JPH03189013A - Manufacture of inner surface worked heat transfer tube and its device - Google Patents

Manufacture of inner surface worked heat transfer tube and its device

Info

Publication number
JPH03189013A
JPH03189013A JP32872389A JP32872389A JPH03189013A JP H03189013 A JPH03189013 A JP H03189013A JP 32872389 A JP32872389 A JP 32872389A JP 32872389 A JP32872389 A JP 32872389A JP H03189013 A JPH03189013 A JP H03189013A
Authority
JP
Japan
Prior art keywords
tube
tube material
plug
grooved plug
pipe material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32872389A
Other languages
Japanese (ja)
Other versions
JP2706339B2 (en
Inventor
Toshiaki Hashizume
利明 橋爪
Koji Yamamoto
山本 孝司
Hiroshi Kawaguchi
川口 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32872389A priority Critical patent/JP2706339B2/en
Publication of JPH03189013A publication Critical patent/JPH03189013A/en
Application granted granted Critical
Publication of JP2706339B2 publication Critical patent/JP2706339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the internally finished heat transfer tube of excellent heat transferring property by specifying the relation among the thread roll forming pitch a whole length of tube material to be pressed to the plug surface with groove and the length of the tube material to be subjected to sufficient transferring of the projection and recession of the plug. CONSTITUTION:The thread roll forming tool 5 presses the tube material 1 to the plug with groove 3 positioned at the inner surface of the tube material 1 and projecting and recessing work is executed. In the state where the thread roll forming pitch P, the whole length L of the tube material 1 to be pressed to the surface of the plug with groove with the thread roll forming tool 5 and the length L2 of the tube material 1 to be subjected to sufficient transferring of the projecting and recessing surface of the plug with groove 3 with one of thread roll forming tool 5 are set in the range of L2<P<L, the tube material 1 is moved. The insufficiently transferred part L1 of the surface of the plug to the tube material 1 remains at final, and the projecting and recessing parts of the projecting part 61, the groove 63 and inclining part 63 are formed on the inner surface of the tube material 1. The heat transferring property can be improved without increasing pressure loss of the tube being so much.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、冷凍機や空調機器等の熱交換器に使用される
内面加工伝熱管の製造方法に関するものてあり、特に、
内部で冷媒を沸騰又は凝縮させ、管外の流体との間で熱
交換を行なう沸騰型又は凝縮型の内面加工伝熱管の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing internally processed heat exchanger tubes used in heat exchangers for refrigerators, air conditioners, etc.
The present invention relates to a method for manufacturing a boiling or condensing type internally processed heat exchanger tube in which a refrigerant is boiled or condensed inside and heat exchanged with a fluid outside the tube.

「従来の技術」 第7図のように、中心にロッド21を取付けたフローテ
ィングプラグ2と、ロット21の先端に回転自在に保持
され、外周に軸心に対して所定のねじれ角を有する螺線
状の溝を多数形成した溝付きプラグ3とを金属製の管材
1内の所定位置に挿入し、管材1を図の右方向に引抜き
ながら、フローティングプラグ2と縮径ダイス4との共
働により管材lを縮径し、前記溝付きプラグ3の位置で
管材lの外周を遊星回転するロールからなる複数の転造
工具5により、前記管材1を溝付きプラグ3の表面に押
圧して縮径しつつ当該管材lの内面に多数の溝lOを加
工し、この管材lを図示しない仕上げダイスで空引きし
て伝熱管を製造する技術は、例えば特開昭54−370
59号(特公昭61−59806号)公報で開示されて
いるように公知である。
``Prior Art'' As shown in FIG. 7, there is a floating plug 2 with a rod 21 attached to the center, and a spiral wire rotatably held at the tip of the rod 21 and having a predetermined helix angle with respect to the axis on the outer periphery. A grooved plug 3 with a large number of shaped grooves formed therein is inserted into a predetermined position inside the metal tube 1, and while the tube 1 is pulled out to the right in the figure, the floating plug 2 and the diameter reducing die 4 work together. The diameter of the tube material 1 is reduced by pressing the tube material 1 against the surface of the grooved plug 3 using a plurality of rolling tools 5 consisting of rolls that rotate planetarily around the outer periphery of the tube material 1 at the position of the grooved plug 3. A technique for manufacturing a heat transfer tube by machining a large number of grooves 1O on the inner surface of the tube material 1 and dry-drawing the tube material 1 with a finishing die (not shown) is disclosed, for example, in Japanese Patent Application Laid-Open No. 54-370.
It is publicly known as disclosed in Japanese Patent Publication No. 59 (Japanese Patent Publication No. 61-59806).

また、管材1の内面に前述ような溝10を形成した後、
前記溝付きプラグ3及び転造工具5と同様な手段により
、前記管材l内に前記溝10と交叉する図示しない他の
多数の溝を形成する技術も公知である。
Further, after forming the groove 10 as described above on the inner surface of the pipe material 1,
A technique is also known in which a number of other grooves (not shown) intersecting with the groove 10 are formed in the tube material 1 by means similar to the grooved plug 3 and the rolling tool 5.

第7図で説明した従来の内面加工伝熱管の製造方法及び
製造装置より、管材lの内面に溝10を形成する過程を
第8図及び第9図を参照して説明すると、複数の転造工
具5はその公転と管材1の引抜きにより当該管材lの表
面に対して螺線軌跡を描いて圧接される。第8図で示す
ように、一の転造工具により溝付きプラグ3の表面に管
材1を押圧するとき、被押圧部における管材lの部分A
〜Cでは、溝付きプラグ3表面の凹凸が管材lの内面に
転写され易いように3溝付きプラグ3の溝深さdに対す
る金属の押込み量が引抜方向に沿って徐々に大きくなり
、管材lの部分A〜Eにおいて前記押込み量は一定かつ
最大になる。
The process of forming the grooves 10 on the inner surface of the tube material l using the conventional method and apparatus for manufacturing heat exchanger tubes with internal processing explained in FIG. 7 will be explained with reference to FIGS. 8 and 9. The tool 5 is brought into pressure contact with the surface of the tube 1 while drawing a spiral locus by its revolution and the drawing of the tube 1. As shown in FIG. 8, when the tube 1 is pressed onto the surface of the grooved plug 3 by one rolling tool, the portion A of the tube 1 at the pressed part
~C, the amount of metal pushed into the groove depth d of the three-grooved plug 3 gradually increases along the pulling direction so that the unevenness on the surface of the grooved plug 3 is easily transferred to the inner surface of the tube material l. In portions A to E, the pushing amount is constant and maximum.

これにより、第9図で拡大して示すように、管材l内に
は、溝付きプラグ3の表面に対して転造工具5か当該管
材1を押圧する全長さしく転造工具5による管材lの被
押圧部における管材lとプラグ3表面との接触長さ)に
おいて、管材1の引抜方向後端部で溝付きプラグ3表面
の凹凸が不十分(不完全)に転写された部分L1と、こ
れに連続して当該凹凸が十分(完全)に転写された部分
L2とが形成される。
As a result, as shown in an enlarged view in FIG. (the length of contact between the tube material l and the surface of the plug 3 at the pressed portion), a portion L1 where the unevenness of the surface of the grooved plug 3 is insufficiently (incompletely) transferred at the rear end in the pulling direction of the tube material 1; Continuing from this, a portion L2 is formed in which the unevenness is sufficiently (completely) transferred.

第8図における管材lの部分A〜Eは、第9図における
管材l内の凸条11の部分11a〜11eに対応するが
、第9図のように、管材l内に形成され始めた凸条11
の部分11a〜llcては管材1の引抜方向イに沿って
上り傾斜した状態になり、これに隣接する溝1oの形成
され始めの部分は逆に引抜方向イに沿って下り傾斜した
状態になる。そして、溝付きプラグ3の設置位置におい
て、一の転造工具5か管材lを押圧した後、これに連続
して遊星回転する次の転造工具が管材を押圧する間に管
材lが引抜かれる距離、すなわち転造ピッチPが、一の
転造工具5によって溝付きプラグ3の表面の凹凸が十分
に(完全に)転写される長さL2よりも小さいために、
一の転造工具5により管材1内に凸条11及び溝10が
不充分に転写されたし1部分を、連続する次の転造工具
が管材1を押圧することになり、その結果前記不充分な
転写部分11もL2の部分同様に十分な転写に形成され
る。
Portions A to E of the tube l in FIG. 8 correspond to portions 11a to 11e of the protrusions 11 in the tube l in FIG. 9, but as shown in FIG. Article 11
The portions 11a to llc are inclined upwardly along the drawing direction A of the tube material 1, and the adjacent portion where the groove 1o begins to be formed is, conversely, inclined downwardly along the drawing direction A. . Then, after the first rolling tool 5 presses the pipe material l at the installation position of the grooved plug 3, the pipe material l is pulled out while the next rolling tool that rotates planetarily presses the pipe material. Because the distance, that is, the rolling pitch P, is smaller than the length L2 at which the unevenness on the surface of the grooved plug 3 is sufficiently (completely) transferred by one rolling tool 5,
The convex strips 11 and the grooves 10 were insufficiently transferred into the pipe material 1 by one rolling tool 5, and the next continuous rolling tool presses the pipe material 1, resulting in the above-mentioned defect. The sufficient transfer portion 11 is also formed with sufficient transfer in the same way as the portion L2.

すなわち、このように一定方向へ移動する管材1に対し
、溝付きプラグ3上で同じ部分を複数の転造工具が遊星
回転しなから鰻返し押圧するため、全体としてプラグ3
の凹凸が管材lの長手方向へ完全に転写されて管材1内
面に同一断面の溝10及び凸条11が連続して形成され
る。
That is, with respect to the pipe material 1 moving in a fixed direction in this way, since a plurality of rolling tools planetarily rotate the same part on the grooved plug 3 and press it back, the plug 3 as a whole is pressed.
The unevenness is completely transferred in the longitudinal direction of the tube material 1, and grooves 10 and protrusions 11 having the same cross section are continuously formed on the inner surface of the tube material 1.

溝10と凸条11の断面形状は、プラグ3の外周に形成
される溝の断面形状によって定まるが、これらの断面形
状についても種々の工夫がなされている。
The cross-sectional shapes of the grooves 10 and the protrusions 11 are determined by the cross-sectional shapes of the grooves formed on the outer periphery of the plug 3, and various improvements have been made to these cross-sectional shapes.

「発明が解決しようとする課題」 空vRm用熱交換器類に対しては、近年ヒートポンプ式
エアコンの普及に伴なって高性能化や小型軽量化の要求
が強くなっているが、第7図の従来の方法及び装置によ
っては、管の内面に特定形状の溝と凸条が交互に形成さ
れるだけであり、伝熱性能の向上には限界がある。
``Problem to be solved by the invention'' With the spread of heat pump air conditioners in recent years, there has been a strong demand for higher performance and smaller and lighter heat exchangers for air vRm. Depending on the conventional method and device, only grooves and protrusions of a specific shape are alternately formed on the inner surface of the tube, and there is a limit to the improvement of heat transfer performance.

また、二組の溝付きプラグ3と転造工具5とによって管
内面に溝及び凸条を形成するのは、管材に対する引抜荷
重が大きくなり、引抜速度を極端に遅くしなければ管材
か破断するので、製造コストが高くなる。
In addition, forming grooves and protrusions on the inner surface of the tube using the two sets of grooved plugs 3 and rolling tool 5 increases the pulling load on the tube, and unless the pulling speed is extremely slow, the tube will break. Therefore, manufacturing cost increases.

本発明の目的は、既存の製造装置を大きく改造すること
なく、製造コストも第7図のような既存の方法及び装置
に比較して高くならず、しかも。
It is an object of the present invention to avoid major modification of existing manufacturing equipment and to reduce manufacturing costs compared to the existing method and equipment as shown in FIG. 7.

従来の内面溝加工管に比べはるかに伝熱性能のよい伝熱
管を製造する方法を提供することにある。
It is an object of the present invention to provide a method for manufacturing a heat transfer tube that has far better heat transfer performance than conventional inner grooved tubes.

「課題を解決するための手段」 本発明に係る内面加工伝熱管の製造方法は、前述の目的
を達成するため、外周に多数の溝を形成した溝付きプラ
グを管材内の所定位置に挿入し、前記管材を管軸に沿い
一定方向へ移動させながら、前記溝付きプラクの位置で
前記管材の外周を当該外周面に接触しつつ遊星回転する
ロール又はボールよりなる複数の転造工具により、前記
管材を外周から前記溝付きプラグ表面に押圧して当該管
材内に凹凸を加工する伝熱管の製造方法において、前記
溝付きプラグの表面における一の転造工具による管材の
押圧に連続して後続の次の転造工具が管材を押圧する間
に管材が移動する距離、すなわち転造ピッチPと、一の
転造工具により溝付きプラグ表面に管材を押圧する全長
さしと、一の転造工具の押圧により溝付きプラグ表面の
凹凸が管材に対して十分に転写される長さL2とが、L
2< P。
"Means for Solving the Problems" In order to achieve the above-mentioned object, the method for manufacturing an internally processed heat exchanger tube according to the present invention involves inserting a grooved plug having a large number of grooves formed on the outer periphery into a predetermined position within the tube material. While moving the tube material in a certain direction along the tube axis, the outer periphery of the tube material is brought into contact with the outer peripheral surface at the position of the grooved plaque using a plurality of rolling tools made of rolls or balls that rotate planetarily. In the method for manufacturing a heat exchanger tube, in which unevenness is formed in the tube material by pressing the tube material from the outer periphery onto the surface of the grooved plug, a subsequent pressing step of the tube material by one rolling tool on the surface of the grooved plug is provided. The distance that the pipe material moves while the next rolling tool presses the pipe material, that is, the rolling pitch P, the total length of pressing the pipe material against the grooved plug surface by one rolling tool, and the first rolling tool. L2 is the length L2 at which the unevenness of the grooved plug surface is sufficiently transferred to the pipe material by the pressure of
2<P.

〈Lの式の範囲に設定された状態で前記管材°を移動さ
せることを特徴としている。
It is characterized in that the tube material ° is moved in a state set within the range of the equation of <L.

前記溝付きプラグは、適当な手段によりその管軸方向に
対する位置を微調整できるように構成するのが好ましい
Preferably, the grooved plug is configured such that its position relative to the tube axis can be finely adjusted by appropriate means.

「作用」 本発明に係る製造方法によれば、溝付きプラグの表面に
おいて、一の転造工具により管材を押圧する全長さしと
、一の転造工具により管材内に溝付きプラグ表面の凹凸
が十分に転写される長さL2と、一の転造工具が管材を
押圧してから連続する次の転造工具が管材を押圧する間
に管材か移動する距離、すなわち転造ピッチPとが、L
2< P < Lの式の範囲に設定された状態で前記管
材を移動させるのて、第9図において、一の転造工具で
溝付きプラグ表面の凹凸が管材の内面へ不充分に転写さ
れた部分L1が最終的に一部残り、その結果、管材の内
面に形成される各溝の間には、長手方向に沿い上部に同
一方向に傾斜(管材の移動方向に上り傾斜)した傾斜部
を有する所定長さの隆起部が繰返し形成され、前記各溝
の底部には、前記傾斜部との隣接部分毎に当該隆起部の
傾斜部とは反対方向に傾斜する傾斜面が長手方向に沿っ
て繰返し形成される。
"Operation" According to the manufacturing method according to the present invention, on the surface of the grooved plug, one rolling tool presses the pipe material over the entire length, and one rolling tool creates unevenness on the surface of the grooved plug inside the pipe material. is sufficiently transferred, and the distance that the pipe material moves after one rolling tool presses the pipe material and the next rolling tool presses the pipe material, that is, the rolling pitch P. , L
When the pipe material is moved within the range of the formula 2<P<L, as shown in FIG. 9, the unevenness on the surface of the grooved plug is insufficiently transferred to the inner surface of the pipe material by one rolling tool. As a result, between each groove formed on the inner surface of the pipe material, there is a sloped part that slopes in the same direction (upward in the direction of movement of the pipe material) at the top along the longitudinal direction. ridges of a predetermined length are repeatedly formed, and at the bottom of each of the grooves, an inclined surface that slopes in a direction opposite to the slanted portion of the ridged portion is provided along the longitudinal direction at each adjacent portion to the slanted portion. It is formed repeatedly.

すなわち、管の内面が微細な無数の凹凸になり、この凹
凸によって伝熱性能を向上させ、かつ。
In other words, the inner surface of the tube has countless fine irregularities, and these irregularities improve heat transfer performance.

隆起部と溝底部に繰返し形成される傾斜により、管内の
圧力損失は従来の内面溝加工管とほとんど変わらない伝
熱管が製造される。
The repeated slopes formed on the ridges and groove bottoms produce a heat exchanger tube in which the pressure loss within the tube is almost the same as that of conventional internally grooved tubes.

「実施例」 第1図は本発明方法の実施例を説明するための製造装置
の一例を示す断面図である。
"Example" FIG. 1 is a sectional view showing an example of a manufacturing apparatus for explaining an example of the method of the present invention.

カップ状の固定台41の内部には、解放端を一部突出さ
せてカップ状のダイスホルダ42か挿入され、このダイ
スホルダ42内には、金属製の管材1を通す縮径ダイス
4が固定されている。
A cup-shaped die holder 42 is inserted into the cup-shaped fixed base 41 with the open end partially protruding, and a diameter-reducing die 4 through which the metal tube 1 is passed is fixed in the die holder 42. There is.

ダイスホルダ42の解放端外周部にはねじ43か形成さ
れ、この開放端外周部にナツト状のストッパ40をねじ
締め、このストッパ40によってダイスホルダ42が固
定台41から脱出しなし1ように構成されている。
A screw 43 is formed on the outer periphery of the open end of the die holder 42, and a nut-shaped stopper 40 is screwed onto the outer periphery of the open end, and this stopper 40 prevents the die holder 42 from escaping from the fixed base 41. There is.

縮径ダイス4内には、管材l内に挿入された状態の70
−テイングブラグ2が設けられ、このフローティングプ
ラグ2の軸心に固定されたロット21には、フローテン
グブラグ2の前方(管材lの引抜方向イに沿う前方)に
位置するように、外周に管軸に対してねじれ角18度の
多数の螺線状の溝31を有する溝付きプラグ3が回転自
在に保持されている。
Inside the diameter reducing die 4, there is a 70 mm inserted into the pipe material l.
- A floating plug 2 is provided, and the rod 21 fixed to the axis of the floating plug 2 has a tube attached to its outer periphery so as to be located in front of the floating plug 2 (in front along the drawing direction A of the tube material l). A grooved plug 3 having a large number of spiral grooves 31 with a helical angle of 18 degrees relative to the shaft is rotatably held.

前記溝付きプラグ3の設置位置には、管材1の外周をそ
の外周面に押圧接触して遊星回転するロールよりなる三
個の転造工具5が等角度間隔に設けられているが、この
実施例においては、各転造工具5により溝付きプラグ3
表面に管材1を押圧する長さ、すなわち、一の転造工具
5で管材lを溝付きプラグ3表面へ押圧する全長さしカ
イ2.1■、前記一の転造工具5で溝付きプラグ3表面
の凹凸を管材1の内面へ十分に転写する長さL2力(3
,8+ua、不充分に転写される長さLl力<1.3m
■、プラグ3表面において一の転造工具5カイ管材1を
押圧してから次の転造工具5カイ押圧するまでに管材が
移動する距離、すなわち転造ピッチPが2m■となるよ
うに、転造工具5の公転数、管材の引抜速度、及び溝付
きプラグ3と転造工具5の位置関係か設定しである。
At the installation position of the grooved plug 3, three rolling tools 5 made of rolls that rotate planetarily and press the outer circumference of the pipe material 1 into contact with its outer circumferential surface are provided at equal angular intervals. In the example, each rolling tool 5 causes a grooved plug 3
The length for pressing the pipe material 1 onto the surface, that is, the total length for pressing the pipe material l onto the surface of the grooved plug 3 with the first rolling tool 5, is 2.1■, 3 Length L2 force (3
, 8+ua, insufficiently transferred length Ll force < 1.3 m
■The distance that the pipe material moves from pressing one rolling tool 5 to the pipe material 1 on the surface of the plug 3 until pressing the next rolling tool 5, that is, the rolling pitch P is 2 m. The number of revolutions of the rolling tool 5, the drawing speed of the pipe material, and the positional relationship between the grooved plug 3 and the rolling tool 5 are set.

前記ダイスホルタ42の解放端部のねじ43とこれにね
じ着けたストッパ40とはプラグ3の軸方向の位置を微
調整する微動調整手段4aを構成しており、ナウト状の
ストッパ40を回すことによりプラグ3が軸方向に微動
させ、前記の接触長さ文を調整することかできる構造で
ある。この微動調整手段4aは他の構造であってもよい
The screw 43 at the open end of the die holter 42 and the stopper 40 screwed thereon constitute a fine adjustment means 4a for finely adjusting the axial position of the plug 3, and by turning the snout-shaped stopper 40, This structure allows the plug 3 to be moved slightly in the axial direction to adjust the contact length. This fine adjustment means 4a may have another structure.

前記製造装置においては、転造工具5の設置位置の前方
(管材lの引抜き方向前方)に図示しない空引きダイス
を設ける。
In the manufacturing apparatus, a blank drawing die (not shown) is provided in front of the installation position of the rolling tool 5 (in front of the direction in which the tube material 1 is pulled out).

管材1が縮径することを要しない程度のものであれば、
フローティングプラグ2及び縮径ダイス4は不用であり
、この場合は、ロット21の端部を管材1外にある図示
しなし1部材に支持させる。
If the pipe material 1 does not need to be reduced in diameter,
The floating plug 2 and diameter reducing die 4 are unnecessary, and in this case, the end of the lot 21 is supported by a member (not shown) located outside the tube material 1.

図示しない引抜機により、銅製の管材1を第1図の矢印
イの方向へ定速で引抜きなカイら、フローティングプラ
グ2と縮径ダイス4との共働により管材lを縮径し、こ
の縮径された管材1を前記転造ピッチで公転する転造工
具5と溝付きプラグ3とによってさらに縮径すると同時
に、内面へ断面における溝数60.管軸に対する溝のね
じれ角18度の溝加工を行ない、図示しない空引きダイ
スで空引きして外径9.53m1+の内面加工伝熱管を
製造した。
A drawing machine (not shown) pulls out a copper tube 1 at a constant speed in the direction of arrow A in FIG. The diameter of the diameter-reduced pipe material 1 is further reduced by the rolling tool 5 that revolves at the rolling pitch and the grooved plug 3, and at the same time, the number of grooves in the cross section on the inner surface is 60. Grooving was performed so that the helix angle of the groove with respect to the tube axis was 18 degrees, and dry drawing was performed using a dry drawing die (not shown) to produce an internally processed heat exchanger tube with an outer diameter of 9.53 m1+.

第2図で拡大して示すように、この伝熱管6の内面の溝
60相互の間には、頂部における最大肉厚が約0.45
mmであって、溝60に沿い上部に同一方向に傾斜(製
造時の管材1の引抜方向イに上り傾斜)した傾斜部62
を有するほぼ一定長さ見の隆起部61が繰返し形成され
、前記各溝60の底部には、前記隆起部61における傾
斜部61との隣接部分毎に、傾斜部62とは反対方向に
傾斜する傾斜面63が長手方向に沿い繰返し形成された
As shown enlarged in FIG. 2, the maximum wall thickness at the top between the grooves 60 on the inner surface of the heat exchanger tube 6 is approximately 0.45 mm.
mm, and sloped in the same direction at the top along the groove 60 (sloped upward in the pulling direction A of the tube material 1 during manufacturing).
A raised portion 61 having a substantially constant length is repeatedly formed, and at the bottom of each groove 60, a portion of the raised portion 61 adjacent to the sloped portion 61 is sloped in a direction opposite to the sloped portion 62. Inclined surfaces 63 were repeatedly formed along the longitudinal direction.

最大溝底肉厚t■axは0.3mm、最小溝底肉厚tm
inは0.25mmであった・ 隆起部61相互間の段部と溝6oにおける傾斜面63相
互の段部が形成される軌跡は、管軸に対して螺線状にな
っている。
Maximum groove bottom thickness tax is 0.3mm, minimum groove bottom thickness tm
in was 0.25 mm. The locus in which the stepped portions between the raised portions 61 and the stepped portions between the inclined surfaces 63 in the groove 6o are formed has a spiral shape with respect to the tube axis.

この実施例の製造方法によって製造した伝熱管と、従来
の製造方法による内面溝加工伝熱管(外径9.53mm
、溝数60、溝のねじれ角18度、溝深さ0.2mm)
とを、それぞれ二重管式熱交換器に組込んで管内の蒸発
熱伝達率と凝縮熱伝達率とを測定したところ第4図及び
第5図のような結果を得た。この結果によると、前記実
施例の製造方法で製造した伝熱管は、従来の方法で製造
した内面溝加工伝熱管に比較して、蒸発性能で約60%
、凝縮性能°C約40%それぞれ性能が向上している。
The heat exchanger tube manufactured by the manufacturing method of this example and the internally grooved heat exchanger tube (outer diameter 9.53 mm) manufactured by the conventional manufacturing method
, number of grooves: 60, groove helix angle: 18 degrees, groove depth: 0.2 mm)
were incorporated into a double-tube heat exchanger, and the evaporative heat transfer coefficient and condensation heat transfer coefficient within the tubes were measured, and the results shown in Figs. 4 and 5 were obtained. According to this result, the heat exchanger tube manufactured by the manufacturing method of the above example has an evaporation performance of about 60% compared to the internally grooved heat exchanger tube manufactured by the conventional method.
, condensing performance °C has improved by about 40%.

また、管内の圧力損失を比較したか、前記従来の方法で
製造した内面加工伝熱管とほとんど変らなかった。
In addition, when comparing the pressure loss inside the tube, it was found that it was almost the same as that of the internally processed heat exchanger tube manufactured by the conventional method.

転造ピッチPを前記実施例と同様に設定し、管材1の被
押圧部における溝付きプラグ3と管材1との接触長さ(
一の転造工具5による全押圧°長さ)Lを変化させて同
様なサイズの伝熱管を製造したところ、この長さしにお
いてプラグ3表面の凹凸か十分かつ完全に転写される長
さL2と、大溝底肉厚t+iaxと最小溝底肉厚twi
nの差との関係は第4図のとおりてあり、他の条件を一
定にした場合、管材1に対するプラグ3と転造工具5と
の押圧部長さを微調整することによって、隆起部61や
溝60の段部のサイズを選択することができる。
The rolling pitch P is set in the same manner as in the above embodiment, and the contact length between the grooved plug 3 and the pipe material 1 at the pressed part of the pipe material 1 (
When heat exchanger tubes of similar size were manufactured by changing the total pressing length (length) L by the first rolling tool 5, the length L2 at which the unevenness on the surface of the plug 3 was sufficiently and completely transferred was determined. , the major groove bottom thickness t+iax and the minimum groove bottom thickness twi
The relationship with the difference in n is shown in Fig. 4, and when other conditions are held constant, the protrusion 61 and The size of the step of the groove 60 can be selected.

また、量産時においては、プラグ3の軸方向への位置を
WL調整して前記押圧部長さを調整することにより、管
の内面に安定した無数の凹凸を加工し続けることができ
る。
Furthermore, during mass production, by adjusting the axial position of the plug 3 WL to adjust the length of the pressing portion, it is possible to continue to form countless irregularities stably on the inner surface of the tube.

一の転造工具の押圧によって溝付きプラグ3表面の凹凸
を十分に転写される長さL2をゼロ又ζまゼロに近くな
るように設定すると、第3図のように、隆起部61の傾
斜部62及び溝60の傾斜面63を階段状に連続した状
態に形成すること力くできる。
If the length L2 at which the unevenness on the surface of the grooved plug 3 is sufficiently transferred by the pressure of the first rolling tool is set to zero or ζ or close to zero, the slope of the protrusion 61 as shown in FIG. The inclined surfaces 63 of the portions 62 and the grooves 60 can be formed in a continuous step-like manner.

なお、本発明に係る製造方法は、前記実施例のみに限定
されることなく、特許請求の範囲におl、%て適宜変更
して実施することができる。
It should be noted that the manufacturing method according to the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate changes within the scope of the claims.

「発明の効果」 本発明に係る伝熱管の製造方法によれば、管内の圧力損
失をさ程増大させないで伝熱性能のより優れた内面加工
伝熱管を製造することができ、しかも、従来の装置をわ
ずかに改良するのみで低コストで製造することがてきる
"Effects of the Invention" According to the method for manufacturing a heat exchanger tube according to the present invention, it is possible to manufacture an internally processed heat exchanger tube with better heat transfer performance without significantly increasing the pressure loss inside the tube, and moreover, With only slight improvements to the equipment, it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る製造方法の一例を説明するため製
造装置の部分断面図、第2図は本発明実施例の方法で製
造した伝熱管の部分拡大展開斜視図、第3図は本発明方
法で製造した伝熱管の他の例を示す部分拡大展開斜視図
、第4図及び第5図は本発明実施例の方法で製造した伝
熱管と、従来の方法で製造した伝熱管との伝熱性能を比
較した線区、第6図は本発明実施例の方法によって伝熱
管を製造する場合において、内面の溝の最大溝底肉厚と
最小溝底肉厚の差と、管材内面に溝付きフ。 ラグ表面の凹凸が十分かつ完全に転写される長さし2ど
の関係を示す線図、第7図は従来の製造方法を説明する
ための装置を示す断面図、第8図は従来の方法で伝熱管
を製造する際に、内面に均一な溝及び凸条か形成される
過程を示す部分拡大断面図、第9図は従来の方法及び装
置て管材内に形成されはじめる溝及び凸条を示した部分
拡大斜視図である。 図中主要符号の説明 lは管材、2はフローティングプラグ、3は外周に多数
の溝を有するプラグ、4は縮径用のダイス、4aは微動
調整手段、40はストッパ、42はダイスホルダ、5は
転造工具、6は伝熱管、60は溝、61は隆起部、62
は傾斜部、63は傾斜面、Pは溝付きプラグの表面にお
ける一の転造工具による管材の押圧に連続して後続の次
の転造工具が管材を押圧する間に管材が移動する距離、
すなわち転造ピッチ、Lは一の転造工具により溝付きプ
ラグ表面に管材を押圧する全長さ、し1は一の転造工具
の押圧により溝付きプラグ表面の凹凸が管材に対して不
充分に転写される長さ、 L2は一の転造工具の押圧に
より溝付きプラグ表面の凹凸が管材に対して十分に転写
される長さを示す。
FIG. 1 is a partial sectional view of a manufacturing apparatus for explaining an example of the manufacturing method according to the present invention, FIG. FIGS. 4 and 5 are partially enlarged exploded perspective views showing other examples of heat exchanger tubes manufactured by the method of the invention, and FIGS. Figure 6 shows the difference between the maximum groove bottom thickness and the minimum groove bottom thickness of the inner groove and the difference in the inner surface of the tube material when heat transfer tubes are manufactured by the method of the embodiment of the present invention. Grooved flap. A line diagram showing the relationship between the length and the length to which the unevenness of the lug surface is sufficiently and completely transferred. Figure 7 is a sectional view showing an apparatus for explaining the conventional manufacturing method. FIG. 9 is a partially enlarged sectional view showing the process of forming uniform grooves and protrusions on the inner surface when manufacturing a heat exchanger tube. FIG. FIG. Explanation of main symbols in the figure 1 is a tube material, 2 is a floating plug, 3 is a plug with many grooves on the outer periphery, 4 is a die for diameter reduction, 4a is a fine adjustment means, 40 is a stopper, 42 is a die holder, 5 is a die holder A rolling tool, 6 a heat exchanger tube, 60 a groove, 61 a raised part, 62
is the inclined part, 63 is the inclined surface, P is the distance that the pipe material moves while the next rolling tool presses the pipe material following the pressing of the pipe material by one rolling tool on the surface of the grooved plug,
That is, the rolling pitch, L is the total length of pressing the pipe material against the grooved plug surface by one rolling tool, and L is the length of the grooved plug surface that is insufficiently uneven against the pipe material due to the pressure of the first rolling tool. The length to be transferred, L2, indicates the length at which the unevenness on the surface of the grooved plug is sufficiently transferred to the pipe material by the pressure of one rolling tool.

Claims (2)

【特許請求の範囲】[Claims] (1)、外周に多数の溝を形成した溝付きプラグを管材
内の所定位置に挿入し、前記管材を管軸に沿い一定方向
へ移動させながら、前記溝付きプラグの位置で前記管材
の外周を当該外周面に接触しつつ遊星回転するロール又
はボールよりなる複数の転造工具により、前記管材を外
周から前記溝付きプラグ表面に押圧して当該管材内に凹
凸を加工する伝熱管の製造方法において、前記溝付きプ
ラグの表面における一の転造工具による管材の押圧に連
続して後続の次の転造工具が管材を押圧する間に管材が
移動する距離、すなわち転造ピッチPと、一の転造工具
により溝付きプラグ表面に管材を押圧する全長さLと、
一の転造工具の押圧により溝付きプラグ表面の凹凸が管
材に対して十分に転写される長さL2とが、L2<P<
Lの式の範囲に設定された状態で前記管材を移動させる
ことを特徴とする、内面加工伝熱管の製造方法。
(1) A grooved plug with a large number of grooves formed on the outer periphery is inserted into a predetermined position inside the tube material, and while the tube material is moved in a certain direction along the tube axis, the outer periphery of the tube material is inserted at the position of the grooved plug. A method for manufacturing a heat exchanger tube, in which the tube material is pressed from the outer periphery onto the grooved plug surface using a plurality of rolling tools made of rolls or balls that rotate planetarily while in contact with the outer peripheral surface of the tube material to form irregularities in the tube material. , the distance that the pipe material moves while the next rolling tool presses the pipe material following the pressing of the pipe material by one rolling tool on the surface of the grooved plug, that is, the rolling pitch P; a total length L of pressing the pipe material onto the grooved plug surface with a rolling tool;
L2<P<L2<P<
A method for manufacturing an internally processed heat exchanger tube, characterized in that the tube material is moved in a state set within the range of the equation L.
(2)、前記溝付きプラグの管軸方向に対する位置を微
調整できる微動調整手段を備えた、請求項1に記載の内
面加工伝熱管の製造方法。
(2) The method for manufacturing an internally processed heat exchanger tube according to claim 1, further comprising a fine adjustment means that can finely adjust the position of the grooved plug in the tube axis direction.
JP32872389A 1989-12-19 1989-12-19 Manufacturing method of heat transfer tube for inner surface processing Expired - Fee Related JP2706339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32872389A JP2706339B2 (en) 1989-12-19 1989-12-19 Manufacturing method of heat transfer tube for inner surface processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32872389A JP2706339B2 (en) 1989-12-19 1989-12-19 Manufacturing method of heat transfer tube for inner surface processing

Publications (2)

Publication Number Publication Date
JPH03189013A true JPH03189013A (en) 1991-08-19
JP2706339B2 JP2706339B2 (en) 1998-01-28

Family

ID=18213461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32872389A Expired - Fee Related JP2706339B2 (en) 1989-12-19 1989-12-19 Manufacturing method of heat transfer tube for inner surface processing

Country Status (1)

Country Link
JP (1) JP2706339B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000466A (en) * 1995-05-17 1999-12-14 Matsushita Electric Industrial Co., Ltd. Heat exchanger tube for an air-conditioning apparatus
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835727B1 (en) * 2016-08-10 2018-04-02 (주)우림알텍 Drawing dies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000466A (en) * 1995-05-17 1999-12-14 Matsushita Electric Industrial Co., Ltd. Heat exchanger tube for an air-conditioning apparatus
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof

Also Published As

Publication number Publication date
JP2706339B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
EP1386116A1 (en) Improved heat transfer tube with grooved inner surface
JPH03189013A (en) Manufacture of inner surface worked heat transfer tube and its device
MY138832A (en) Method of making an internal grooved tube
JP3592149B2 (en) Internal grooved tube
JP2773872B2 (en) Heat transfer tube for boiling and condensation
JP2737799B2 (en) Heat transfer tube
JP3871597B2 (en) Internal grooved heat transfer tube and its manufacturing equipment
JP3345225B2 (en) Manufacturing method of deformed pipe
JP3786789B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH09295037A (en) Method and device for production of inner face grooved metal tube
JP2812786B2 (en) Manufacturing method of small diameter inner grooved pipe
JP3780432B2 (en) Internal grooved tube processing method
JPS642878B2 (en)
JPH0550136A (en) Manufacture of inside-grooved tube
JP3908974B2 (en) Internal grooved tube and manufacturing method thereof
JPH0952127A (en) Manufacture and its device for heat transfer tube with inner groove
JPH1110268A (en) Production of outer face grooved tube
JP3752046B2 (en) Heat transfer tube and manufacturing method thereof
JPH10166036A (en) Manufacture of tube having groove on internal surface, and its device
JP2003062610A (en) Manufacturing method for heat exchanger tube with inclined fin inside
JPH0796125B2 (en) Method and device for forming inner groove on metal pipe
JPH02137609A (en) Heat exchanger tube for tube condensation and its manufacture
JPH01112094A (en) Heat-transfer tube and manufacture thereof
JPH03169421A (en) Manufacture of heat transfer tube
JP3438472B2 (en) Method and apparatus for manufacturing metal tube with inner groove

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees