JPH03189312A - Electromagnetic force valve driver - Google Patents
Electromagnetic force valve driverInfo
- Publication number
- JPH03189312A JPH03189312A JP1330101A JP33010189A JPH03189312A JP H03189312 A JPH03189312 A JP H03189312A JP 1330101 A JP1330101 A JP 1330101A JP 33010189 A JP33010189 A JP 33010189A JP H03189312 A JPH03189312 A JP H03189312A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- driver
- intake valve
- electromagnet
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004907 flux Effects 0.000 claims abstract description 11
- 239000004020 conductor Substances 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
Landscapes
- Valve Device For Special Equipments (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、超電導電磁石により発生する磁束中の電流に
作用する力でエンジンの吸排気バルブを開閉制御する電
磁力バルブ駆動装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electromagnetic force valve drive device that controls opening and closing of intake and exhaust valves of an engine using a force acting on a current in a magnetic flux generated by a superconducting electromagnet.
(従来の技術)
従来の吸排気バルブの開閉駆動装置としては、1本のシ
ャフトに吸気用及び排気用のカムを配したカムシャフト
をエンジンの上部もしくは側面に配設し、ベルト等の回
転伝達手段によりエンジンの回転軸であるクランクシャ
フトと該カムシャフトとを連結しエンジン回転位相と同
期してカムシャフトを回転駆動する。そして、該カムシ
ャフトのカム面からロッカーアームやブッシングロッド
等のリンク機構を介してバルブの軸端面を押すことによ
り、常時スプリングにより閉方向にバイアスされている
吸排気バルブを開閉駆動するものがある。(Prior art) As a conventional opening/closing drive device for intake and exhaust valves, a camshaft with intake and exhaust cams arranged on a single shaft is installed on the top or side of the engine, and the rotation is transmitted by a belt, etc. The means connects the crankshaft, which is the rotating shaft of the engine, and the camshaft, and drives the camshaft to rotate in synchronization with the rotational phase of the engine. Then, by pushing the shaft end surface of the valve from the cam surface of the camshaft through a link mechanism such as a rocker arm or bushing rod, there is a device that opens and closes the intake and exhaust valves that are always biased in the closing direction by a spring. .
また、他の装置としては、吸気用のカムを配した吸気カ
ムシャフトと排気用のカムを配した排気カムシャフトを
各々エンジン上部に配設し、吸気カムシャフトのカム面
で吸気バルブの軸端面を、そして排気カムシャフトのカ
ム面で排気バルブの軸端面を直接押すことにより吸排気
バルブを開口させる。In addition, as another device, an intake camshaft with an intake cam and an exhaust camshaft with an exhaust cam are installed at the top of the engine, and the cam surface of the intake camshaft is connected to the shaft end of the intake valve. Then, the intake and exhaust valves are opened by directly pushing the shaft end surface of the exhaust valve with the cam surface of the exhaust camshaft.
(発明が解決しようとする課題)
このような従来の吸排気バルブの開閉駆動装置は、カム
シャフト及びリンク機構をエンジンに付設せねばならず
、そのためエンジンが大型化する。また該カムシャフト
及びリンク機構はエンジンの出力軸により駆動されるた
め、該カムシャフト及びリンク機構を駆動する際の摩擦
抵抗によりエンジン出力の一部が消費され、エンジンの
実効出力が低下する。またエンジン運転中に吸排気ノ(
ルブの開閉タイミングを変更できず、所定のエンジン回
転数に合わせてバルブ開閉タイミングを調整するため、
該所定の回転数と異なる回転数での運転時にはエンジン
の出力及び効率が低下する。(Problems to be Solved by the Invention) Such a conventional intake/exhaust valve opening/closing drive device requires a camshaft and a link mechanism to be attached to the engine, which increases the size of the engine. Furthermore, since the camshaft and link mechanism are driven by the output shaft of the engine, a portion of the engine output is consumed due to frictional resistance when driving the camshaft and link mechanism, reducing the effective output of the engine. Also, while the engine is running, the intake and exhaust gas (
The valve opening/closing timing cannot be changed, and the valve opening/closing timing is adjusted according to the specified engine speed.
When operating at a rotation speed different from the predetermined rotation speed, the output and efficiency of the engine decrease.
上記問題を解決するために、カムシャフトによらず電磁
石による電磁力により吸排気バルブの開閉駆動を行なう
装置が、特開昭58−183805号公報、あるいは特
開昭61−76713号公報に記載されている。しかし
、上記2公報により開示された装置における電磁石の構
成は、吸排気バルブに付設した磁性体を該吸排気バルブ
の移動方向に配設した電磁石により吸引し、該吸引力に
よって吸排気バルブを駆動するものである。よって、吸
排気バルブの移動に伴ない電磁石と磁性体との間隔が変
化するため磁性体に作用する吸引力も変化し、吸排気バ
ルブの駆動が不安定になるという問題がある。In order to solve the above problem, a device for opening and closing intake and exhaust valves using electromagnetic force generated by an electromagnet instead of using a camshaft is described in Japanese Patent Laid-Open No. 58-183805 or Japanese Patent Laid-Open No. 61-76713. ing. However, the configuration of the electromagnet in the device disclosed in the above two publications is such that a magnetic body attached to an intake/exhaust valve is attracted by an electromagnet disposed in the moving direction of the intake/exhaust valve, and the intake/exhaust valve is driven by the attraction force. It is something to do. Therefore, as the intake/exhaust valve moves, the distance between the electromagnet and the magnetic body changes, so the attractive force acting on the magnetic body also changes, causing a problem in that the driving of the intake/exhaust valve becomes unstable.
本発明は、上記の点に鑑みてなされたもので、吸排気バ
ルブに作用する駆動力が吸排気バルブの移動による影響
を受けず安定する電磁力バルブ駆動装置を提供しようと
するものである。The present invention has been made in view of the above points, and it is an object of the present invention to provide an electromagnetic force valve drive device in which the driving force acting on the intake and exhaust valves is not affected by movement of the intake and exhaust valves and is stable.
(問題点を解決するための手段)
本発明によれば、エンジンの吸排気バルブに連結し導電
体からなる往復運動自在な駆動体と、該駆動体の往復運
動方向に対して垂直方向に通過する磁束を発生する超電
導電磁石と、該駆動体中を該往復運動方向及び磁束の通
過方向に対して垂直方向に通電する通電手段と、該通電
手段の通電量及び通電方向を制御する通電制御手段とを
有することを特徴とする電磁力バルブ駆動装置を提供で
きる。(Means for Solving the Problems) According to the present invention, there is provided a driving body that is connected to an intake and exhaust valve of an engine and is made of a conductive material and can freely reciprocate, a superconducting electromagnet that generates a magnetic flux, an energizing means that energizes the driving body in a direction perpendicular to the reciprocating direction and the passing direction of the magnetic flux, and energization control means that controls the amount and direction of energization of the energizing means. It is possible to provide an electromagnetic force valve driving device characterized by having the following.
(作用)
本発明の電磁力バルブ駆動装置では、吸排気バルブと連
動する導電体に対し常時超電導電磁石により発生する強
力な磁束を作用させ、該導電体に通電することにより発
生する電流が磁界から受ける力で吸排気バルブを駆動す
るため吸排気バルブに作用する駆動力が吸排気バルブの
移動による影響を受けず安定する。(Function) In the electromagnetic force valve driving device of the present invention, a strong magnetic flux generated by a superconducting electromagnet is constantly applied to a conductor interlocking with an intake/exhaust valve, and the current generated by energizing the conductor is removed from the magnetic field. Since the intake and exhaust valves are driven by the received force, the driving force acting on the intake and exhaust valves is not affected by the movement of the intake and exhaust valves and is stable.
(実施例)
以下、本発明の一実施例を図面に従って詳細に説明する
。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は、本発明による駆動装置を示すブロック図であ
る。FIG. 1 is a block diagram showing a drive device according to the invention.
吸排気バルブの内、以下主に吸気バルブについて示す。Among the intake and exhaust valves, the intake valves will mainly be described below.
1はセラミックス等の軽量高強度材で形成された吸気バ
ルブである。該吸気バルブ1の軸部はバルブガイド11
により軸方向に自在に軸承されており、軸端部には導電
体からなる駆動体12が接続している。該駆動体12の
斜視図を本図右上部に示す。図に示すごとく該駆動体1
2は平板部分を有しており、Aからの矢視を破線の左側
に示し、Bからの矢視を右側に示す。吸気バルブ1の上
方には、駆動体12の平板部分の両側に対向する磁極1
4と超電導コイル15とからなる電磁石が配設されてい
る。該超電導コイル15は超電導物質からなるコイルを
液体ヘリウムで冷却し、更に該液体ヘリウムを液体水素
で冷却している。そして、該液体水素が気化することに
より発生する水素ガスをエンジン3の燃料に使用する。1 is an intake valve made of a lightweight, high-strength material such as ceramics. The shaft portion of the intake valve 1 is a valve guide 11.
It is freely supported in the axial direction by a shaft, and a driving body 12 made of a conductive material is connected to the shaft end. A perspective view of the driver 12 is shown in the upper right corner of the figure. As shown in the figure, the driving body 1
2 has a flat plate portion, and the arrow view from A is shown on the left side of the broken line, and the arrow view from B is shown on the right side. Above the intake valve 1 are magnetic poles 1 facing on both sides of the flat plate portion of the driver 12.
An electromagnet consisting of a superconducting coil 15 and a superconducting coil 15 is provided. The superconducting coil 15 is made of a superconducting material and is cooled with liquid helium, and the liquid helium is further cooled with liquid hydrogen. Hydrogen gas generated by vaporizing the liquid hydrogen is used as fuel for the engine 3.
また、該磁極14の対向方向と直角方向にはブラシ13
が対向して接続されてる。尚、駆動体12とバルブガイ
ド11との間にはスプリング16が配設されており、吸
気バルブ1に常時閉方向のパイアスカを作用させている
。Further, a brush 13 is provided in a direction perpendicular to the direction facing the magnetic pole 14.
are connected facing each other. Note that a spring 16 is disposed between the driver 12 and the valve guide 11, and acts on the intake valve 1 with a bias force in the normally closing direction.
上記超電導コイル15及びブラシ13はコントロールユ
ニット2の入出力インターフェイス24に接続されてい
る。該コントロールユニット2内部には外部との信号の
入出力を行なう該人出力インターフェイス24の他に、
プログラム及びデータを予め記憶するROM22と、該
ROM22に記憶されたプログラムの下に演算を行なう
CPU21と、入力信号及び演算結果を一時記憶するR
AM23と、コントロールユニット2内の信号の流れを
制御するコントロールメモリ25とが設けられている。The superconducting coil 15 and brush 13 are connected to an input/output interface 24 of the control unit 2. Inside the control unit 2, in addition to the human output interface 24 for inputting and outputting signals with the outside,
A ROM 22 that stores programs and data in advance, a CPU 21 that performs calculations based on the programs stored in the ROM 22, and an R that temporarily stores input signals and calculation results.
AM23 and a control memory 25 that controls the flow of signals within the control unit 2 are provided.
そして、エンジン3の回転軸近傍には該エンジン3の回
転数及びクランク角を検知する回転センサ31が配設さ
れており、該回転センサ31は上記入出力インターフェ
イス24に接続され、回転数信号及びクランク角信号を
コントロールユニット2へ入力している。A rotation sensor 31 that detects the rotation speed and crank angle of the engine 3 is disposed near the rotation axis of the engine 3. The rotation sensor 31 is connected to the input/output interface 24, and is connected to the rotation speed signal and the crank angle. A crank angle signal is input to the control unit 2.
次に、本発明の作用について説明する。Next, the operation of the present invention will be explained.
第2図は、N1図におけるI−1断面を示す図である。FIG. 2 is a diagram showing the I-1 cross section in the N1 diagram.
超電導コイル15へ通電し、図において左側の磁極14
をN極、右側の磁極14をS極とし、駆動体12に対し
右から左方向へ磁束を通過させる。そして、ブラシ13
を介して駆動体12に上から下方向へ通電する。すると
、フレミングの左手の法則により駆動体12には、紙面
に垂直上方向に駆動力が作用する。該駆動力の作用方向
は吸気バルブ1の開方向であるので、該吸気バルブ1は
開方向へと駆動される。The superconducting coil 15 is energized, and the magnetic pole 14 on the left side in the figure
is the north pole, and the right magnetic pole 14 is the south pole, and the magnetic flux is passed through the drive body 12 from right to left. And brush 13
The driving body 12 is energized from above to below. Then, according to Fleming's left-hand rule, a driving force acts on the driving body 12 in an upward direction perpendicular to the plane of the drawing. Since the acting direction of the driving force is the opening direction of the intake valve 1, the intake valve 1 is driven in the opening direction.
次に、通電量及び通電方向と吸気バルブ1の移動量との
関係について説明する。Next, the relationship between the amount and direction of energization and the amount of movement of the intake valve 1 will be explained.
第3図は、通電量及び通電方向と吸気バルブ1の移動量
との関係を示す図である0図の上部はプロファイル曲線
であり、下部は通電状態を示す線図である。尚、通電方
向は吸気バルブ1を開方向へ駆動する通電方向を正方向
とし、閉方向へ駆動する通電方向を逆方向とする。FIG. 3 is a diagram showing the relationship between the amount of energization, the direction of energization, and the amount of movement of the intake valve 1. The upper part of FIG. 0 is a profile curve, and the lower part is a diagram showing the energization state. Note that the energization direction is defined as the positive direction that drives the intake valve 1 in the opening direction, and the reverse direction as the energization direction that drives the intake valve 1 in the closing direction.
吸気バルブ1の開タイミングになるまでは、逆方向に通
電し、吸気バルブ1を閉状態に維持する0次に、吸気バ
ルブ1の間タイミングになると通電方向を正方向にし、
吸気バルブ1を開方向へ駆動する。吸気バルブ1が所定
距離移動すると通電方向を逆方向に反転し、開方向への
移動速度を減速する。そして、吸気バルブlを停止させ
た後、閉方向へ8動させる。該状態で吸気バルブ1が着
座すると衝撃が大となり吸気バルブ1が破壊する虞があ
るので、再度通電方向を正方向に反転させ吸気バルブ1
の閉方向の移動速度を減速し、着座衝撃を緩和する。そ
して、着座後には再び通電方向を逆方向にして磁界の開
タイミングまで吸気バルブ1を閉状態とする。Until the opening timing of the intake valve 1 is reached, the current is applied in the opposite direction to maintain the intake valve 1 in the closed state.
The intake valve 1 is driven in the opening direction. When the intake valve 1 moves a predetermined distance, the energization direction is reversed and the speed of movement in the opening direction is reduced. Then, after stopping the intake valve 1, it is moved 8 times in the closing direction. If the intake valve 1 is seated in this state, the impact will be large and there is a risk that the intake valve 1 will be destroyed, so the direction of energization should be reversed again to the positive direction and the intake valve 1
The movement speed in the closing direction is reduced to reduce the seating impact. After seating, the current direction is reversed again to keep the intake valve 1 closed until the magnetic field opens.
次に、超電導コイル15の制御回路について説明する。Next, a control circuit for the superconducting coil 15 will be explained.
第4図は、超電導コイル15の制御回路を示す図である
。FIG. 4 is a diagram showing a control circuit for the superconducting coil 15.
電源61はスイッチ62を介して固定抵抗63、超電導
コイル15及び可変抵抗65の並列回路と接続している
。そして、超電導コイル15の中間部と可変抵抗65の
中間端子とは電圧検出器64を介して接続されており、
超電導コイル15と可変抵抗65とはホイットストーン
ブリッジを形成している。また、電圧検知器64の出力
端子は警報信号発生器66に接続されている。The power source 61 is connected to a parallel circuit of a fixed resistor 63, a superconducting coil 15, and a variable resistor 65 via a switch 62. The intermediate portion of the superconducting coil 15 and the intermediate terminal of the variable resistor 65 are connected via a voltage detector 64.
The superconducting coil 15 and the variable resistor 65 form a whitstone bridge. Further, the output terminal of the voltage detector 64 is connected to an alarm signal generator 66.
超電導コイル15の一部に常電導部分が発生すると急速
にコイル全体に常電導部が拡大し、コイルを破壊する危
険がある。超電導コイル15と可変抵抗65との各々の
半分部分(よりホイットストーンブリッジが形成されて
いるので、超電導コイル15の一部に常電導部分が発生
すると電圧検出器64が電圧として該常電導の発生を検
知し、警報信号発生器66に信号を出力する。該警報信
号発生器66は電圧検′出器64からの信号により警報
信号を出力すると共に、スイッチ62をオフにし、超電
導コイル15への通電を遮断する。そして、超電導コイ
ル15に保有されている電気エネルギは抵抗63により
消費され、超電導コイル15は保護され破壊しない。If a normal conducting part occurs in a part of the superconducting coil 15, the normal conducting part will rapidly expand to the entire coil, and there is a danger that the coil will be destroyed. Each half of the superconducting coil 15 and the variable resistor 65 (a Whetstone bridge is formed), so when a normal conduction portion occurs in a part of the superconducting coil 15, the voltage detector 64 detects the occurrence of the normal conduction as a voltage. is detected and outputs a signal to the alarm signal generator 66. The alarm signal generator 66 outputs an alarm signal based on the signal from the voltage detector 64, turns off the switch 62, and turns off the signal to the superconducting coil 15. Then, the electrical energy held in the superconducting coil 15 is consumed by the resistor 63, and the superconducting coil 15 is protected and will not be destroyed.
ところで、エンジン3の運転終了時には超電導コイル1
への電力供給は消失し、吸気バルブ1を閉状態に保持す
る電磁力が消滅するため、スプリング16により吸気バ
ルブ1を閉状態に保持する。スプリング16の保持力は
開方向への駆動力に対して充分小に設定されている。By the way, when engine 3 finishes operating, superconducting coil 1
The electric power supply to the intake valve 1 disappears, and the electromagnetic force that holds the intake valve 1 in the closed state disappears, so the spring 16 holds the intake valve 1 in the closed state. The holding force of the spring 16 is set to be sufficiently small relative to the driving force in the opening direction.
尚、ROM22内に、予めエンジン回転数とバルブ間タ
イミングの関係マツプを記憶しておき、エンジン3の回
転数の変化に伴ないバルブ間タイミングを変更すること
によりエンジン回転数の全領域においてエンジン3の出
力及び効率を向上させることができる。またエンジン3
の回転数の高低に伴ない各気筒ごとの吸排気バルブを駆
動あるいは停止することにより、運転する気筒数を増減
する気筒制御も可能である。A relationship map between the engine speed and the inter-valve timing is stored in advance in the ROM 22, and by changing the inter-valve timing as the engine speed changes, the engine 3 The output and efficiency of the system can be improved. Also engine 3
It is also possible to control the cylinders by increasing or decreasing the number of operating cylinders by driving or stopping the intake and exhaust valves for each cylinder as the rotational speed increases or decreases.
以上、1個の吸気バルブ1の作動について説明したが、
1個の電磁石で複数個の吸気バルブを駆動することも可
能である。The operation of one intake valve 1 has been explained above, but
It is also possible to drive multiple intake valves with one electromagnet.
第5図は、1個の電磁石で複数個の吸気バルブを駆動す
る場合の実施例を示す図である。FIG. 5 is a diagram showing an embodiment in which a plurality of intake valves are driven by one electromagnet.
複数個の吸気バルブ1に各々接続している駆動体12を
、磁気通路4と交互に並設することにより磁極14間に
作用する磁束は減衰することなく各駆動体12を通過す
るので、各駆動体12への通電状態を個別に制御するこ
とにより各吸気バルブ1を駆動制御することができる。By arranging the driving bodies 12 connected to a plurality of intake valves 1 alternately with the magnetic passages 4, the magnetic flux acting between the magnetic poles 14 passes through each driving body 12 without attenuation. By individually controlling the energization state of the driving body 12, each intake valve 1 can be driven and controlled.
以上、本発明の実施例を主に吸気バルブについて説明し
たが、排気バルブについても同様に本発明による駆動装
置が適用できることは明白である。また本発明の精神か
ら逸れないかぎりで、種々の異なる実施例は容易に構成
できるから、本発明は前記特許請求の範囲において記載
した限定以外、特定の実施例に制約されるものではない
。Although the embodiments of the present invention have been described above mainly regarding intake valves, it is clear that the drive device according to the present invention can be applied to exhaust valves as well. Further, since various different embodiments can be easily constructed without departing from the spirit of the invention, the present invention is not limited to specific embodiments other than the limitations set forth in the claims.
(発明の効果)
以上説明したように、吸排気バルブと連動する導電体に
対し常時超電導電磁石により発生する強力な磁束を作用
させ、該導電体に通電することにより発生する電流が磁
界から受ける力で吸排気バルブを駆動するため吸排気バ
ルブに作用する駆動力が吸排気バルブの移動による影響
を受けず安定する電磁力バルブ駆動装置を提供できる。(Effects of the Invention) As explained above, a strong magnetic flux generated by a superconducting electromagnet is constantly applied to a conductor that is interlocked with an intake/exhaust valve, and the current generated by energizing the conductor receives the force from the magnetic field. Therefore, it is possible to provide an electromagnetic force valve driving device in which the driving force acting on the intake and exhaust valves is not affected by movement of the intake and exhaust valves and is stable.
第1図は、本発明の一実施例を示すブロック図、第2図
は、第1図におけるI−1断面を示す図、第3図は、通
電量及び通電方向と吸気バルブの移動量との関係を示す
図、第4図は、超電導コイルの制御回路を示す図、第5
図は、1個の電磁石で複数個の吸気バルブを駆動する場
合の実施例を示す図である。
1・・・吸気バルブ、2・・・コントロールユニット、
12・・・駆動体、15・・・超電導コイル。Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the I-1 cross section in Fig. 1, and Fig. 3 shows the amount and direction of energization and the amount of movement of the intake valve. Figure 4 is a diagram showing the relationship between
The figure shows an example in which a plurality of intake valves are driven by one electromagnet. 1... Intake valve, 2... Control unit,
12...Driver, 15...Superconducting coil.
Claims (3)
往復運動自在な駆動体と、該駆動体の往復運動方向に対
して垂直方向に通過する磁束を発生する超電導電磁石と
、該駆動体中を該往復運動方向及び磁束の通過方向に対
して垂直方向に通電する通電手段と、該通電手段の通電
量及び通電方向を制御する通電制御手段とを有すること
を特徴とする電磁力バルブ駆動装置。(1) A driving body that is connected to the intake and exhaust valves of the engine and is made of an electrical conductor and can freely reciprocate; a superconducting electromagnet that generates a magnetic flux that passes perpendicularly to the direction of the reciprocating movement of the driving body; An electromagnetic force valve driving device comprising: energizing means for energizing in a direction perpendicular to the direction of reciprocating motion and the passing direction of magnetic flux; and energizing control means for controlling the amount and direction of energization of the energizing means. .
上記通電制御手段は複数個の駆動体各々について個別に
通電量及び通電方向を制御することを特徴とする請求項
(1)記載の電磁力バルブ駆動装置。(2) A plurality of the above-mentioned driving bodies are arranged in parallel in the direction in which the magnetic flux passes,
2. The electromagnetic force valve drive device according to claim 1, wherein the energization control means individually controls the amount and direction of energization for each of the plurality of drive bodies.
より行なうと共に、液体水素の気化により発生する水素
ガスを上記エンジンの燃料に使用することを特徴とする
請求項(1)あるいは(2)記載の電磁力バルブ駆動装
置。(3) The electromagnet according to claim (1) or (2), characterized in that the superconducting electromagnet is cooled by at least liquid hydrogen, and hydrogen gas generated by vaporizing the liquid hydrogen is used as fuel for the engine. Power valve drive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1330101A JP2566474B2 (en) | 1989-12-20 | 1989-12-20 | Electromagnetic valve drive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1330101A JP2566474B2 (en) | 1989-12-20 | 1989-12-20 | Electromagnetic valve drive |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03189312A true JPH03189312A (en) | 1991-08-19 |
JP2566474B2 JP2566474B2 (en) | 1996-12-25 |
Family
ID=18228806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1330101A Expired - Lifetime JP2566474B2 (en) | 1989-12-20 | 1989-12-20 | Electromagnetic valve drive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2566474B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077350A1 (en) * | 1999-06-10 | 2000-12-21 | Bayerische Motoren Werke Aktiengesellschaft | Electromagnetic actuator for actuating an internal combustion engine valve |
EP1170469A1 (en) * | 2000-07-07 | 2002-01-09 | Renault | Electromagnetic valve drive |
US7051687B2 (en) | 2001-01-19 | 2006-05-30 | Honda Giken Kogya Kabushiki Kaisha | Valve operation controller |
-
1989
- 1989-12-20 JP JP1330101A patent/JP2566474B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077350A1 (en) * | 1999-06-10 | 2000-12-21 | Bayerische Motoren Werke Aktiengesellschaft | Electromagnetic actuator for actuating an internal combustion engine valve |
US6477995B2 (en) | 1999-06-10 | 2002-11-12 | Siemens Aktiengesellschaft | Electromagnetic actuator for actuating a lifting valve of an internal combustion engine |
EP1170469A1 (en) * | 2000-07-07 | 2002-01-09 | Renault | Electromagnetic valve drive |
FR2811369A1 (en) * | 2000-07-07 | 2002-01-11 | Renault | DEVICE FOR LINEAR DRIVING OF A VALVE USING PERMANENT MAGNETS |
US7051687B2 (en) | 2001-01-19 | 2006-05-30 | Honda Giken Kogya Kabushiki Kaisha | Valve operation controller |
KR100815035B1 (en) * | 2001-01-19 | 2008-03-18 | 혼다 기켄 고교 가부시키가이샤 | Valve gear control device of internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP2566474B2 (en) | 1996-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0404965B1 (en) | Device for step-driving valves | |
JP2652802B2 (en) | Electromagnetic valve drive | |
US5111779A (en) | Electromagnetic valve actuating system | |
JPH02259211A (en) | Electromagnetic force driving device of valve | |
EP0406443B1 (en) | Electromagnetic valve actuator | |
JP2639587B2 (en) | Valve stepping drive | |
EP0406444B1 (en) | Electromagnetic valve actuator | |
EP0401390B1 (en) | Electromagnetic valve actuator | |
JPH03189312A (en) | Electromagnetic force valve driver | |
JPH02308910A (en) | Electromagnetic force operated valve drive device | |
JP2606740B2 (en) | Valve stepping drive | |
JP2824667B2 (en) | Electromagnetic valve drive | |
JP2772569B2 (en) | Electromagnetic valve drive | |
JP2688990B2 (en) | Electromagnetic valve drive | |
JPH03185207A (en) | Electromagnetic valve driving device | |
JPH0347414A (en) | Driver device for solenoid valve | |
KR0166520B1 (en) | Valve open-close device of an engine | |
JP3040784B2 (en) | Induction type electromagnetic valve drive | |
JPH0381511A (en) | Induced type electromagnetic valve driving device | |
JPH0392516A (en) | Movable magnetic pole of solenoid valve | |
JPH02271011A (en) | Stepping driving device of valve | |
JPH03182604A (en) | Induction-type electromagnetic force valve drive unit | |
JP2789120B2 (en) | Electromagnetic valve drive | |
JPH03105006A (en) | Electromagnetic force valve driving device | |
JPH0347413A (en) | Driver device for electromagnetic force exhaust valve |