JPH03188417A - Waveguide type optical modulation element - Google Patents

Waveguide type optical modulation element

Info

Publication number
JPH03188417A
JPH03188417A JP1327766A JP32776689A JPH03188417A JP H03188417 A JPH03188417 A JP H03188417A JP 1327766 A JP1327766 A JP 1327766A JP 32776689 A JP32776689 A JP 32776689A JP H03188417 A JPH03188417 A JP H03188417A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
modulation
thin film
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1327766A
Other languages
Japanese (ja)
Other versions
JP2761951B2 (en
Inventor
Masaya Nanami
雅也 名波
Hiroshi Shimotahira
寛 下田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP1327766A priority Critical patent/JP2761951B2/en
Publication of JPH03188417A publication Critical patent/JPH03188417A/en
Application granted granted Critical
Publication of JP2761951B2 publication Critical patent/JP2761951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To improve light propagation loss in an entire element and to perform high-efficiency optical modulation to guided light by Brag diffraction by arranging two optical modulation parts in series with respect to a light advancing direction and constituting the light modulation part so that selective and variable modulation may be performed from identical propagated light. CONSTITUTION:A 1st thin film type lens 6 for converting light which is made incident from a linear type optical waveguide 2 on an input side and naturally dispersed in a fan shape into collimated guided light and a 2nd thin film type lens 7 for condensing the collimated guided light are provided inside a plane type optical waveguide 3. Then, 1st and 2nd interdigital type electrodes 10 and 11 which generate 1st and 2nd surface acoustic waves 8 and 9 having a wave surface and a propagating direction to respectively satisfy the condition of the Bragg diffraction for the collimated guided light are provided on a piezoelectric substrate 1. Thus, the attenuation of propagated light quantity is drastically improve and modulation selectively is obtained in the Bragg diffraction of the light by the surface acoustic waves, then the optical modulation is performed with high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、音響光学効果を利用して光の周波数遷移(
以下、周波数シフトという)を実現する光変調素子に係
り、特に薄膜先導波路と音響光変調素子とを組み合わせ
ることで、1つの入射光から、それぞれ2つの異なる周
波数で変調を受けた2光束を出射する導波型光変調素子
に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention utilizes the acousto-optic effect to realize frequency transition of light (
It relates to an optical modulation element that realizes a frequency shift (hereinafter referred to as a frequency shift), and in particular, by combining a thin film guiding waveguide and an acousto-optical modulation element, it emits two light beams each modulated at two different frequencies from one incident light. The present invention relates to a waveguide type optical modulator.

〔従来の技術〕[Conventional technology]

光の波長以下の精度で位置や距離の測定を行うサブフリ
ンジ干渉計測法の1つとして光ヘテロゲイン干渉を利用
する方法がある。
One of the subfringe interferometry methods for measuring position and distance with an accuracy less than the wavelength of light is a method that uses optical heterogain interference.

光へテロダイン干渉計では、干渉する2つの光の周波数
が少し異なっているため参照光と被験物からの反射光を
干渉させた後、光電変換すると、その電気信号は差周波
のビート信号として観測でき、この場合、被験物の位置
情報はビート信号の位相と基準信号の位相の差として検
出できる。
In an optical heterodyne interferometer, the frequencies of the two interfering lights are slightly different, so after the reference light and the reflected light from the test object are interfered with, photoelectric conversion is performed, and the electrical signal is observed as a beat signal of the difference frequency. In this case, the position information of the test object can be detected as the difference between the phase of the beat signal and the phase of the reference signal.

一方、同じ周波数の2つの光を干渉させる通常の干渉計
では、被験物の位置情報が干渉縞の明暗として検出され
るため、期待できる測定精度は高々2分の1波長である
。しかしながら、光ヘテロダイン干渉計より得られる電
気信号の位相は、信号振幅の変化に関係なく比較的容易
に2πの十分の1程度の精度で測定できるので、光の位
相情報も精度よく測定できる。例えば、光ヘテロダイン
干渉計測法を表面粗さの測定に利用して、高さの分解能
としてO,lnmを得た報告がされている。
On the other hand, with a normal interferometer that makes two lights of the same frequency interfere, the positional information of the object under test is detected as the brightness and darkness of interference fringes, so the measurement accuracy that can be expected is at most 1/2 wavelength. However, since the phase of an electrical signal obtained by an optical heterodyne interferometer can be measured relatively easily with an accuracy of about one-tenth of 2π regardless of changes in signal amplitude, optical phase information can also be measured with high accuracy. For example, it has been reported that optical heterodyne interferometry was used to measure surface roughness and a height resolution of O, lnm was obtained.

(参考文献 G、E、Sovaeaargren  A
ppl、 Opt、 20p610 1981) 光ヘテロゲイン干渉計測法において重要な技術は周波数
シフト技術であり、これには周波数が異なり、かつ現存
する光検出器で検出可能な周波数のビート信号を得るこ
とのできる光源が必要である。このような光源を得る方
法としては大きく分けて3種類が考えられている。第1
の方法は、1台のレーザ光源を周波数の異なるモードで
同時発振させる方法、第2の方法は、2台の周波数安定
化レーザを周波数オフセットロックして使用する方法で
ある。結論的に、これらの2方法は大がかりすぎて光ヘ
テロゲイン干渉計測法に適用するには困難な問題が多い
、第3の方法は、現在、最も多く用いられている方法で
、1台のレーザの光を2分し、その一方もしくは両方に
光学位相変調素子を用いて周波数シフトを行う方法であ
る。
(References G, E, Sovaeaargren A
ppl, Opt, 20p610 1981) An important technique in optical heterogain interferometry is the frequency shift technique, which involves the use of a light source that can obtain beat signals with different frequencies and frequencies that can be detected by existing photodetectors. is necessary. There are roughly three types of methods for obtaining such a light source. 1st
The second method uses two frequency-stabilized lasers with frequency offset locked. In conclusion, these two methods are too large-scale and have many difficult problems to apply to optical heterogain interferometry.The third method is currently the most commonly used method and is based on a single laser. This is a method of dividing light into two parts and using an optical phase modulation element in one or both parts to shift the frequency.

光学位相変調素子には初期の頃、回転型回折格子や回転
偏光素子などが用いられていたが、今日ではブラッグ回
折を利用した音響光変調素子がよく用いられている。
In the early days, rotating diffraction gratings, rotating polarizing elements, and the like were used as optical phase modulation elements, but today, acousto-optical modulation elements that utilize Bragg diffraction are often used.

音響光変調素子は高密度フリントガラスやモリブ酸鉛な
どの光学材料の中に超音波を進行させて位相格子を形成
し、光と超音波の相互作用で生じるブラッグ回折の現象
を利用して周波数シフトを行うものである。これを、干
渉に使用する方式としては、1個の変調素子で得られる
0次と1次の回折光を利用する方法と、駆動周波数の異
なる2個の変調素子の各々の1次回折光を利用する方法
とがある。後者の方法では偏光状態の直交する成分にそ
れぞれ周波数シフトを与えることができ、直交偏光の2
周波光源として利用価値が高い。
Acousto-optic modulators propagate ultrasonic waves through optical materials such as high-density flint glass or lead molybate to form a phase grating, and utilize the phenomenon of Bragg diffraction caused by the interaction of light and ultrasonic waves to determine the frequency. It is a shift. There are two ways to use this for interference: one uses the 0th-order and 1st-order diffracted light obtained by one modulation element, and the other uses the 1st-order diffracted light from each of two modulation elements with different drive frequencies. There is a way to do this. In the latter method, a frequency shift can be given to each orthogonal component of the polarization state, and the two
Highly useful as a frequency light source.

音響光変調素子は、機械的可動部がなく、小型でシフト
周波数も高くすることができるといった長所を有するが
、一方、量産に向かず高価な点、ブラッグ回折の条件を
満足させる高精度な光学調整が必要な点、さらに2周波
光源として構成した場合、ビームスプリンタ、反射ミラ
ー、波長板等構成部品が多く全体として複雑大型化し、
機械的外乱に弱い点などが欠点として残されている。
Acousto-optic modulators have the advantage of having no mechanically moving parts, being compact, and allowing for a high shift frequency. In addition, when configured as a dual-frequency light source, there are many component parts such as beam splinters, reflective mirrors, and wavelength plates, which require adjustment, and the overall size becomes complex and large.
It still has some drawbacks, such as being vulnerable to mechanical disturbances.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

Claims (1)

【特許請求の範囲】 光透過性を有する圧電性基板(1)と、 該圧電性基板(1)の表層に設けられ、該圧電性基板の
端面より入射した光を導波するための入力側直線型光導
波路(2)と、 該入力側直線型光導波路(2)の出力端に接続された平
面型光導波路(3)と、 該平面型光導波路(3)にそれぞれ接続された第1及び
第2の出力側直線型光導波路(4),(5)と、該平面
型光導波路(3)の内部に設けられ、前記入力側直線型
光導波路(2)の出力端から扇状に自然分散した薄膜状
の導波光を平行光にするための第1の薄膜型レンズ(6
)と、 該第1の薄膜型レンズ(6)を通過した後の平行光を前
記第1及び第2の直線型光導波路(4),(5)に絞り
込むために該平面型光導波路(3)の内部に設けられた
第2の薄膜型レンズ(7)と、 互いに周波数が異なり、かつ前記平面型光導波路(3)
内を導波する平行光に対してブラッグ回折の条件をそれ
ぞれ満足すべく波面と伝搬方向を持つ第1及び第2の表
面弾性波(8),(9)を前記圧電性基板(1)上に発
生させる第1及び第2の交差指型電極(10),(11
)とを備えた導波型光変調素子。
[Scope of Claims] A piezoelectric substrate (1) having optical transparency; and an input side provided on the surface layer of the piezoelectric substrate (1) for guiding light incident from an end surface of the piezoelectric substrate. a linear optical waveguide (2); a planar optical waveguide (3) connected to the output end of the input linear optical waveguide (2); and a first optical waveguide connected to the planar optical waveguide (3), respectively. and second output-side linear optical waveguides (4), (5), which are provided inside the planar optical waveguide (3) and naturally fan-shaped from the output end of the input-side linear optical waveguide (2). The first thin film lens (6
), and the planar optical waveguide (3) in order to focus the parallel light after passing through the first thin film lens (6) into the first and second linear optical waveguides (4) and (5). ) and a second thin film lens (7) provided inside the planar optical waveguide (3) having different frequencies from each other.
First and second surface acoustic waves (8) and (9) having wavefronts and propagation directions that satisfy the conditions of Bragg diffraction for parallel light guided within the piezoelectric substrate (1) are The first and second interdigital electrodes (10) and (11)
) A waveguide type optical modulation element.
JP1327766A 1989-12-18 1989-12-18 Waveguide type light modulator Expired - Fee Related JP2761951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327766A JP2761951B2 (en) 1989-12-18 1989-12-18 Waveguide type light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327766A JP2761951B2 (en) 1989-12-18 1989-12-18 Waveguide type light modulator

Publications (2)

Publication Number Publication Date
JPH03188417A true JPH03188417A (en) 1991-08-16
JP2761951B2 JP2761951B2 (en) 1998-06-04

Family

ID=18202750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327766A Expired - Fee Related JP2761951B2 (en) 1989-12-18 1989-12-18 Waveguide type light modulator

Country Status (1)

Country Link
JP (1) JP2761951B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166921A (en) * 1984-02-10 1985-08-30 Omron Tateisi Electronics Co Frequency shifter of light utilizing bragg difraction
JPS61259233A (en) * 1985-05-14 1986-11-17 Omron Tateisi Electronics Co Waveguide type bragg light modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166921A (en) * 1984-02-10 1985-08-30 Omron Tateisi Electronics Co Frequency shifter of light utilizing bragg difraction
JPS61259233A (en) * 1985-05-14 1986-11-17 Omron Tateisi Electronics Co Waveguide type bragg light modulator

Also Published As

Publication number Publication date
JP2761951B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP3144143B2 (en) Optical displacement measuring device
JP2002517768A (en) Electro-optical, magneto-optical or acousto-optically controlled UV lighting device for the fabrication of Bragg gratings
WO1999023733A1 (en) Apparatus for generating orthogonally polarized beams having different frequencies
US5629793A (en) Frequency shifter and optical displacement measurement apparatus using the same
JPH05265059A (en) Method and instrument for measuring time for forming refractive index grating for optical nonlinear medium
CN1219188C (en) Adjustable optical phase shifter and phase-shift process
JP2787345B2 (en) Two-wavelength light source element
JPH03188417A (en) Waveguide type optical modulation element
US4591241A (en) Acousto-optical spectrum analyzer
JP2948645B2 (en) Two-wavelength light source element
JPS6139289Y2 (en)
JPH0711649B2 (en) Cross-polarized dual frequency light source
JPS63241305A (en) Fringe scanning method
SU1763884A1 (en) Method for thickness measuring of optically transparent objects
JPH0277029A (en) Two-frequency light generation module
JPH02160221A (en) Two-frequency light generating source
SU1392357A1 (en) Interferometric transducer for measuring angle of turn of object
SU1350489A1 (en) Device for measuring linear shifts of objects
GB2222271A (en) Collinear acousto-optic modulator
JPH07110206A (en) Optical heterodyne interferometer
JPH1019508A (en) Light wave interference measuring device and measuring system for variation of reflective index
JPH0318720A (en) Displacement measuring instrument
RU2016380C1 (en) Method and device for automatic interpolation of phase-shift in laser interferometers
CN115453826A (en) Laser interference photoetching system
JPS59198425A (en) Ultrasonic optical modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees