JPH03188930A - Separation membrane - Google Patents

Separation membrane

Info

Publication number
JPH03188930A
JPH03188930A JP32892789A JP32892789A JPH03188930A JP H03188930 A JPH03188930 A JP H03188930A JP 32892789 A JP32892789 A JP 32892789A JP 32892789 A JP32892789 A JP 32892789A JP H03188930 A JPH03188930 A JP H03188930A
Authority
JP
Japan
Prior art keywords
sodium
separation membrane
purify
oxide
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32892789A
Other languages
Japanese (ja)
Inventor
Riichi Shishikura
利一 獅々倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP32892789A priority Critical patent/JPH03188930A/en
Publication of JPH03188930A publication Critical patent/JPH03188930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a separation membrane having high Na ion conductivity and high electron conductivity and fit to purify electrolytically reduced Na or to separate and purify Na used as a catalyst by using Na-Co oxide as a base. CONSTITUTION:An Na vapor separation membrane is obtd. by using Na-Co oxide as a base. This Na-Co oxide preferably has (0.6:1)-(1:1) atomic ratio of Na:Co and gamma-crystal structure. The separating membrane may be produced by molding starting materials into a membrane shape with a proper mold at the time of synthesizing the Na-Co oxide and by sintering the molded body. The separation membrane is fittest to purify electrolytically reduced Na or to separate and purify Na used as a catalyst and is very effective in industrial use.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ナトリウムの分離・精製効率の高い分離膜に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a separation membrane with high efficiency in separating and purifying sodium.

[従来の技術とその課題] ナトリウム蒸気を分離・精製する場合、従来技術では、
その分離膜としてβ−AI2203(ベタ・アルミナ)
等のイオン伝導体を用いていた。
[Conventional technology and its issues] When separating and refining sodium vapor, conventional technology requires
β-AI2203 (solid alumina) is used as the separation membrane.
They used ionic conductors such as

しかし、これらのイオン伝導体では電子伝導性が乏しい
ため、系外に電子伝導用回路を設け、非分離側の一次側
と、分離精製された減圧側に面した二次側を導通する必
要があった。ナトリウムの沸点は877℃であり、室温
での蒸気圧は低いため、ナトリウムを蒸気にして分離精
製する場合は、温度を少なくとも250℃以上にしなけ
ればならない。そういう高温度で、電子伝導性が低い分
離膜両面を電子伝導体で導通するには大変な技術を要し
、またコストも高いため、あまり活用されていない。
However, these ionic conductors have poor electron conductivity, so it is necessary to provide an electron conduction circuit outside the system to establish continuity between the primary side on the non-separated side and the secondary side facing the separated and purified reduced pressure side. there were. The boiling point of sodium is 877°C and its vapor pressure at room temperature is low, so if sodium is to be separated and purified as vapor, the temperature must be at least 250°C or higher. At such high temperatures, creating electrical conduction between both sides of a separation membrane with low electron conductivity using an electron conductor requires a very difficult technology and is also expensive, so it is not widely used.

[課題を解決するための手段] 本発明者は、ナトリウムイオン伝導性が高く、かつ電子
伝導性が高い物質を種々探索したところ、ナトリウム・
コバルト酸化物が適することをつきとめ、本発明を完成
するに至った。
[Means for Solving the Problems] The present inventor searched for various substances with high sodium ion conductivity and high electron conductivity, and found that sodium
They found that cobalt oxide was suitable and completed the present invention.

ナトリウム・コバルト酸化物はナトリウムとコバルトの
原子比により結晶構造が異なり、α型、β型、γ型等が
あることが知られている。本発明に於ては、いかなる結
晶構造のナトリウム・コバルト酸化物を用いても良い。
It is known that the crystal structure of sodium-cobalt oxide differs depending on the atomic ratio of sodium and cobalt, and there are α-type, β-type, γ-type, etc. In the present invention, sodium cobalt oxide having any crystal structure may be used.

しかし、イオン伝導性が高く、電子伝導性が高く、かつ
、温度変化に対しても強度があるのはγ型ナトリウム・
コバルト酸化物である。
However, γ-type sodium has high ionic conductivity, high electronic conductivity, and is strong against temperature changes.
It is cobalt oxide.

よって、特に好ましい結晶形態としてγ型を推奨できる
。その中でもナトリウムとコバルトの原子比は0.6:
1〜1:1の間がよい。
Therefore, the γ type can be recommended as a particularly preferable crystal form. Among them, the atomic ratio of sodium and cobalt is 0.6:
A ratio between 1 and 1:1 is preferable.

ナトリウム・コバルト酸化物を分離膜にするには膜状に
固める必要があるが、その方法としてはナトリウム・コ
バルト酸化物を合成する際に、膜状に原料を適当な形に
成型してから焼結することにより分離膜を作ることもで
きるし、また焼結体を膜状に切断して分離膜にすること
もできるし、合成したナトリウム・コバルト酸化物を再
焼成することで、分離膜を作ることもできる。また、他
の無機質バインダーや金属、例えば、ガラス状物質や三
酸化ビスマスや鉛またはカドミウム等をナトリウム・コ
バルト酸化物に添加し成型して分離膜を作ることもでき
る。
In order to make sodium/cobalt oxide into a separation membrane, it is necessary to solidify it into a membrane, but the method for this is to mold raw materials into an appropriate membrane shape and then sinter it when synthesizing sodium/cobalt oxide. Separation membranes can be made by sintering, or separation membranes can be made by cutting the sintered body into membranes, and separation membranes can be made by re-firing the synthesized sodium cobalt oxide. You can also make one. Furthermore, a separation membrane can also be made by adding other inorganic binders or metals, such as glassy substances, bismuth trioxide, lead, or cadmium, to the sodium cobalt oxide and molding the mixture.

また有機質バインダーを添加し、求める形状に成型して
から焼成処理して分離膜を作ることもできる。
Alternatively, a separation membrane can be made by adding an organic binder, molding it into a desired shape, and then firing it.

ナトリウム蒸気の精製分離の原理は、ナトリウムイオン
及び電子混合伝導体であるナトリウム・コバルト酸化物
を隔壁として二基を区切り、一方を他の物質を含んだナ
トリウム蒸気にさらし、他方を吸引するとナトリウム濃
淡電池が形成されるが、隔壁内の電子伝導により両極が
短絡される。
The principle of purification and separation of sodium vapor is to separate two groups using sodium cobalt oxide, which is a mixed conductor of sodium ions and electrons, as a partition wall, expose one side to sodium vapor containing other substances, and draw out the other substance to determine the concentration of sodium. A cell is formed, but electron conduction within the partitions shorts the poles.

即ち、ナトリウム蒸気室界面(正極)でNa→Na”+
e−なる式でイオン化したNa+がナトリウム・コバル
ト酸化物に入り、減圧室界面(負極)でNa”+e−→
Naなる反応が起こりナトリウムが減圧室内に放出され
純ナトリウムに精製される。
That is, at the sodium vapor chamber interface (positive electrode), Na→Na”+
Ionized Na+ enters the sodium cobalt oxide according to the formula e-, and at the decompression chamber interface (negative electrode) Na"+e-→
A reaction called Na occurs and sodium is released into the vacuum chamber and purified to pure sodium.

一方、上記式中での電子は、ナトリウム・コバルト酸化
物自身に電子伝導性(正孔伝導性)があるため、電極も
外部回路も不要となり、圧力差だけでナトリウムが選択
的に透過するのである。
On the other hand, the electrons in the above formula have electron conductivity (hole conductivity) in the sodium cobalt oxide itself, so there is no need for electrodes or external circuits, and sodium selectively permeates just by the pressure difference. be.

[実施例] 次に本発明の実施例を述べる。[Example] Next, examples of the present invention will be described.

炭酸ナトリウム(Na2CO31と酸化コバルト[CO
3041を等モルずつ秤量し、乳鉢を用いよく粉砕しな
がら混合した。次いで、この混合物を厚み2mm、直径
20mmの円板状にプレス成型した。この板を酸素雰囲
気炉に入れ徐々に昇温し、800℃で15時間焼成した
後、自然冷却した。でき上がったものは元の形状を全く
維持したままγ型のナトリウム・コバルト酸化物になっ
ていることをX線回折により確認した。次いでこの円板
を内径20mmの高純度アルミナ製円筒管の内側にアル
ミナ製接着剤で固定し、円筒管内を2室に分けた。円筒
管の一方をナトリウム製造用小型溶融塩電解槽の出口付
近に接続し、円筒管の他方を高耐食性吸引ポンプの吸入
口側に接続した。円筒管−次側と二次側の一部を外部加
熱法で600℃4こ加熱し、吸引ポンプで吸引するとナ
トリウム蒸気はγ型ナトリウム・コバルト酸化物からな
る隔壁を通して、二次側に放出され、さらに二次側室出
口附近をナトリウムの液化温度以下(この実施例では2
00℃)に冷却することによりナトリウムを液化し、分
岐させてナトリウムを採取した。このナトリウムの純度
は99.999%以上であった。
Sodium carbonate (Na2CO31 and cobalt oxide [CO
Equimolar amounts of 3041 were weighed out and mixed while thoroughly grinding using a mortar. Next, this mixture was press-molded into a disk shape with a thickness of 2 mm and a diameter of 20 mm. This plate was placed in an oxygen atmosphere furnace and the temperature was gradually raised, and after firing at 800° C. for 15 hours, it was naturally cooled. It was confirmed by X-ray diffraction that the resulting product had become a γ-type sodium cobalt oxide while maintaining its original shape. Next, this disk was fixed to the inside of a high-purity alumina cylindrical tube with an inner diameter of 20 mm using an alumina adhesive, and the inside of the cylindrical tube was divided into two chambers. One end of the cylindrical tube was connected to the vicinity of the outlet of a small molten salt electrolytic cell for producing sodium, and the other end of the cylindrical tube was connected to the suction side of a highly corrosion-resistant suction pump. When the inlet and secondary sides of the cylindrical tube are heated to 600°C four times using an external heating method and suctioned with a suction pump, sodium vapor is released to the secondary side through the partition wall made of γ-type sodium cobalt oxide. , furthermore, the area near the outlet of the secondary side chamber is below the liquefaction temperature of sodium (in this example, 2
Sodium was liquefied by cooling to 00° C.) and branched to collect sodium. The purity of this sodium was 99.999% or more.

[発明の効果] 以上述べたように、本発明の分離膜は、電解還元したナ
トリウムの精製用にも用いることができるし、熱媒とし
て用いているナトリウムを分離精製することにも用いる
ことができ産業上極めて有効である。
[Effects of the Invention] As described above, the separation membrane of the present invention can be used to purify electrolytically reduced sodium, and can also be used to separate and purify sodium used as a heating medium. It is extremely effective industrially.

Claims (2)

【特許請求の範囲】[Claims] (1)ナトリウム・コバルト酸化物を主成分とするナト
リウム蒸気の分離膜。
(1) Separation membrane for sodium vapor whose main components are sodium and cobalt oxides.
(2)ナトリウム・コバルト酸化物のナトリウムとコバ
ルトの原子比が0.6:1乃至1:1の範囲内であり、
γ型結晶構造を有する請求項(1)記載の分離膜。
(2) The atomic ratio of sodium and cobalt in the sodium-cobalt oxide is within the range of 0.6:1 to 1:1,
The separation membrane according to claim 1, which has a γ-type crystal structure.
JP32892789A 1989-12-19 1989-12-19 Separation membrane Pending JPH03188930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32892789A JPH03188930A (en) 1989-12-19 1989-12-19 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32892789A JPH03188930A (en) 1989-12-19 1989-12-19 Separation membrane

Publications (1)

Publication Number Publication Date
JPH03188930A true JPH03188930A (en) 1991-08-16

Family

ID=18215650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32892789A Pending JPH03188930A (en) 1989-12-19 1989-12-19 Separation membrane

Country Status (1)

Country Link
JP (1) JPH03188930A (en)

Similar Documents

Publication Publication Date Title
JP2559090B2 (en) Oxygen separation and recovery method using ion transport permeable membrane
TWI229148B (en) Electrochemical preparation of an alkali metal from aqueous solution
JP2004218078A (en) Method for separating lithium
EP1186337B1 (en) Method and apparatus for lithium isotope separation
JPS6121717A (en) Separation of oxygen
CN109437930B (en) Method for homogeneously dispersing sintering aid and use of sintering aid in such method
WO2006064730A1 (en) Method for producing metal
JPH03188930A (en) Separation membrane
JP4376995B2 (en) Fluorite ceramic material
JP2002367635A (en) Electrochemical solid device containing b-site rich lanthanum calcium manganite
CN115532219B (en) Salt lake lithium extraction adsorbent based on garnet type solid electrolyte powder and preparation and application thereof
EP1423887A2 (en) Solid acid electrolytes for electrochemical devices
US4180484A (en) Ceramic component for electrodes
JPS6247053B2 (en)
JPS5864258A (en) Metal oxide composite body and separation of oxygen
CN109360979B (en) Phosphate radical modified porous titanium dioxide and application thereof in sodium ion battery
JPS6353135B2 (en)
JPH01242401A (en) Production of hydrogen
JP3758084B2 (en) Ceramics for oxygen separation and oxygen separator
JP2006290686A (en) Hydrogen separating material and hydrogen separating apparatus
JPH0137347B2 (en)
US3671324A (en) Solid electrolyte
JPH0146446B2 (en)
JP3339936B2 (en) Method for producing conductive ceramics
CN115646191A (en) Hydrogen separation apparatus based on nickel-BZNY proton conductor and method of use