JPH03189321A - Intake device of engine - Google Patents

Intake device of engine

Info

Publication number
JPH03189321A
JPH03189321A JP1327530A JP32753089A JPH03189321A JP H03189321 A JPH03189321 A JP H03189321A JP 1327530 A JP1327530 A JP 1327530A JP 32753089 A JP32753089 A JP 32753089A JP H03189321 A JPH03189321 A JP H03189321A
Authority
JP
Japan
Prior art keywords
control valve
chambers
closed
bypass passage
surge tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1327530A
Other languages
Japanese (ja)
Inventor
Shinji Seike
真次 清家
Tomohiro Sunada
知宏 砂田
Tetsuo Hiraoka
哲男 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1327530A priority Critical patent/JPH03189321A/en
Publication of JPH03189321A publication Critical patent/JPH03189321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To prevent respective chambers from being communicated with via a bypass when a control valve is closed at a low speed range and the like by closing an opening part at a downstream end of the bypass passage which communicates with the respective chambers of a surge tank by the control valve which divides the respective chambers. CONSTITUTION:A surge tank 14 divided into two chambers 241, 242 by a partition wall 20 and a control valve 22 is provided. The inside of the surge tanke 14 is changed over to communicated or partitioned conditions by opening/closing of the control valve 22 so as to vary the number of synchronized rotations. A downstream part of a bypass passage 30 is branched so as to connect downstream ends 301, 302 to chambers 241, 242. Opening parts of downstream ends 301, 302 are closed by the control valve 22 when the valve 22 is closed in the chambers 241, 242. Since the opening parts of the downstream ends 301, 302 are synchronizedly closed when the control valve 22 is closed at a low speed range and the like, the chambers 241, 242 are not mutually communicated through the bypass passage 30, and deviation in the number of syncthronized rotations rarely occur.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多気筒エンジンの吸気装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake system for a multi-cylinder engine.

〔従来の技術〕[Conventional technology]

従来、エンジンの吸気マニホールドにサージタンクを設
け、このサージタンクの内部を隔壁および制御弁で2つ
の空間に分割した装置が知られるに至っている。このよ
うな吸気装置では、例えばエンジンが低速あるいは中速
回転領域にある場合には、上記制御弁を閉じて吸気系の
等価管長を長くすることにより、同調回転数を下げて低
回転時の慣性過給効果を増大させるとともに、高速回転
時には上記制御弁を開いて等価管長を短くすることによ
り、同調回転数を上げて高回転時の慣性過給効果を増大
させるといった制御が行われる。
Conventionally, devices have been known in which a surge tank is provided in the intake manifold of an engine, and the interior of the surge tank is divided into two spaces by a partition wall and a control valve. In such an intake system, for example, when the engine is in a low or medium speed rotation range, the above control valve is closed and the equivalent pipe length of the intake system is lengthened, thereby lowering the tuned rotation speed and reducing inertia at low rotation speeds. In addition to increasing the supercharging effect, the control valve is opened at high speeds to shorten the equivalent pipe length, thereby increasing the tuned rotational speed and increasing the inertial supercharging effect at high speeds.

さらに、このような2室分割型の吸気装置において、ス
ロットル弁を迂回してその上流側と下流側(一般にはサ
ージタンク)とを連通ずるバイパス通路を備え、上記ア
イドリング時に上記バイパス通路から各気筒へ゛補助吸
気を供給するとともに、その流量を調節することによっ
てアイドリング回転数を精密に制御するようにしたもの
も知られるに至っている(実開昭61−152731号
公報参照)。
Furthermore, such a two-chamber split type intake system is provided with a bypass passage that bypasses the throttle valve and communicates the upstream side and downstream side (generally a surge tank) of the throttle valve. It has become known that the idling speed is precisely controlled by supplying auxiliary intake air and adjusting its flow rate (see Japanese Utility Model Publication No. 152731/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記装置では、サージタンクが2室に分割されている関
係上、バイパス通路の下流端をサージタンクの中央に接
続するのは困難であり、実際には両室のいずれか一方に
接続しなければならない。
In the above device, since the surge tank is divided into two chambers, it is difficult to connect the downstream end of the bypass passage to the center of the surge tank; in reality, it must be connected to one of the two chambers. No.

従って、サージタンクには両室のいずれか一方に偏って
補助吸気が供給されることになり、その均等分配は難し
い。この対応策としては、上記バイパス通路の下流側部
分を2つに分岐し、各下流端を各室に接続することが効
果的であるが、このような構成にすると、制御弁を閉じ
てサージタンク内の画室を隔離しても、これらの2室が
各々バイパス通路を介して間接的に連通されることにな
るので、これによって同調回転数がずれ、共鳴過給効果
が半減する不都合がある。
Therefore, the auxiliary intake air is supplied to the surge tank in a biased manner to one of the two chambers, and it is difficult to distribute it evenly. An effective countermeasure against this problem is to branch the downstream portion of the bypass passage into two and connect each downstream end to each chamber, but with this configuration, the control valve is closed and the surge Even if the compartments in the tank are isolated, these two chambers will be indirectly connected to each other via a bypass passage, which has the disadvantage of shifting the synchronized rotational speed and halving the resonance supercharging effect. .

本発明は、このような事情に鑑み、簡単な構造で、補助
吸気の均等分配を図り、かつ同調回転数の変化による共
鳴過給効果を十分に得ることができるエンジンの吸気装
置を提供することを目的とする。
In view of these circumstances, it is an object of the present invention to provide an engine intake device that has a simple structure, can evenly distribute auxiliary intake air, and can sufficiently obtain a resonant supercharging effect by changing the tuned rotation speed. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、隔壁および制御弁によって2室に分割された
サージタンクを備え、上記制御弁の開閉により上記サー
ジタンク内が連通状態および隔離状態に切換えられて同
調回転数が変化するように構成される一方、スロットル
弁を迂回してその上流側と下流側とを連通する位置にバ
イパス通路が設けられたエンジンの吸気装置において、
上記バイパス通路の下流側部分を分岐して各下流端をサ
ジタンクの各室に接続するとともに、上記各室内におい
て上記制御弁が閉状態にあるときにこの制御弁によって
上記バイパス通路の下流端の開口部が閉じられる位置に
各下流端を配したものである。
The present invention includes a surge tank divided into two chambers by a partition wall and a control valve, and is configured such that opening and closing of the control valve switches the interior of the surge tank between a communicating state and an isolated state, thereby changing the synchronized rotation speed. On the other hand, in an engine intake system in which a bypass passage is provided at a position that bypasses the throttle valve and communicates the upstream side and the downstream side thereof,
The downstream portion of the bypass passage is branched and each downstream end is connected to each chamber of the saji tank, and when the control valve is in a closed state in each chamber, the downstream end of the bypass passage is opened by the control valve. Each downstream end is placed in a position where the section is closed.

〔作 用〕[For production]

上記構成において、例えば低回転時に制御弁を閉じるこ
とにより、サージタンク内の2室が完全に分離され、吸
気系の等価管長が長くなる。これによって同調回転数が
下がり、吸気系の気柱の吸気振動の周波数と吸気弁の開
閉周期がマツチングして共鳴過給が行われる。しかも、
このとき、上記制御弁によって各室とバイパス通路との
接合部である開口部が同時に閉じられるので、各室同士
が上記バイパス通路で連通されることはなく、同調回転
数のずれはほとんど生じない。
In the above configuration, for example, by closing the control valve during low rotation, the two chambers in the surge tank are completely separated, and the equivalent pipe length of the intake system becomes longer. As a result, the tuned rotational speed is lowered, and the frequency of the intake vibration of the air column in the intake system is matched with the opening/closing cycle of the intake valve, resulting in resonant supercharging. Moreover,
At this time, the openings that are the joints between each chamber and the bypass passage are closed simultaneously by the control valve, so the chambers are not communicated with each other through the bypass passage, and there is almost no deviation in the synchronized rotation speed. .

これに対し、例えば高回転領域で制御弁を開くことによ
り、サージタンク内が連通され、通気抵抗が小さくなる
とともに、吸気系の等価管長が短くなることにより同調
回転数が上がり、上記低回転領域と同様に出力が向上す
る。
On the other hand, for example, by opening the control valve in the high rotation range, the inside of the surge tank is communicated, the ventilation resistance is reduced, and the equivalent pipe length of the intake system is shortened, which increases the tuned rotation speed and increases the synchronized rotation speed in the low rotation range. The output will be improved as well.

〔実施例〕〔Example〕

第2図および第3図は、本発明の一実施例におけるエン
ジンの外観を示したものであり、第1図はその模式図で
ある。
FIGS. 2 and 3 show the external appearance of an engine according to an embodiment of the present invention, and FIG. 1 is a schematic diagram thereof.

ここでは、V型6気筒エンジンが示されている。Here, a V-type 6-cylinder engine is shown.

このエンジン本体10の第1気筒〜第6気筒は、各々独
立吸気管121〜126を介して共通のサジタンク14
に接続され、各気筒は、燃焼行程を迎える順序が互いに
隣り合わないもの同士で2・“1゛ループに分けられて
いる。すなわち、第1気筒、第3気筒、および第5気筒
の3つの気筒がAグループとして共通のバンクに設けら
れ、第2気筒、第4気筒、および第6気筒の3つの気筒
がBグルプとして上記と別のバンクに設けられている。
The first to sixth cylinders of this engine body 10 are connected to a common saji tank 14 through independent intake pipes 121 to 126, respectively.
The cylinders are connected to the cylinders, and each cylinder is divided into 2.1 loops, which are not adjacent to each other in the order in which they undergo the combustion stroke.In other words, the three cylinders, the 1st cylinder, the 3rd cylinder, and the 5th cylinder, are connected to The cylinders are provided as an A group in a common bank, and three cylinders, the second cylinder, the fourth cylinder, and the sixth cylinder, are provided as a B group in a bank different from the above.

また、上記サージタンク14の上流側には、スロットル
ボディ16を介して上流側吸気管18が接続されている
Further, an upstream intake pipe 18 is connected to the upstream side of the surge tank 14 via a throttle body 16.

第1図に示されるように、上記サージタンク14内は隔
壁20および制御弁22によって左室241および右室
242に分割されており、左室241に独立吸気管12
1,123..125を介してAグループの気筒が接続
され、右室242に独立吸気管122,124,126
を介してBグループの気筒が接続されている。上記制御
弁22は、第2図に示されるアクチュエータ23により
開閉駆動され(第1図実線および二点鎖線参照)、この
制御弁22が開いた状態てサージタンク14内の左右各
室241,242同士が連通され、閉じた状態で各室2
41.242が互いに隔離されるようになっている。
As shown in FIG. 1, the inside of the surge tank 14 is divided into a left chamber 241 and a right chamber 242 by a partition wall 20 and a control valve 22.
1,123. .. The cylinders of group A are connected to each other through 125, and independent intake pipes 122, 124, 126 are connected to the right chamber 242.
The cylinders of group B are connected through the cylinder. The control valve 22 is driven to open and close by an actuator 23 shown in FIG. 2 (see the solid line and two-dot chain line in FIG. 1). The rooms are connected to each other and each room 2 is closed.
41.242 are now isolated from each other.

これに対し、上記スロットルボディ16内には、左室2
41に連通される第1通路261と、右室242に連通
される第2通路262とが独立して形成され、各通路2
61,262内にスロットル弁28が配役されている。
On the other hand, inside the throttle body 16, the left ventricle 2
A first passage 261 communicating with the right ventricle 241 and a second passage 262 communicating with the right ventricle 242 are formed independently, and each passage 2
A throttle valve 28 is disposed within 61,262.

そして、各通路261゜262に上記上流側吸気管18
が接続され、これらの上流側吸気管18は図示部分より
もさらに上流側の部分で集合している。
The upstream intake pipe 18 is connected to each passage 261 and 262.
are connected, and these upstream intake pipes 18 are gathered at a portion further upstream than the illustrated portion.

さらに、このエンジンでは、上記スロットル弁28を迂
回してその上流側と下流側とを連通する位置にバイパス
通路(以下、ISC通路と称す。)30が設けられてい
る。詳しくは、このISO通路30の上流端が上記上流
側吸気管18の集合部分に接続され、下流側部分が2つ
の下流端301゜302に分岐しており、それぞれがサ
ージタンク14内の左右各室241.242に接続され
ている。このバイパス通路30の中間部位にはバイパス
弁(以下、ISO弁と称す)32が設けられ、このIS
O弁32によってISO通路30における空気流量が調
節されることにより、アイドル回転数の制御(I S 
C; Idle 5peed C++nj+ol)が行
われる。
Further, in this engine, a bypass passage (hereinafter referred to as an ISC passage) 30 is provided at a position that bypasses the throttle valve 28 and communicates the upstream side and the downstream side thereof. Specifically, the upstream end of this ISO passage 30 is connected to the gathering part of the upstream intake pipe 18, and the downstream part branches into two downstream ends 301 and 302, each of which is connected to the left and right sides of the surge tank 14. Connected to rooms 241 and 242. A bypass valve (hereinafter referred to as an ISO valve) 32 is provided at an intermediate portion of this bypass passage 30, and this IS
By adjusting the air flow rate in the ISO passage 30 by the O valve 32, idle rotation speed control (IS
C; Idle 5peed C++nj+ol) is performed.

また、この実施例装置の特徴として、第4図および第5
図(a)(b)にも示されるように、上記バイパス通路
30の下流端301 (302)は、それぞれが接続さ
れる室241 (242)の反対側の室242(241
)の底壁から内部に導入され、上方に立上がっており、
さらに、接続されるべき室241(242)へ向かって
開口している。
In addition, as a feature of this embodiment device, FIGS.
As shown in FIGS. (a) and (b), the downstream end 301 (302) of the bypass passage 30 is connected to the chamber 242 (241) on the opposite side of the chamber 241 (242) to which they are connected.
) is introduced into the interior from the bottom wall and rises upward.
Furthermore, it opens toward the chamber 241 (242) to be connected.

これら下流端301.302の接続位置は、それぞれの
開口部が、第5図(a)に示されるような閉状態にある
制御弁22によって正面から同時に塞がれるように設定
されている。
The connection positions of these downstream ends 301 and 302 are set so that their respective openings are simultaneously blocked from the front by the control valves 22 in the closed state as shown in FIG. 5(a).

また、上記アクチュエータ23および上記IsC弁32
のアクチュエータ(図示せず)は、図外のECUに接続
されている。このECUは、エンジン回転数およびエン
ジン負荷に基づき多弁22゜30の開閉制御を行うもの
であり、この実施例では、第6図のグラフに示されるよ
うな内容の制御が行われる。
Further, the actuator 23 and the IsC valve 32
The actuator (not shown) is connected to an ECU (not shown). This ECU controls the opening and closing of the multiple valves 22 and 30 based on the engine speed and engine load, and in this embodiment, control is performed as shown in the graph of FIG. 6.

次に、このエンジンの作用を説明する。Next, the operation of this engine will be explained.

まず、アイドリング時等の低回転低負荷領域では、制御
弁22が開かれるとともに、ISC弁32が開かれる。
First, in a low rotation and low load region such as during idling, the control valve 22 is opened and the ISC valve 32 is opened.

これによって、第5図(b)に示されるように、ISO
通路30の各下流端301゜302が開口し、各室24
1.242内に補助吸気(ISCエア)が供給される。
As a result, as shown in FIG. 5(b), the ISO
Each downstream end 301 and 302 of the passageway 30 is open, and each chamber 24
Auxiliary intake air (ISC air) is supplied within 1.242.

そして、■SCSC2O3度によって上記ISOエアの
流量が調節されることにより、この領域でのエンジン回
転数が制御される。
By adjusting the flow rate of the ISO air by ①SCSC2O3 degrees, the engine speed in this region is controlled.

次に、同じ低回転領域でも比較的高い出力が要求される
高負荷時では、ISO弁32が閉じられるとともに、制
御弁22が閉じられる。これによって、各室241.2
42が互いに隔離され、等価管長が長くなり、共鳴効果
が得られる同調回転数が下がることにより、この低回転
領域で気柱の吸気振動の周波数と吸気弁の開閉周期がマ
ツチングしてエンジン出力が向上する。しかも、このと
き、第5図(a)に示されるように、上記制御弁22に
よってISO通路30の各下流端301゜302の開口
部が同時に塞がれるため、例えば第7図に示される構造
(単にISO通路30が設けられた構造)のように、各
室241.242がISC通路30によって連通される
ことはない。すなわち、本実施例構造では制御弁22に
よって各室241,242が完全に隔離され、上記のよ
うな連通に起因する同調回転数のずれは生じない。
Next, under high load conditions where a relatively high output is required even in the same low rotation range, the ISO valve 32 is closed and the control valve 22 is closed. As a result, each room 241.2
42 are isolated from each other, the equivalent pipe length becomes longer, and the tuned rotation speed at which a resonance effect is obtained is lowered. In this low rotation range, the frequency of the intake vibration of the air column and the opening/closing cycle of the intake valve are matched, and the engine output increases. improves. Moreover, at this time, as shown in FIG. 5(a), the openings at the downstream ends 301 and 302 of the ISO passage 30 are simultaneously closed by the control valve 22, so that the structure shown in FIG. (A structure in which only the ISO passage 30 is provided), the chambers 241 and 242 are not communicated by the ISC passage 30. That is, in the structure of this embodiment, each chamber 241, 242 is completely isolated by the control valve 22, and there is no deviation in the synchronized rotational speed due to the communication as described above.

これに対し高回転領域では、制御弁22が開かれること
によって、サージタンク14内の画室241.242が
互いに連通される。これによって、等価管長が短くなり
、共鳴効果が得られる同調回転数が高くなるとともに、
通気抵抗が低減し、これによって高回転領域での出力が
向上する。なお、このとき、両室241,242はIS
O通路30によっても連通されることになるが、圧力波
の伝播は主としてサージタンク14を介して行われるの
で、同調回転数への影響はほとんどない。
On the other hand, in the high rotation range, by opening the control valve 22, the compartments 241 and 242 in the surge tank 14 are communicated with each other. This shortens the equivalent tube length, increases the tuning speed at which resonance effects can be achieved, and
Airflow resistance is reduced, which improves power output in the high rotation range. In addition, at this time, both chambers 241 and 242 are
Although they are also communicated through the O passage 30, since the pressure waves are propagated mainly through the surge tank 14, there is almost no effect on the tuned rotation speed.

以上のように、このエンジンでは、制御弁22が閉じる
際、この制御弁22によってISO通路30の各下流端
301,302の開口部が塞がれるので、低回転領域で
も同調回転数のずれを生じることなく共鳴効果によって
高い出力を得ることができる。しかも、画室241.2
42にそれぞれISO通路30の下流端301,302
を接続しているので、下流端が1つのものと比べ、■S
Cエアをより均等に各気筒に分配することができる。ま
た、制御弁22を利用して各開口部を同時に閉じている
ので、新しい弁等を設ける必要がなく、簡単な構造で上
記効果が得られる。
As described above, in this engine, when the control valve 22 closes, the openings at the downstream ends 301 and 302 of the ISO passage 30 are closed by the control valve 22, so that deviations in the synchronized rotation speed can be prevented even in the low rotation range. High output can be obtained due to the resonance effect without any generation. Moreover, painting room 241.2
42 respectively at the downstream ends 301 and 302 of the ISO passage 30.
Since the downstream end is connected, ■S
C air can be distributed more evenly to each cylinder. Moreover, since each opening is closed simultaneously using the control valve 22, there is no need to provide a new valve, etc., and the above effects can be obtained with a simple structure.

なお、この実施例では■SC通路30の各下流端301
,302をサージタンク14の底壁からその内部に導入
するようにしているが、本発明では、各下流端301,
302の開口部が制御弁22によって閉じられる位置に
あれば、その接続構造を問わない。
In this embodiment, ■ Each downstream end 301 of the SC passage 30
, 302 are introduced into the inside of the surge tank 14 from the bottom wall thereof, but in the present invention, each downstream end 301,
As long as the opening of 302 is in a position where it can be closed by control valve 22, any connection structure may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、サージタンクの各室にスロット
ル弁の上流側と下流側とを短絡するノくイパス通路の下
流端を接続し、上記各室内においてサージタンク内の制
御弁が閉状態にあるときにこの制御弁が各下流端の開口
部を閉じるようにしたものであるので、低回転領域等で
制御弁が閉じた場合に、上記バイパス通路によって各室
が連通されることがなく、同調回転数のずれは生じない
As described above, the present invention connects each chamber of the surge tank to the downstream end of the bypass passage that short-circuits the upstream and downstream sides of the throttle valve, and in each chamber, the control valve in the surge tank is in a closed state. This control valve closes the openings at each downstream end when the engine is in the low rotation range, so when the control valve closes in the low rotation range, the bypass passage does not communicate with each chamber. , there is no deviation in the tuned rotation speed.

従って、簡単な構造で、バイパス通路による補助吸気の
均等分配を図りながら、十分な共鳴過給効果によって高
い出力を確保することができる効果がある。
Therefore, with a simple structure, it is possible to ensure high output through a sufficient resonant supercharging effect while uniformly distributing the auxiliary intake air through the bypass passage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるエンジンの吸気装置
を示す模式図、第2図は同エンジンの外観を示す平面図
、第3図は同エンジンの外観を示す正面図、第4図は同
エンジンにおけるサージタンク内の要部を示す一部断面
斜視図、第5図(a)は同サージタンク内において制御
弁が閉じた状態を示す一部断面平面図、第5図(b)は
同サージタンク内において制御弁が開いた状態を示す一
部断面平面図、第6図は上記エンジンにおいて行われる
多弁の開閉制御の内容を示すグラフ、第7図は従来のエ
ンジンの吸気装置の一例を示す模式図である。 10・・・エンジン本体、14・・・サージタンク、2
0・・・隔壁、22・・・制御弁、241・・・左室、
242・・・右室、28・・・スロットル弁、30・・
・ISO通路(バイパス通路)、301,302・・・
ISO通路の下流端、32・・・ISC弁。
FIG. 1 is a schematic diagram showing an intake system of an engine according to an embodiment of the present invention, FIG. 2 is a plan view showing the external appearance of the engine, FIG. 3 is a front view showing the external appearance of the engine, and FIG. FIG. 5(a) is a partial cross-sectional perspective view showing the main parts inside the surge tank in the same engine. FIG. 5(a) is a partial cross-sectional plan view showing the control valve in the surge tank in a closed state. FIG. A partial cross-sectional plan view showing a state in which the control valve is open in the same surge tank, Fig. 6 is a graph showing the details of the multi-valve opening/closing control performed in the above engine, and Fig. 7 is an example of a conventional engine intake system. FIG. 10... Engine body, 14... Surge tank, 2
0... Bulkhead, 22... Control valve, 241... Left ventricle,
242... Right ventricle, 28... Throttle valve, 30...
・ISO passage (bypass passage), 301, 302...
Downstream end of ISO passage, 32...ISC valve.

Claims (1)

【特許請求の範囲】[Claims] 1、隔壁および制御弁によって2室に分割されたサージ
タンクを備え、上記制御弁の開閉により上記サージタン
ク内が連通状態および隔離状態に切換えられて同調回転
数が変化するように構成される一方、スロットル弁を迂
回してその上流側と下流側とを連通する位置にバイパス
通路が設けられたエンジンの吸気装置において、上記バ
イパス通路の下流側部分を分岐して各下流端をサージタ
ンクの各室に接続するとともに、上記各室内において上
記制御弁が閉状態にあるときにこの制御弁によって上記
バイパス通路の下流端の開口部が閉じられる位置に各下
流端を配したことを特徴とするエンジンの吸気装置。
1. It has a surge tank divided into two chambers by a partition wall and a control valve, and is configured so that the inside of the surge tank is switched between a communicating state and an isolated state by opening and closing the control valve, and the synchronized rotation speed changes. In an engine intake system in which a bypass passage is provided at a position that bypasses a throttle valve and communicates the upstream side and the downstream side thereof, the downstream portion of the bypass passage is branched and each downstream end is connected to each of the surge tanks. An engine characterized in that each downstream end of the bypass passage is connected to a chamber, and each downstream end is arranged at a position where an opening at the downstream end of the bypass passage is closed by the control valve when the control valve is in a closed state in each of the chambers. intake device.
JP1327530A 1989-12-18 1989-12-18 Intake device of engine Pending JPH03189321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327530A JPH03189321A (en) 1989-12-18 1989-12-18 Intake device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327530A JPH03189321A (en) 1989-12-18 1989-12-18 Intake device of engine

Publications (1)

Publication Number Publication Date
JPH03189321A true JPH03189321A (en) 1991-08-19

Family

ID=18200132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327530A Pending JPH03189321A (en) 1989-12-18 1989-12-18 Intake device of engine

Country Status (1)

Country Link
JP (1) JPH03189321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056240A2 (en) * 2006-11-09 2008-05-15 Toyota Jidosha Kabushiki Kaisha Intake manifold for multi-cylinder engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056240A2 (en) * 2006-11-09 2008-05-15 Toyota Jidosha Kabushiki Kaisha Intake manifold for multi-cylinder engine
WO2008056240A3 (en) * 2006-11-09 2008-08-14 Toyota Motor Co Ltd Intake manifold for multi-cylinder engine

Similar Documents

Publication Publication Date Title
JPS60164619A (en) Suction device for multicylinder internal-combustion engine
JPH0361005B2 (en)
JPH03189321A (en) Intake device of engine
JPH02211369A (en) Exhaust recirculation flow passage structure of multicylinder type internal combustion engine
JPH0322514Y2 (en)
JPH051547A (en) Variable intake system of internal combustion engine
JPH0739812B2 (en) Intake control method for V-type 6-cylinder internal combustion engine
JP3248429B2 (en) Intake control device for internal combustion engine
US5542386A (en) Intake system for multiple cylinder combustion engines
JPH06330756A (en) Intake system of multicylinder internal combustion engine
JPH0247236Y2 (en)
JP2772674B2 (en) Intake device for V-type multi-cylinder internal combustion engine
JPH051545A (en) Intake system of internal combustion engine
JPH0649864Y2 (en) Intake device for V-type multi-cylinder internal combustion engine
JPH0629559B2 (en) Multi-cylinder engine intake system
JPH072981Y2 (en) Engine intake system
JPH045430A (en) Variable intake device
JPH0528338Y2 (en)
JPH0738660Y2 (en) Engine intake system
JPH0726542B2 (en) Multi-cylinder engine intake system
JPH0740662Y2 (en) Engine intake system
JPH0392534A (en) Intake device for multi-cylinder engine
JPH03286132A (en) Air intake device for multiple cylinder engine
JP2877943B2 (en) Engine intake system
JPH109071A (en) Intake device of multiple cylinder internal combustion engine