By recovering the power as motive power, the above-mentioned problem is solved by increasing the thermal efficiency of the gas turbine device as a whole.

(作 用) 燃焼ガスのため高温に加熱されたブレードを冷却した水
は、500℃前後の高温の過熱蒸気となり、圧力も10
〜15 kg/cm2と大きくなる。
(Function) The water that cools the blades, which have been heated to a high temperature due to the combustion gas, becomes superheated steam at a temperature of around 500°C, and the pressure also increases to 10°C.
~15 kg/cm2.

そこでこの蒸気を別に設けた蒸気タービンに入れれば、
蒸気の持つエネルギを動力として回収することができる
。蒸気タービンを出て温度、圧力の低下した蒸気は、コ
ンデンサに導き、復水させて再びブレード冷却に使用で
きる。
So, if this steam is put into a separate steam turbine,
The energy contained in steam can be recovered as power. After leaving the steam turbine, the steam whose temperature and pressure have decreased is led to a condenser where it is condensed and used again to cool the blades.

(実施例) 第1図は、冷却水を回収するためのブレード(動翼4b
)の構造を暗示する。
(Example) Figure 1 shows a blade (moving blade 4b) for recovering cooling water.
) implies the structure of

中空で多数の小孔7を穿設したブレード4b内には注水
管11と戻り管22とが挿入されており、多管はそれぞ
れロータ4C及び回転軸4d内に設けた通路21.23
によりカップリング20を経てロータ4cの外に通じて
いる。
A water injection pipe 11 and a return pipe 22 are inserted into the blade 4b which is hollow and has a large number of small holes 7, and the multi-tubes are connected to passages 21 and 23 provided in the rotor 4C and the rotating shaft 4d, respectively.
This communicates with the outside of the rotor 4c via the coupling 20.

第4図の従来装置と同様に、タンク15内の冷却水をポ
ンプ16により制御弁17を経て導管19に圧送すると
、冷却水はカップリング20、通路21を通って注水管
11に入り、その小孔12から噴霧状に噴出してブレー
ドを冷却しく隔壁9を介在させることについては省略)
、一部はブレードの小孔7から流出する。ここまでは先
発明におけるブレード水冷却と同様であるが、本発明で
は、ブレード内に残っている過熱蒸気となった冷却水を
回収して別に設けた蒸気タービンを駆動させようとする
ものである。即ち、ブレード内に残る冷却水は過熱蒸気
となって戻り管22に入り、通路23を通りカップリン
グ20を経て導管24からガスタービン外に取出される
Similar to the conventional device shown in FIG. 4, when the cooling water in the tank 15 is pumped by the pump 16 through the control valve 17 and into the conduit 19, the cooling water passes through the coupling 20 and the passage 21, enters the water injection pipe 11, and enters the water supply pipe 11. (The explanation about the interposition of the partition wall 9 to cool the blade by ejecting it in a spray form from the small hole 12 is omitted)
, a portion flows out from the small hole 7 of the blade. The process up to this point is similar to the blade water cooling in the previous invention, but in the present invention, the cooling water that has become superheated steam remaining in the blades is recovered to drive a separately provided steam turbine. . That is, the cooling water remaining in the blade becomes superheated steam and enters the return pipe 22, passes through the passage 23, passes through the coupling 20, and is taken out from the gas turbine through the conduit 24.

ブレード冷却水は少しずつ減少するから、第2図のよう
に補充タンク26の水をポンプ27でタンク15に補充
するようにする。
Since the blade cooling water decreases little by little, the tank 15 is replenished with water from the replenishment tank 26 using the pump 27 as shown in FIG.

ガスタービンから回収した冷却水は500℃、10〜1
5 kg/cm2程度の高圧蒸気になるから、本発明は
、第2図に示すようにこの蒸気を蒸気タービン28に導
いて動力を発生させるようにしている。
The cooling water recovered from the gas turbine is 500℃, 10~1
Since it becomes high pressure steam of about 5 kg/cm2, in the present invention, as shown in FIG. 2, this steam is guided to a steam turbine 28 to generate power.

第2図において、導管24で取出した冷却水の蒸気は、
蒸気タービン28を回転させて第二の負荷29を駆動し
、蒸気タービン28を出た温度、圧力の低下した蒸気は
、コンデンサ25に導いて復水させタンク15に入れる
In FIG. 2, the cooling water vapor taken out through the conduit 24 is
The steam turbine 28 is rotated to drive the second load 29 , and the steam that exits the steam turbine 28 and has a reduced temperature and pressure is guided to the condenser 25 where it is condensed and put into the tank 15 .

第3図の実施例は、更にガスタービン4の排気(約80
0〜500℃程度)をも利用したもので、この排気を熱
交換器30に通し、タンク15からポンプ31で汲取っ
た水を加熱して蒸気とし、この蒸気を、前記のようにブ
レードを冷却して生じた蒸気で駆動される蒸気タービン
28の適当な段に注入して蒸気タービン28の出力を増
すようにしたものである。
In the embodiment of FIG. 3, the exhaust gas of the gas turbine 4 (approximately 80
This exhaust gas is passed through the heat exchanger 30, and the water pumped from the tank 15 by the pump 31 is heated and turned into steam.This steam is then passed through the blade as described above. The output of the steam turbine 28 is increased by injecting it into an appropriate stage of the steam turbine 28 which is driven by the steam generated by cooling.

(発明の効果) (1)高温の燃焼ガス流に曝されるガスタービンのブレ
ードを冷却して高温の過熱蒸気になった冷却水の蒸気を
回収して、これを利用することができる。
(Effects of the Invention) (1) It is possible to recover and utilize the steam of cooling water that has turned into high-temperature superheated steam by cooling the blades of a gas turbine exposed to a high-temperature combustion gas flow.

(2)この冷却水の蒸気を蒸気タービンに入れることに
より、冷却水がブレードから奪った熱を勅力として回収
することができる。
(2) By introducing the steam of this cooling water into the steam turbine, the heat taken from the blades by the cooling water can be recovered as force.

(3)更にガスタービンの排ガスを熱交換器に通して別
に送られて来る水を加熱して蒸気を発生させ、これをブ
レード冷却により発生した蒸気と共に蒸気タービン駆動
に利用してブレードから奪った熱を動力として回収する
ことができる。
(3) Furthermore, the exhaust gas of the gas turbine was passed through a heat exchanger to heat the water sent separately to generate steam, which was used together with the steam generated by blade cooling to drive the steam turbine and taken away from the blades. Heat can be recovered as power.

(4)ブレード冷却用の水量を増してブレード冷却効果
を上げることができる。
(4) The blade cooling effect can be improved by increasing the amount of water for cooling the blade.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明の実施例を略示し、第1図はブレー
ドへの冷却水注入及び回収構造を示すロータ部の断面図
、第2図は過熱蒸気となった冷却水で蒸気タービンを駆
動する構成の略図、第3図はガスタービン排気の熱をも
利用できるようにした装置の略図、第4〜5図は先発明
装置を示し、第4図はブレードを水冷却する構成を示す
略図、第5図はブレードの構造を示す断面図である。 ニガスタービン、4a:静翼、4b:動翼、4c:ロー
タ、4d:回転軸、5:負荷、6:ブレード、7:小孔
、8:支持フィン、9:隔壁、10:注水孔、11:注
水管、12:小孔、13:フィン、14ニスリツト、1
5:タンク、16:ポンプ、17:制御弁、18:ケー
シング、19:導管、20:カップリング、21:通路
、22:戻り管、23:通路、24:導管、25:コン
デンサ、26:補充タンク、27:ポンプ、28:蒸気
タービン、29:第二の負荷、30:熱交換器、31:
ポンプ。
1 to 3 schematically show embodiments of the present invention, FIG. 1 is a cross-sectional view of the rotor section showing the cooling water injection and recovery structure for the blades, and FIG. 2 is a steam turbine using cooling water that has become superheated steam. Fig. 3 is a schematic diagram of a device that can also utilize the heat of gas turbine exhaust, Figs. The schematic diagram shown in FIG. 5 is a sectional view showing the structure of the blade. Nigas turbine, 4a: Stator blade, 4b: Moving blade, 4c: Rotor, 4d: Rotating shaft, 5: Load, 6: Blade, 7: Small hole, 8: Support fin, 9: Partition, 10: Water injection hole, 11: Water injection pipe, 12: Small hole, 13: Fin, 14 Nislit, 1
5: Tank, 16: Pump, 17: Control valve, 18: Casing, 19: Conduit, 20: Coupling, 21: Passage, 22: Return pipe, 23: Passage, 24: Conduit, 25: Capacitor, 26: Refill tank, 27: pump, 28: steam turbine, 29: second load, 30: heat exchanger, 31:
pump.

Claims (1)

【特許請求の範囲】 1)小孔(7)を散在させたガスタービンのブレード(
4a)(4b)内に、ブレード内面に向けて冷却水を微
小水滴として噴出する注水管(11)と、ブレード内に
おいて吸熱し発生した冷却水蒸気を吸入する戻り管(2
2)とを設け、ガスタービン外から注水管(11)に冷
却水を送る通路と、戻り管(22)から冷却水蒸気をガ
スタービン外に取出す通路とを設けたことを特徴とする
水冷却式ガスタービン装置。 2)小孔(7)を散在させたガスタービンのブレード(
4a)(4b)内に、ブレード内面に向けて冷却水を微
小水滴として噴出する注水管(11)と、ブレード内に
おいて吸熱し発生した冷却水蒸気を吸入する戻り管(2
2)とを設け、ガスタービン外から注水管(11)に冷
却水を送る通路と、戻り管(22)から冷却水蒸気をガ
スタービン外に取出す通路とを設け、戻り管(22)か
ら回収した冷却水蒸気を蒸気タービンに入れてブレード
冷却により冷却水に移った熱を蒸気タービンの出力とし
て回収することを特徴とする水冷却式ガスタービン装置
。 3)ガスタービンの排気をボイラに通して蒸気を発生さ
せ、ブレード冷却により発生した冷却水蒸気と共に蒸気
タービンに入れて動力を発生させる特許請求の範囲第2
項記載の水冷却式ガスタービン装置。
[Claims] 1) A gas turbine blade (
4a) (4b) includes a water injection pipe (11) that spouts cooling water as minute water droplets toward the inner surface of the blade, and a return pipe (2) that sucks cooling water vapor generated by absorbing heat within the blade.
2), a water cooling type characterized by having a passage for sending cooling water from outside the gas turbine to the water injection pipe (11), and a passage for taking cooling water vapor out of the gas turbine from the return pipe (22). Gas turbine equipment. 2) Gas turbine blades with scattered small holes (7) (
4a) (4b) includes a water injection pipe (11) that spouts cooling water as minute water droplets toward the inner surface of the blade, and a return pipe (2) that sucks cooling water vapor generated by absorbing heat within the blade.
2), a passage for sending cooling water from outside the gas turbine to the water injection pipe (11), and a passage for taking cooling water vapor out of the gas turbine from the return pipe (22), and collecting water vapor from the return pipe (22). A water-cooled gas turbine device characterized in that cooling water vapor is introduced into a steam turbine and the heat transferred to the cooling water by cooling the blades is recovered as the output of the steam turbine. 3) The exhaust gas of the gas turbine is passed through a boiler to generate steam, which is then input into the steam turbine together with the cooling steam generated by cooling the blades to generate power.
The water-cooled gas turbine device described in Section 1.
JP32609289A 1989-12-18 1989-12-18 Water cooling type gas turbine unit Pending JPH03189333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32609289A JPH03189333A (en) 1989-12-18 1989-12-18 Water cooling type gas turbine unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32609289A JPH03189333A (en) 1989-12-18 1989-12-18 Water cooling type gas turbine unit

Publications (1)

Publication Number Publication Date
JPH03189333A true JPH03189333A (en) 1991-08-19

Family

ID=18184013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32609289A Pending JPH03189333A (en) 1989-12-18 1989-12-18 Water cooling type gas turbine unit

Country Status (1)

Country Link
JP (1) JPH03189333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775430A1 (en) * 2005-10-17 2007-04-18 Siemens Aktiengesellschaft Steam power plant and method for retrofitting a steam power plant
US20090285677A1 (en) * 2008-05-19 2009-11-19 General Electric Company Systems And Methods For Cooling Heated Components In A Turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775430A1 (en) * 2005-10-17 2007-04-18 Siemens Aktiengesellschaft Steam power plant and method for retrofitting a steam power plant
WO2007045563A2 (en) * 2005-10-17 2007-04-26 Siemens Aktiengesellschaft Steam power plant and method for retrofitting a steam power plant
WO2007045563A3 (en) * 2005-10-17 2007-09-13 Siemens Ag Steam power plant and method for retrofitting a steam power plant
US7975483B2 (en) 2005-10-17 2011-07-12 Siemens Aktiengesellschaft Steam power plant and also method for retrofitting a steam power plant
US20090285677A1 (en) * 2008-05-19 2009-11-19 General Electric Company Systems And Methods For Cooling Heated Components In A Turbine

Similar Documents

Publication Publication Date Title
JP3974519B2 (en) Compressed air steam generator for combustion turbine transition.
EP0020594B1 (en) Reheat gas turbine
US3038308A (en) Gas turbine combustion chamber and method
JP4728493B2 (en) Method and apparatus for supplying cooling air to a turbine engine
JPH06341368A (en) Equipment and method of acquiring power from high-pressure geothermal fluid
CA2269322A1 (en) Hydrogen fueled power plant
KR20000036203A (en) Closed loop steam cooled steam turbine
US20130074508A1 (en) Fuel Heating in Combined Cycle Turbomachinery
KR20100074167A (en) Method and device for converting thermal energy of a low temperature heat source into mechanical energy
JP2011074918A (en) Device and method for removing heat from gas turbine
CN106907204B (en) A kind of absorption electricity-generating method of organic working medium and its system of low-temperature heat source driving
CN105240061A (en) Ultrahigh-temperature steam power cycle system adopting hydrogen injection burning mix heating
US2095984A (en) Explosion turbine plant
KR20010012497A (en) Partial oxidation powerplant with sequential combustion
JPH03189333A (en) Water cooling type gas turbine unit
JP4339520B2 (en) Method for preheating fuel in gas turbines
WO2010003205A1 (en) Combined cycle energy generation system
CN109707472A (en) A kind of distributed energy resource system using dry coke quenching waste heat
JP3015743B2 (en) Turbine rotor blade and hydrogen combustion turbine plant equipped with the same
US9581051B2 (en) Power generation plant and method of operating a power generation plant
JP2001073754A (en) Heat exchanger for recovering exhaust gas energy
JP2013522518A (en) Liquid-sealed rotary casing steam turbine and method of use thereof
JPS5612006A (en) Steam-gas mixing type turbine prime mover
CN210570120U (en) Geothermal energy nozzle
CN206017071U (en) Turbo-generator Set and electricity generation system