JPH0381511A - Induced type electromagnetic valve driving device - Google Patents

Induced type electromagnetic valve driving device

Info

Publication number
JPH0381511A
JPH0381511A JP1219037A JP21903789A JPH0381511A JP H0381511 A JPH0381511 A JP H0381511A JP 1219037 A JP1219037 A JP 1219037A JP 21903789 A JP21903789 A JP 21903789A JP H0381511 A JPH0381511 A JP H0381511A
Authority
JP
Japan
Prior art keywords
intake
magnetic pole
magnetic
magnetic field
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1219037A
Other languages
Japanese (ja)
Other versions
JP2787342B2 (en
Inventor
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP1219037A priority Critical patent/JP2787342B2/en
Publication of JPH0381511A publication Critical patent/JPH0381511A/en
Application granted granted Critical
Publication of JP2787342B2 publication Critical patent/JP2787342B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To have a strong driving force at the time of start-up of driving without influence by movement of an intake and exhaust valve, by forming proceeding magnetic field with a magnetic pole provided aside on the side surface of a secondary electric conductor provided around a needle. CONSTITUTION:In a controller 4, at the normal time when an engine is operated, an acceleration pedal stepping amount of an accelerator pedal is detected from a load sensor 6, and an engine speed is detected from a rotation sensor 5. Then, the opening and closing timing of an intake valve 1 corresponding to the acceleration pedal stepping-in amount and the engine speed is calculated with a relation map which is set beforehand. When a crank angle detected by the rotating sensor 5 has the opening timing of the intake valve 1, the intake valve 1 is primarily driven by induced current generated on a secondary electric conductor 22 by electrifying an upper part coil 34, and a magnetic field formed by an exciting coil 33. After driving is started, an alternating electric power is supplied to the exciting coil 33, and a magnetic field formed by magnetic flux from a magnetic pole 32 makes a proceeding magnetic field. It is thus possible to opening-and-closing drive the intake valve 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸排気バルブを電磁力により開閉
駆動する誘導式電磁力バルブ駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an induction type electromagnetic force valve driving device that opens and closes intake and exhaust valves of an engine using electromagnetic force.

(従来の技術) 従来の吸排気バルブの開閉駆動装置は、エンジン回転位
相と同期して回転するカムシャフトによって、ロッカー
アームやブッシングロッド等のリンク機構を介してバル
ブの軸端面を押すことにより、常時スプリングにより閉
方向にバイアスされている吸排気バルブを開閉駆動する
。該開閉駆動装置は、カムシャフト及びリンク機構をエ
ンジンに(−1設せねばならず、そのためエンジンが大
型化し、カムシャフト及びリンク機構を駆動する際の摩
擦抵抗によりエンジン出力の一部が消費され、エンジン
の実効出力か低下する。またエンジン運転中に吸排気バ
ルブの開閉タイくングを変更できないので、所定のエン
ジン回転数に合わせてバルブ開閉タイミングを調整しな
ければならない。すると、該所定の回転数と異なる回転
数ての運転時にはエンジンの出力及び効率が低下する。
(Prior Art) A conventional intake/exhaust valve opening/closing drive device uses a camshaft that rotates in synchronization with the engine rotational phase to push the end face of the valve shaft through a link mechanism such as a rocker arm or bushing rod. It opens and closes the intake and exhaust valves, which are always biased in the closing direction by springs. The opening/closing drive device requires a camshaft and a link mechanism to be installed in the engine, which increases the size of the engine and consumes a portion of the engine output due to frictional resistance when driving the camshaft and link mechanism. , the effective output of the engine decreases.Furthermore, since the opening/closing timing of the intake and exhaust valves cannot be changed while the engine is running, the valve opening/closing timing must be adjusted in accordance with a predetermined engine speed. When operating at a rotation speed different from the rotation speed, the output and efficiency of the engine decrease.

そこで、上記問題を解決するために、吸排気バルブの開
閉駆動をカムシャフトによらず電磁石による電磁力で行
なう装置か、特開昭58183805号公報、あるいは
特開昭6176713号公報に記載されている。
Therefore, in order to solve the above problem, a device is proposed in which the intake and exhaust valves are driven to open and close by electromagnetic force using an electromagnet instead of using a camshaft, which is described in Japanese Patent Laid-Open No. 58183805 or Japanese Patent Laid-Open No. 6176713. .

(発明が解決しようとする課題) しかし、上記2公報により開示された装置は、吸t、l
)気バルブに付設した磁性体を該吸排気バルブの移動方
向に配設した電磁石により吸引し、該吸引力によって吸
排気バルブを駆動するものである。
(Problems to be Solved by the Invention) However, the devices disclosed in the above two publications
) A magnetic body attached to the air valve is attracted by an electromagnet disposed in the direction of movement of the intake/exhaust valve, and the intake/exhaust valve is driven by the attraction force.

磁性体に作用する吸引力は、電磁石と1iit性体との
間隔の二乗に反比例するため、該間隔の変化に伴ない吸
引力が変化し吸1j[気バルブの駆動が不安定になると
いう問題がある。また、駆動開始時には吸排気バルブに
対し強力な加速力を与えなりればならないが、上記2公
報により開示された装置は、駆動開始時におりる電磁石
と磁性体との間隔が最大となり、よって吸排気バルブに
対して作用する駆動力は最小となる。
Since the attraction force acting on the magnetic body is inversely proportional to the square of the distance between the electromagnet and the 1iit magnetic body, the attraction force changes as the distance changes, causing the problem that the drive of the suction valve becomes unstable. There is. Furthermore, a strong accelerating force must be applied to the intake and exhaust valves at the start of driving, but in the devices disclosed in the above two publications, the distance between the electromagnet and the magnetic body is maximum at the start of driving, so The driving force acting on the exhaust valve is minimal.

木発明は、上記の点に鑑みてなされたものて、吸排気バ
ルブに作用する駆動力か吸排気バルブの移動による影響
を受けず安定して吸排気バルブの開閉制御を行ない、か
つ、駆動開始時には吸排気バルブに強力な駆動力を作用
させる電磁力バルブ駆動装置を提供しようとするもので
ある。
The present invention has been made in view of the above points, and is capable of stably controlling the opening and closing of the intake and exhaust valves without being affected by the driving force acting on the intake and exhaust valves or by movement of the intake and exhaust valves, and by starting the drive. The present invention attempts to provide an electromagnetic force valve driving device that sometimes applies a strong driving force to intake and exhaust valves.

(課題を解決するための手段) 木発明によれば、エンジンの吸排気バルブに連結し往復
自在な円筒形の可動磁極と、該可動磁極の外周面と対向
し円筒軸方向に並設された磁極と、該磁極に捲設され吸
排気バルブの初期駆動時には同一方向の磁界を形成し、
開状態時には円筒軸方向の進行磁界を形成するコイルと
、上記磁極と対向して上記可動磁極の外周面を被覆する
2次導体と、該2次導体内部に押入される固定磁極を有
し吸排気バルブの初期駆動時に2次導体に円周方向の電
流な誘導せしめる電磁石と、上記コイル及び電磁石への
通電状態を制御し吸排気バルブを開閉駆動せしめる通電
制御手段とを有することを特徴とする話導式電磁力バル
ブ駈動装置を提供てきる。
(Means for Solving the Problem) According to the invention, a cylindrical movable magnetic pole that is connected to an intake and exhaust valve of an engine and can freely reciprocate, and a cylindrical movable magnetic pole that faces the outer peripheral surface of the movable magnetic pole and are arranged in parallel in the axial direction of the cylinder. A magnetic pole, which is wound around the magnetic pole and forms a magnetic field in the same direction during initial operation of the intake and exhaust valves,
The magnet has a coil that forms a traveling magnetic field in the cylindrical axis direction when in an open state, a secondary conductor that faces the magnetic pole and covers the outer peripheral surface of the movable magnetic pole, and a fixed magnetic pole that is pushed into the secondary conductor. It is characterized by comprising an electromagnet that induces a current in the circumferential direction in the secondary conductor when the exhaust valve is initially driven, and an energization control means that controls the energization state of the coil and the electromagnet to open and close the intake and exhaust valves. We provide a guided electromagnetic valve cantering device.

(作用) 本発明の誘導式電磁カハルブ駆動装置ては、可動子に周
設された2次導体の側面に並設された磁極により進行磁
界を形威し、2次導体に誘導される電流が進行磁界から
受る電磁力により吸排気バルブを往復駆動するのて、吸
′J7+気バルブの位置か変化しても駆動力は変化せず
、従って、安定した開閉制御を行なうことかてきる。ま
た、初期駆動時には2次導体に対して同一方向の磁界を
作用させ、2次導体内に配設された磁極により誘導され
る電流が該同一方向の磁界から受る電磁力て駆動するの
で、2次導体の全周に駆動力が作用し、よって強力な駆
動力を発生させることがてきる。
(Function) In the induction type electromagnetic Kahalb drive device of the present invention, a traveling magnetic field is formed by the magnetic poles arranged in parallel on the side surface of the secondary conductor surrounding the movable element, and the current induced in the secondary conductor is Since the intake and exhaust valves are reciprocated by the electromagnetic force received from the advancing magnetic field, the driving force does not change even if the position of the intake and exhaust valves changes, and therefore stable opening/closing control can be performed. In addition, during initial driving, a magnetic field in the same direction is applied to the secondary conductor, and the current induced by the magnetic poles arranged inside the secondary conductor is driven by the electromagnetic force received from the magnetic field in the same direction. The driving force acts on the entire circumference of the secondary conductor, and therefore a strong driving force can be generated.

(実施例) 以下、木発明の一実施例を図面に従って詳細に説明する
(Example) Hereinafter, an example of the wooden invention will be described in detail with reference to the drawings.

第1図は、木発明の駆動装置の構成を示すブロック図で
ある。尚、エンジンには上記のごとく吸気バルブと排気
バルブとが設けられているが、本発明による駆動装置は
吸排気バルブ共に適用できるので、以下の説明は主に吸
気バルブについて述べる。
FIG. 1 is a block diagram showing the configuration of a drive device according to the invention. Although the engine is provided with an intake valve and an exhaust valve as described above, the drive device according to the present invention can be applied to both the intake and exhaust valves, so the following explanation will mainly be made regarding the intake valve.

1は、軽量であり高温強度に優れた窒化珪素等のセラミ
ックス材あるいは耐熱合金からなる吸気バルブである。
Reference numeral 1 denotes an intake valve made of a ceramic material such as silicon nitride or a heat-resistant alloy, which is lightweight and has excellent high-temperature strength.

該吸気バルブ1の軸部はバルブカイト12によって往復
自在に軸承されている。そして、該吸気バルブ1の閉鎮
時には、本図に示すごとく、吸排気バルブ1の傘部がバ
ルブシート13に着座し吸気口を閉鎖する。
The shaft portion of the intake valve 1 is rotatably supported by a valve kite 12. When the intake valve 1 is closed, the umbrella portion of the intake/exhaust valve 1 is seated on the valve seat 13 to close the intake port, as shown in this figure.

該吸気バルブ1の軸端部には可動子2が連結している。A movable element 2 is connected to the shaft end of the intake valve 1 .

該可動子2は、円筒形の磁気通路21と、該磁気通路2
1の外周面を被覆する2次導体22から構成されおり、
該2次導体22の内周面と磁気通路21の外周面とは各
々に刻設されたねじにより螺合している。尚、磁気通路
21は磁束密度を増加させるために磁性体から形成され
ており、例えば磁性金属のアモルファス薄板を放身」状
に配列して円筒形状に形成したものである。そして、該
可動子2は、硬質プラスチックからなるコツター止め2
3を介して吸気バルブ1の軸端部と連結している。
The mover 2 includes a cylindrical magnetic passage 21 and a magnetic passage 2.
It is composed of a secondary conductor 22 that covers the outer peripheral surface of 1,
The inner circumferential surface of the secondary conductor 22 and the outer circumferential surface of the magnetic path 21 are screwed together by screws formed in each. The magnetic path 21 is made of a magnetic material in order to increase the magnetic flux density, and is formed by arranging amorphous thin plates of magnetic metal in a cylindrical shape, for example. The movable element 2 is a rotor stopper 2 made of hard plastic.
3 to the shaft end of the intake valve 1.

該可動子2の周囲には駆動部3が配設されている。該駆
動部3は、磁気通路21の内側に押入された中央磁極3
1と、上記2次導体22と対向し可動子2の外周面に周
設された複数個の磁極32と、該磁極32の各々に捲設
された励磁コイル33、そして中央磁極31に捲設され
た上部コイル34等から構成されている。
A driving section 3 is arranged around the movable element 2. The drive unit 3 includes a central magnetic pole 3 pushed inside the magnetic path 21.
1, a plurality of magnetic poles 32 facing the secondary conductor 22 and disposed around the outer peripheral surface of the movable element 2, an excitation coil 33 wound around each of the magnetic poles 32, and an excitation coil 33 wound around the central magnetic pole 31. The upper coil 34, etc.

上記励磁コイル33及び上部コイル34はコントローラ
4と接続しており、該コントローラ4から電力の供給を
受ける。
The excitation coil 33 and the upper coil 34 are connected to the controller 4 and receive power from the controller 4.

該コントローラ4には、エンジンの回転数及びクランク
角を検出する回転センサ5と、アクセルペダル(図示せ
ず)の踏込量を検出する負荷センサ6とからの検出信号
が入力されている。
Detection signals are input to the controller 4 from a rotation sensor 5 that detects the rotational speed and crank angle of the engine, and a load sensor 6 that detects the amount of depression of an accelerator pedal (not shown).

上記コントローラ4は、上記検出信号の入力及び電力の
供給を司る人出力インターフエイス、予めプログラムや
各種関係マツプを記憶するROM、該ROMに記憶され
たプログラムに沿って演算を実行するCPU、演算結果
やデータを一時記憶するRAM、コントローラ4内部の
信号の流れを制御するコントロールメモリ等から構成さ
れている。
The controller 4 includes a human output interface that controls the input of the detection signal and the supply of power, a ROM that stores programs and various relationship maps in advance, a CPU that executes calculations in accordance with the programs stored in the ROM, and a calculation result. The controller 4 is composed of a RAM for temporarily storing data, a control memory for controlling the flow of signals inside the controller 4, and the like.

次に、上記構成による本発明の装置の作動について説明
する。
Next, the operation of the apparatus of the present invention having the above configuration will be explained.

エンジンの運転中においては、常時負荷センサ6からア
クセルペダルの踏込量と回転センサ5からエンジンの回
転数とを検出し、予め設定された関係マツプを用いて該
踏込量及び回転数に対応する吸気バルブ1の開閉タイミ
ングを演算する。そして、回転センサ5により検出され
るクランク角が吸気バルブ1の間タイ主ングになると、
上部コイル34に通電することにより2次導体22に誘
導電流を発生させ、該誘導電流と励磁コイル33により
形成される磁界とにより吸気バルブ1を初期駆動する。
While the engine is running, the load sensor 6 constantly detects the amount of accelerator pedal depression and the rotation sensor 5 detects the engine rotation speed, and a preset relationship map is used to detect the intake air that corresponds to the amount of depression and rotation speed. Calculate the opening/closing timing of valve 1. Then, when the crank angle detected by the rotation sensor 5 becomes tied between the intake valves 1,
By energizing the upper coil 34, an induced current is generated in the secondary conductor 22, and the intake valve 1 is initially driven by the induced current and the magnetic field formed by the excitation coil 33.

そして、駆動開始後は、励磁コイル33に交番電力を供
給し、磁極32からの磁束により形成される磁界を進行
磁界とすることにより吸気バルブ1を開閉駆動する。
After the drive is started, alternating power is supplied to the excitation coil 33, and the magnetic field formed by the magnetic flux from the magnetic pole 32 is used as a traveling magnetic field, thereby driving the intake valve 1 to open and close.

第2図(I)は、初期駆動時の状態を示す図であり、第
2図(II)は、初期駆動後の状態を示す図である。
FIG. 2(I) is a diagram showing the state during initial driving, and FIG. 2(II) is a diagram showing the state after initial driving.

尚、本図は説明内容を明確にするため、断面を示す斜線
は省略している。
Note that in this figure, diagonal lines indicating a cross section are omitted for clarity of explanation.

吸気バルブ1の閉鎖状態時には上部コイル34に通電し
中央磁極31に対して下方向の磁束を作用させておく。
When the intake valve 1 is in the closed state, the upper coil 34 is energized to apply a downward magnetic flux to the central magnetic pole 31.

クランク角か吸気バルブ1の間タイミングになると、第
2図(I)に示すごとく、上部コイル34への2通電方
向を反転させ、中央磁極31内の磁束を上方向の磁束a
に変更する。すると、2次導体22には相互誘導による
誘導電流か発生ずる。該誘導電流の方向は磁束aをキャ
ンセルする方向、すなわち本図上方から見た場合、右回
りの誘導電流が発生する。ところで、上部コイル34へ
の通電方向を反転させると共に、励磁コイル33に通電
し、2次導体22に対して外周から内方向への磁束すを
作用させる。すると、上記2次導体に誘導された電流は
、該磁束すからフしくンlの左手の法則に示される電磁
力、すなわち本図の場合には下方向への電磁力を受ける
。該電磁力は2次導体全周に作用するので、強力な駆動
力として吸気バルブ1に作用し、該吸気バルブ1を開方
向へと駆動する。
When the crank angle reaches the timing between the intake valve 1 and the intake valve 1, as shown in FIG.
Change to Then, an induced current is generated in the secondary conductor 22 due to mutual induction. The direction of the induced current is the direction that cancels the magnetic flux a, that is, when viewed from above in the figure, a clockwise induced current is generated. By the way, the direction of energization to the upper coil 34 is reversed, and at the same time, the excitation coil 33 is energized to cause a magnetic flux to act on the secondary conductor 22 from the outer periphery inward. Then, the current induced in the secondary conductor is subjected to an electromagnetic force shown by the left-hand rule of the magnetic flux, that is, a downward electromagnetic force in the case of this figure. Since the electromagnetic force acts on the entire circumference of the secondary conductor, it acts on the intake valve 1 as a strong driving force, driving the intake valve 1 in the opening direction.

該初期駆動時の駆動力は、上部コイル34への通電状態
が定常状態に移行すると消滅する。そこで第2図(II
)に示すごとく、wJ磁ココイル33の通電状態を交番
電力に切換え、本図における下方向への進行磁界を2次
導体22に作用させる。
The driving force during the initial drive disappears when the energization state of the upper coil 34 shifts to a steady state. Therefore, Figure 2 (II
), the energization state of the wJ magnetic cocoil 33 is switched to alternating power, and a downward traveling magnetic field in this figure is applied to the secondary conductor 22.

次に、該進行磁界の進行の伴ない磁極32の極性がCに
示す状態からdに示す状態に移行する場合について説明
する。
Next, a case will be described in which the polarity of the magnetic pole 32 changes from the state shown in C to the state shown in d as the traveling magnetic field advances.

Cに示す状態時には2次導体22には磁束eが作用して
いる。磁界の進行の共ない磁極32の極性がdに示す状
態に移行すると、該磁束eが減少するので2次導体22
には各々の磁束eを維持する方向、すなわち図に示す方
向の誘導電流が発生する。ところか、該誘導電流か発生
ずる時点には0 磁極32の極性は既にdに示す状態に移行している。す
ると、2次導体22に誘導される電流はdに示す状態の
極性からの磁束により下方向の電磁力を受ける。よって
、吸気バルブ1は下方向へと駆動される。よって、可動
子2は磁界の進行と同方向へと駆動される。
In the state shown in C, a magnetic flux e is acting on the secondary conductor 22. When the polarity of the magnetic pole 32, where the magnetic field does not advance, shifts to the state shown in d, the magnetic flux e decreases, so that the secondary conductor 22
An induced current is generated in the direction of maintaining each magnetic flux e, that is, in the direction shown in the figure. However, at the time when the induced current is generated, the polarity of the 0 magnetic pole 32 has already shifted to the state shown in d. Then, the current induced in the secondary conductor 22 receives a downward electromagnetic force due to the magnetic flux from the polarity shown in d. Therefore, the intake valve 1 is driven downward. Therefore, the movable element 2 is driven in the same direction as the magnetic field advances.

よってく吸気バルブ1を閉鎖方向に駆動するには励磁コ
イル33へ供給している交番電力の交番方向を反転させ
、上方向の進行磁界を形成すればよい。そして、吸気バ
ルブ1の着座時には、上記初期駆動時と同様にして吸気
バルブ1に開方向の駆動力を作用させ、閉鎖方向の速度
を減速し、緩やかに着座させる。
Therefore, in order to drive the intake valve 1 in the closing direction, the alternating direction of the alternating power supplied to the excitation coil 33 may be reversed to form an upward traveling magnetic field. When the intake valve 1 is seated, a driving force in the opening direction is applied to the intake valve 1 in the same manner as in the initial drive described above, the speed in the closing direction is reduced, and the intake valve 1 is seated gently.

ところで、磁気通路21及び中央磁極31は磁束す及び
磁束eの通路となり、該磁束が流れる際の磁気抵抗を減
少させ、駆動力を強力にするためのものである。また、
上記のごとく、磁気通路21の外周面にはねじが刻設さ
れているため、外周面が平坦であるものに対して、磁極
32から該磁気通路21に流れる磁束が一部に偏ること
がな1 く、かつ、磁極32と磁気通路21との間隔が減少する
ため磁束量を増加させることができる。
By the way, the magnetic path 21 and the central magnetic pole 31 serve as paths for the magnetic fluxes I and E, and are used to reduce the magnetic resistance when the magnetic fluxes flow and to increase the driving force. Also,
As mentioned above, since the outer circumferential surface of the magnetic passage 21 is threaded, the magnetic flux flowing from the magnetic pole 32 to the magnetic passage 21 is not biased in one part compared to a case where the outer circumferential surface is flat. 1. In addition, since the distance between the magnetic pole 32 and the magnetic path 21 is reduced, the amount of magnetic flux can be increased.

尚、吸気バルブ1を閉状態で保持するスプリング24の
パイアスカは上記電磁力に対し、充分小に設定されてい
る。
The bias of the spring 24 that holds the intake valve 1 in a closed state is set to be sufficiently small with respect to the electromagnetic force described above.

以上、実施例について詳細に説明したが、本発明の精神
から逸れないかぎりで、種々の異なる実施例は容易に構
成できるから、本発明は前記特許請求の範囲において記
載した限定以外、特定の実施例に制約されるものてはな
い。
Although the embodiments have been described in detail above, various different embodiments can be easily constructed without departing from the spirit of the present invention. There is no limit to the examples.

(発明の効果) 以上説明したように、本発明によれば、可動子に周設さ
れた2次導体の側面に並設された磁極により進行磁界を
形成し、2次導体に誘導される電流が進行磁界から受る
電磁力により吸排気バルブを往復駆動するので、吸排気
バルブの位置が変化してもffi動力は変化せず、従っ
て、安定した開閉制御を行なうことができる。また、初
期駆動時には2次導体に対して同一方向の磁界を作用さ
せ、2次導体内に配設された磁極により誘導される電2 流が該同一方向の磁界から受る電磁力で駆動するので、
2次導体全てに駆動力が作用し、よって強力な駆動力を
発生させることができる誘導式電磁力バルブ駆動装置を
提供てきる。
(Effects of the Invention) As explained above, according to the present invention, a traveling magnetic field is formed by the magnetic poles arranged in parallel on the side surface of the secondary conductor surrounding the mover, and a current is induced in the secondary conductor. Since the intake and exhaust valves are reciprocated by the electromagnetic force received from the traveling magnetic field, the ffi power does not change even if the position of the intake and exhaust valves changes, and therefore stable opening/closing control can be performed. Also, during initial drive, a magnetic field in the same direction is applied to the secondary conductor, and the current induced by the magnetic poles arranged inside the secondary conductor is driven by the electromagnetic force received from the magnetic field in the same direction. So,
The present invention provides an induction type electromagnetic force valve driving device in which a driving force acts on all secondary conductors, thereby generating a strong driving force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すブロック図、第2図
(I)は、初期駆動時の状態を示す図、第2図(I+ 
)は、初期駆動後の状態を示す図である。 1・・・吸気バルブ、2・・・可動子、3・・・駆動部
、4・・・コントローラ、5・・・回転センサ、6・・
・負荷センサ、22・・・2次導体、31・・・中央磁
極、32・・・磁極、33・・・励磁コイル、34・・
・上部コイル。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 (I) is a diagram showing the initial driving state, and FIG. 2 (I+
) is a diagram showing the state after initial driving. DESCRIPTION OF SYMBOLS 1... Intake valve, 2... Mover, 3... Drive unit, 4... Controller, 5... Rotation sensor, 6...
- Load sensor, 22... Secondary conductor, 31... Central magnetic pole, 32... Magnetic pole, 33... Exciting coil, 34...
- Upper coil.

Claims (2)

【特許請求の範囲】[Claims] (1)エンジンの吸排気バルブに連結し往復自在な円筒
形の可動磁極と、該可動磁極の外周面と対向し円筒軸方
向に並設された磁極と、該磁極に捲設され吸排気バルブ
の初期駆動時には同一方向の磁界を形成し、開状態時に
は円筒軸方向の進行磁界を形成するコイルと、上記磁極
と対向して上記可動磁極の外周面を被覆する2次導体と
、該2次導体内部に挿入される固定磁極を有し吸排気バ
ルブの初期駆動時に2次導体に円周方向の電流を誘導せ
しめる電磁石と、上記コイル及び電磁石への通電状態を
制御し吸排気バルブを開閉駆動せしめる通電制御手段と
を有することを特徴とする誘導式電磁力バルブ駆動装置
(1) A cylindrical movable magnetic pole that is connected to the intake and exhaust valves of the engine and can freely reciprocate, magnetic poles that face the outer peripheral surface of the movable magnetic pole and are arranged in parallel in the axial direction of the cylinder, and intake and exhaust valves that are wound around the magnetic poles. a coil that forms a magnetic field in the same direction during initial drive and a traveling magnetic field in the cylindrical axis direction when in the open state; a secondary conductor that faces the magnetic pole and covers the outer peripheral surface of the movable magnetic pole; An electromagnet that has a fixed magnetic pole inserted inside the conductor and induces a circumferential current in the secondary conductor when the intake and exhaust valves are initially driven, and an electromagnet that controls the energization state of the coil and electromagnet to open and close the intake and exhaust valves. 1. An induction type electromagnetic force valve driving device, characterized in that it has an energization control means for controlling the current flow.
(2)上記可動磁極と2次導体とは螺合していることを
特徴とする請求項(1)記載の誘導式電磁力バルブ駆動
装置。
(2) The induction type electromagnetic force valve driving device according to claim (1), wherein the movable magnetic pole and the secondary conductor are screwed together.
JP1219037A 1989-08-25 1989-08-25 Induction type electromagnetic valve drive Expired - Lifetime JP2787342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219037A JP2787342B2 (en) 1989-08-25 1989-08-25 Induction type electromagnetic valve drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219037A JP2787342B2 (en) 1989-08-25 1989-08-25 Induction type electromagnetic valve drive

Publications (2)

Publication Number Publication Date
JPH0381511A true JPH0381511A (en) 1991-04-05
JP2787342B2 JP2787342B2 (en) 1998-08-13

Family

ID=16729268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219037A Expired - Lifetime JP2787342B2 (en) 1989-08-25 1989-08-25 Induction type electromagnetic valve drive

Country Status (1)

Country Link
JP (1) JP2787342B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039014A (en) * 1998-06-01 2000-03-21 Eaton Corporation System and method for regenerative electromagnetic engine valve actuation
CN104500825A (en) * 2014-12-03 2015-04-08 河南理工大学 Hierarchical electric-control high-efficiency water saving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039014A (en) * 1998-06-01 2000-03-21 Eaton Corporation System and method for regenerative electromagnetic engine valve actuation
CN104500825A (en) * 2014-12-03 2015-04-08 河南理工大学 Hierarchical electric-control high-efficiency water saving device

Also Published As

Publication number Publication date
JP2787342B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
JP2610187B2 (en) Valve drive
JP2596459B2 (en) Valve electromagnetic drive
JP2652802B2 (en) Electromagnetic valve drive
JP2639587B2 (en) Valve stepping drive
JP2000041372A (en) Dc torque motor, drive controller using the same, and throttle valve controller
JPH02176285A (en) Electromagnetic force valve driving gear
JPH02181006A (en) Valve drive device
JPH02176288A (en) Electromagnetic force valve driving gear
JPH0381511A (en) Induced type electromagnetic valve driving device
JP2606740B2 (en) Valve stepping drive
JPH02308910A (en) Electromagnetic force operated valve drive device
JP2759358B2 (en) Induction type electromagnetic valve drive
JP3040784B2 (en) Induction type electromagnetic valve drive
JPH0392518A (en) Solenoid valve driving device
JP2789119B2 (en) Induction type electromagnetic valve drive
JPH03182608A (en) Induction-type electromagnetic force valve drive unit
JP2855352B2 (en) Actuating position detection type electromagnetic force valve drive
JP2824667B2 (en) Electromagnetic valve drive
JP2772569B2 (en) Electromagnetic valve drive
JPH0392520A (en) Solenoid valve driving device
JP2787356B2 (en) Induction type electromagnetic valve drive
JP2566474B2 (en) Electromagnetic valve drive
JPH03105006A (en) Electromagnetic force valve driving device
JP2606739B2 (en) Valve drive
JPH03182611A (en) Electromagnetic force valve drive unit