JPH03188299A - Method for electroplating with zinc alloy and gas diffusion electrode device used therefor - Google Patents

Method for electroplating with zinc alloy and gas diffusion electrode device used therefor

Info

Publication number
JPH03188299A
JPH03188299A JP32556289A JP32556289A JPH03188299A JP H03188299 A JPH03188299 A JP H03188299A JP 32556289 A JP32556289 A JP 32556289A JP 32556289 A JP32556289 A JP 32556289A JP H03188299 A JPH03188299 A JP H03188299A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
plating bath
anode
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32556289A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP32556289A priority Critical patent/JPH03188299A/en
Priority to DE1990611304 priority patent/DE69011304T2/en
Priority to EP19900830585 priority patent/EP0435835B1/en
Publication of JPH03188299A publication Critical patent/JPH03188299A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To electroplate a steel sheet with a zinc-iron alloy without generating oxygen or poisonous gaseous chlorine on an anode by using a gas diffusion electrode as the anode, supplying gaseous hydrogen on the gas diffusion layer side of the gas diffusion electrode and using a hydrogen oxidation reaction as the anodic reaction of a plating bath. CONSTITUTION:Many gas diffusion electrodes 1 each of which is obtained by joining a gas diffusion layer 2 and a reaction layer 3 are supported by a conductive reinforcing frame 4 to obtain a gas diffusion electrode device 9, which is arranged in an electrolytic cell as the anode. A zinc alloy plating bath is filled into a cell on the reaction layer side partitioned by the anode, gaseous hydrogen is supplied into the cell on the gas diffusion layer side, the gas diffusion electrode 1 is energized through the reinforcing frame 4, the steel sheet is passed through the plating bath as a cathode material, and the sheet is electroplated. Accordingly, the anodic reaction in the bath is carried out as a hydrogen oxidation reaction, hence gaseous chlorine and oxygen are not generated, and a beautiful zinc alloy plating layer having a smooth surface and free of burnings is formed on the steel sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、亜鉛合金電気めっき方法及びそれに使用する
ガス拡散電極装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a zinc alloy electroplating method and a gas diffusion electrode device used therein.

(従来の技術) 近年、自動車、建材、家電製品などの分野で、防錆効果
があって、塗装との相性も良(、加熱処理も不要で、め
っき表面が軟らか(て展延性のある表面処理鋼材として
、亜鉛−鉄、亜鉛−コバルト、亜鉛−ニッケル、亜鉛−
マンガン等の合金電気めっき鋼材が注目されている。こ
こでは亜鉛−鉄めっきについて説明する。
(Conventional technology) In recent years, in the fields of automobiles, building materials, home appliances, etc., plating has a rust-preventing effect, is compatible with coatings (no heat treatment is required, and has a soft plating surface and is malleable). As treated steel materials, zinc-iron, zinc-cobalt, zinc-nickel, zinc-
Alloy electroplated steel materials such as manganese are attracting attention. Here, zinc-iron plating will be explained.

亜鉛−鉄合金電気めっきは、亜鉛及び鉄の硫酸塩をめっ
き浴とする方法と、亜鉛及び鉄の塩化物をめっき浴とす
る方法とがある。両者を比べると、硫酸塩浴の場合、液
抵抗が大きい、PHが1.0と低い為、陰極析出効率が
悪い等の問題点があるのに対し、塩化物浴の場合は、・
硫酸浴に比べ液抵抗は小さく、陰極析出効率も良い等の
利点があり、また外観も平滑である。
Zinc-iron alloy electroplating includes a method using a sulfate of zinc and iron as a plating bath, and a method using a chloride of zinc and iron as a plating bath. Comparing the two, sulfate baths have problems such as high liquid resistance and low cathodic deposition efficiency due to low pH of 1.0, while chloride baths have problems such as...
Compared to sulfuric acid baths, it has advantages such as lower liquid resistance and better cathodic deposition efficiency, and also has a smooth appearance.

(発明が解決しようとする課題) ところで、上記塩化物浴の場合、陽極に有毒な塩素ガス
が発生するという欠点がある。
(Problems to be Solved by the Invention) However, in the case of the above chloride bath, there is a drawback that toxic chlorine gas is generated at the anode.

また亜鉛−鉄合金電気めっき方法では、陽極にイリジウ
ム又は白金めっきチタン電極を用いているが、この白金
めっきチタン電極では、陽極反応として酸素発生するの
で、電極の寿命が数1000時間と短い。また陽極で酸
化されるためめっき浴中の鉄イオンの価数がめつき浴の
補充にもかかわらず増えて(る。その為、めっき浴をイ
オン交換膜を用いた電解還元装置に循環させFe’“を
F e24に還元している。しかしそれでもめっき浴中
の亜鉛、鉄イオン、PHがアンバランスとなり、めっき
厚がばらついたり、表面が部分的に粗れたりする為、鉄
鋼各社ではめっき浴を−82トン程度廃棄しているので
、莫大な損失である。
Further, in the zinc-iron alloy electroplating method, an iridium or platinum-plated titanium electrode is used as an anode, but since oxygen is generated as an anode reaction in this platinum-plated titanium electrode, the life of the electrode is as short as several thousand hours. In addition, due to the oxidation at the anode, the valence of iron ions in the plating bath increases despite the replenishment of the plating bath. Therefore, the plating bath is circulated through an electrolytic reduction device using an ion exchange membrane and However, the zinc, iron ions, and pH in the plating bath become unbalanced, causing variations in the plating thickness and partially roughening the surface. - Approximately 82 tons were discarded, which is a huge loss.

さらに亜鉛−鉄合金電気めっきされる鋼板は、せまいめ
っき浴中を200m/minの高速で移動するので、陽
極は機械的強度が無ければ使用できないものであり、ま
た鋼板が接触して引っかき傷が付いたり、スパークした
りするという問題があった。
Furthermore, since the steel sheets to be electroplated with zinc-iron alloy are moved through a narrow plating bath at a high speed of 200 m/min, the anode must have mechanical strength to be used, and the steel sheets may come into contact and be scratched. There were problems with sticking and sparking.

そこで本発明は、陽極に酸素又は有毒な塩素ガスを発生
させず、まためっき浴を廃棄させず、さらに陽極に傷を
付けたり、スパークさせたすせずに、鋼板に亜鉛−鉄合
金電気めっきを施す方法及びそれに使用するガス拡散電
極装置を提供しようとするものである。
Therefore, the present invention provides zinc-iron alloy electroplating on steel sheets without generating oxygen or toxic chlorine gas at the anode, without disposing of the plating bath, and without damaging or sparking the anode. The present invention aims to provide a method for performing this and a gas diffusion electrode device for use therein.

(課題を解決するための手段) 上記課題を解決するための本発明の亜鉛−鉄合金電気め
っき方法は、電解セル内に、ガス拡散層と反応層が接合
されたガス拡散電極を通電性の補強枠に多数支持したガ
ス拡散電極装置を陽極として配し、この陽極に区画され
た反応層側のセル内に亜鉛合金のめっき浴を充填し、ガ
ス拡散層側のセル内に水素ガスを供給すると共に前記補
強枠を介してガス拡散電極に通電し、前記めっき浴中に
鋼板を陰極素材として通して該鋼板に亜鉛合金を電気め
っきすることを特徴とするものである。
(Means for Solving the Problems) In order to solve the above problems, the zinc-iron alloy electroplating method of the present invention includes an electrically conductive gas diffusion electrode in which a gas diffusion layer and a reaction layer are joined in an electrolytic cell. A large number of gas diffusion electrode devices supported on a reinforcing frame are arranged as anodes, a zinc alloy plating bath is filled in the cells on the reaction layer side defined by the anodes, and hydrogen gas is supplied into the cells on the gas diffusion layer side. At the same time, the gas diffusion electrode is energized through the reinforcing frame, and a steel plate is passed through the plating bath as a cathode material to electroplate the steel plate with a zinc alloy.

また本発明のガス拡散電極装置は、疎水性カーボンブラ
ックとポリテトラフロロエチレン等の弗素樹脂とから成
るガス拡散層と、触媒が担持された親水性カーボンブラ
ック又は触媒微粒子と疎水性カーボンブラック及びポリ
テトラフロロエチレン等の弗素樹脂とから成る反応層か
接合されたガス拡散電極を、通電性の補強枠に多数支持
したことを特徴とするものである。
Further, the gas diffusion electrode device of the present invention includes a gas diffusion layer made of hydrophobic carbon black and a fluororesin such as polytetrafluoroethylene, hydrophilic carbon black carrying a catalyst or catalyst fine particles, hydrophobic carbon black and polycarbonate. This device is characterized in that a large number of gas diffusion electrodes bonded with a reaction layer made of a fluororesin such as tetrafluoroethylene are supported on an electrically conductive reinforcing frame.

(作用) 上記本発明の亜鉛合金電気めっき方法は、ガス拡散電極
を陽極として用い、ガス拡散電極のガス拡散層側に水素
ガスを供給して、めっき浴の陽極反応を水素酸化反応と
したので、硫酸浴の場合、陽極で酸素が発生することが
無く、塩化物浴の場合、陽極で塩素ガスか発生すること
が無(、めっき浴中を通る鋼板には表面が平滑で美麗な
焼けの無い亜鉛合金めっき層が形成される。しかもめっ
き浴中の鉄、コバルト、マンガン等のイオンが陽極酸化
されることが無(、例えそれらの陽極されたイオンがめ
つき浴中に混入してもガス拡散電極で還元され、イオン
価が減少するので、めっき浴中の亜鉛、鉄(又はコバル
ト、マンガン等)イオン、PHがアンバランスとなるこ
とが無く、従ってめっき浴を廃棄することな(有効に使
用でき、また鋼板に施される亜鉛−鉄合金めっき層の厚
さにばらつきが生ぜず、表面が部分的に粗れることも無
い。
(Function) The zinc alloy electroplating method of the present invention uses a gas diffusion electrode as an anode, supplies hydrogen gas to the gas diffusion layer side of the gas diffusion electrode, and makes the anodic reaction of the plating bath a hydrogen oxidation reaction. In the case of a sulfuric acid bath, no oxygen is generated at the anode, and in the case of a chloride bath, no chlorine gas is generated at the anode (the steel plate passing through the plating bath has a smooth and beautiful surface. In addition, iron, cobalt, manganese, etc. ions in the plating bath are not anodized (and even if those anodized ions are mixed into the plating bath, gas will not form). Since it is reduced at the diffusion electrode and the ion value decreases, the zinc, iron (or cobalt, manganese, etc.) ions and pH in the plating bath will not become unbalanced, and therefore the plating bath will not be discarded (effectively). In addition, there is no variation in the thickness of the zinc-iron alloy plating layer applied to the steel sheet, and the surface is not partially roughened.

また本発明の亜鉛−鉄、亜鉛−コバルト、亜鉛マンガン
等の合金電気めっき方法に使用されるガス拡散電極装置
は、前述の如く通電性の補強枠に、多数のガス拡散電極
を支持しているので、陽極としてのガス拡散電極は機械
的強度が向上している。従って、鋼板がせまいめっき浴
中を高速で移動してもガス拡散電極はあおられたり、撓
んだりすることが無く、また鋼板がガス拡散電極に接触
することが無いので、引っかき傷が付いたり、スパーク
したりすることが無い。
Further, the gas diffusion electrode device used in the zinc-iron, zinc-cobalt, zinc-manganese, etc. alloy electroplating method of the present invention supports a large number of gas diffusion electrodes on an electrically conductive reinforcing frame as described above. Therefore, the mechanical strength of the gas diffusion electrode used as an anode is improved. Therefore, even if the steel plate moves at high speed in a narrow plating bath, the gas diffusion electrode will not be agitated or bent, and since the steel plate will not come into contact with the gas diffusion electrode, it will not be scratched. , there is no spark.

(実施例) 本発明の亜鉛合金電気めっき方法及びそれに使用するガ
ス拡散電極装置の実施例を説明する。先ずガス拡散電極
装置の実施例を第1図a、bによって説明すると、■は
縦100mm、横10On+n+の方形のガス拡散電極
で、該ガス拡散電極1は平均粒径420人の疎水性カー
ボンブラックと平均粒径0.3μmのポリテトラフロロ
エチレンとから成る厚さ500μmのガス拡散層2と、
白金触媒が0.56■・cm−2担持された平均粒径4
20人の親水性カーボンブラックと平均粒径420人の
疎水性カーボンブラックと平均粒径0.3μmのポリテ
トラフロロエチレンとから成る厚さ100μm反応層3
が接合されたものである。このガス拡散電極1は、チタ
ン、銅、ステンレス鋼等の通電性の補強枠、本例の場合
チタンより成る格子状の補強枠4に、多数本例の場合1
0枚張設支持されている。この補強枠4はガス拡散電極
lの反応層3側の前面に保護部材5が突設されている。
(Example) Examples of the zinc alloy electroplating method of the present invention and the gas diffusion electrode device used therein will be described. First, an embodiment of the gas diffusion electrode device will be explained with reference to FIGS. and a 500 μm thick gas diffusion layer 2 made of polytetrafluoroethylene with an average particle size of 0.3 μm,
Average particle size 4 with platinum catalyst supported at 0.56 cm-2
A 100 μm thick reaction layer 3 consisting of 20 hydrophilic carbon blacks, 420 hydrophobic carbon blacks with an average particle size of 0.3 μm, and polytetrafluoroethylene with an average particle size of 0.3 μm.
are joined. This gas diffusion electrode 1 is mounted on a lattice-shaped reinforcing frame 4 made of an electrically conductive reinforcing frame made of titanium, copper, stainless steel, etc., in this case titanium, and a plurality of them in this example.
0 sheets are stretched and supported. This reinforcing frame 4 has a protective member 5 protruding from the front surface of the reaction layer 3 side of the gas diffusion electrode 1.

このように構成されたガス拡散電極装置9を使用する本
発明の亜鉛合金電気めっき方法の一実施例を第2図によ
って説明すると、電解セル10内にガス拡散電極装置9
を陽極として配し、この陽極に区画されたガス拡散電極
lの反応層3側のセル11内に、50g/L  FeC
lz・nH+o、245g/L ZnC1=、1.5g
/L NaPH2O2、PH=3,0より成る塩化物の
めっき浴12を充填し、ガス拡散電極1のガス拡散層2
側のセル13内に導入口14から水素ガスを連続的に導
入してガス拡散電極装置9のガス拡散層2側に水素ガス
を連続的に供給すると共にセル13内に排出し、セル1
3の導出口15から導出した。これと同時に前記補強枠
4を介して各ガス拡散電極lに通電した。この状態でセ
ルll内のめっき浴12中に鋼板16を陰極素材として
200m/minの速度で通して、該鋼板16に亜鉛−
鉄合金を電流密度150A−dm−2、浴電圧8.6V
で電気めっきし、厚さ4μmの亜鉛−鉄合金めっき層を
形成した。
An embodiment of the zinc alloy electroplating method of the present invention using the gas diffusion electrode device 9 configured as described above will be described with reference to FIG.
was arranged as an anode, and 50 g/L FeC
lz・nH+o, 245g/L ZnC1=, 1.5g
The gas diffusion layer 2 of the gas diffusion electrode 1 is filled with a chloride plating bath 12 consisting of /L NaPH2O2, pH=3.0.
Hydrogen gas is continuously introduced into the cell 13 on the side from the inlet 14 to continuously supply hydrogen gas to the gas diffusion layer 2 side of the gas diffusion electrode device 9 and discharged into the cell 13.
It was led out from the outlet 15 of No. 3. At the same time, electricity was applied to each gas diffusion electrode 1 via the reinforcing frame 4. In this state, the steel plate 16 is passed through the plating bath 12 in the cell 1 as a cathode material at a speed of 200 m/min, and the steel plate 16 is coated with zinc.
Iron alloy current density 150A-dm-2, bath voltage 8.6V
Electroplating was performed to form a zinc-iron alloy plating layer with a thickness of 4 μm.

この亜鉛合金電気めっき方法は、ガス拡散電極1を陽極
として用い、ガス拡散電極Iのガス拡散層2側に水素ガ
スを供給して、塩化物のめっき浴I2の陽極反応を水素
酸化反応としたので、陽極で塩素ガスの発生することが
無かった。そして鋼板16上に形成された亜鉛−鉄合金
めっき層を検査した処、表面は平滑で美麗な焼けの無い
ものであった。また連続的に鋼板16を送って亜鉛−鉄
合金電気めっきを行っていても、塩化物のめっき浴12
中の鉄イオンがFe2+からFe3+に陽極酸化される
ことが無く、例えF e ”がめつき浴12中に混入し
てもガス拡散電極lで還元され、Fe2+となるので、
めっき浴12中の亜鉛、鉄イオン、PHがアンバランス
となることが無かった。従って、めっき浴12をイオン
交換膜を用いた電解還元装置に循環させる必要が無く、
まためっき浴I2を廃棄することなく有効に使用できた
。そして鋼板16上に形成された亜鉛−鉄合金めっき層
は厚さにばらつきが生ぜず、表面に部分的な粗れが生じ
ることも無かった。
This zinc alloy electroplating method uses the gas diffusion electrode 1 as an anode, supplies hydrogen gas to the gas diffusion layer 2 side of the gas diffusion electrode I, and converts the anodic reaction of the chloride plating bath I2 into a hydrogen oxidation reaction. Therefore, no chlorine gas was generated at the anode. When the zinc-iron alloy plating layer formed on the steel plate 16 was inspected, the surface was smooth, beautiful, and free from burns. Furthermore, even if the steel sheets 16 are continuously fed to perform zinc-iron alloy electroplating, the chloride plating bath 12
The iron ions inside are not anodized from Fe2+ to Fe3+, and even if Fe'' mixes into the plating bath 12, it will be reduced at the gas diffusion electrode l and become Fe2+.
Zinc, iron ions, and PH in the plating bath 12 did not become unbalanced. Therefore, there is no need to circulate the plating bath 12 through an electrolytic reduction device using an ion exchange membrane,
Furthermore, the plating bath I2 could be used effectively without being discarded. The zinc-iron alloy plating layer formed on the steel plate 16 had no variation in thickness, and no local roughness occurred on the surface.

また鋼板16が200m/minの高速でせまいめっき
浴12中を移動しても陽極としてのガス拡散電極lは補
強枠4に支持されて機械的強度が向上しているので、あ
おられたり撓んだりすることが無く、また補強枠4の前
面に保護部材5が突設されているので、移動する鋼板1
6がガス拡散電極lに接触することが無い。従って引っ
かき傷が付いたり、スパークしたりすることが無い。ま
た硫酸浴でも同様であった。
Furthermore, even if the steel plate 16 moves through the narrow plating bath 12 at a high speed of 200 m/min, the gas diffusion electrode l serving as an anode is supported by the reinforcing frame 4 and has improved mechanical strength, so it will not be agitated or bent. Also, since the protective member 5 is provided protruding from the front of the reinforcing frame 4, the moving steel plate 1
6 does not come into contact with the gas diffusion electrode l. Therefore, there will be no scratches or sparks. The same thing happened in the sulfuric acid bath.

(発明の効果) 以上の説明で判るように本発明の亜鉛合金電気めっき方
法によれば、めっき浴の陽極反応が水素酸化反応となっ
て塩素ガスや酸素の発生が無く、鋼板上には表面が平滑
で焼けの無い美麗な亜鉛合金めっき層が形成される。し
かもめっき浴中の鉄、コバルト、マンガン等のイオンが
陽極酸化されることが無く、めっき浴中の亜鉛、鉄(又
はコバルト、マンガン等)イオン、PHはバランスして
いるので、めっき浴をイオン交換膜を用いた電解還元装
置に循環させる必要が無く、まためっき浴を廃棄するこ
となく有効使用でき、また鋼板上に形成される亜鉛合金
めっき層は厚さにばらつきが無く、表面に部分的な粗れ
も生じないものである。
(Effects of the Invention) As can be seen from the above explanation, according to the zinc alloy electroplating method of the present invention, the anode reaction in the plating bath becomes a hydrogen oxidation reaction, so there is no generation of chlorine gas or oxygen, and the surface A beautiful zinc alloy plating layer is formed that is smooth and free from burns. Moreover, iron, cobalt, manganese, etc. ions in the plating bath are not anodized, and the zinc, iron (or cobalt, manganese, etc.) ions and pH in the plating bath are balanced, so the plating bath can be ionized. There is no need to circulate it through an electrolytic reduction device using an exchange membrane, and the plating bath can be used effectively without being disposed of.Also, the zinc alloy plating layer formed on the steel sheet has no variation in thickness, and there is no need to dispose of the plating bath on the surface. It does not cause any roughness.

また本発明の亜鉛合金電気めっき方法に使用されるガス
拡散電極装置は、陽極としてのガス拡散電極の機械的強
度が向上しているので、鋼板がせまいめっき浴中を高速
で通ってもガス拡散電極はあおられたり、撓んだりする
ことが無く、また鋼板がガス拡散電極に接触することが
無いので、引っかき傷が付いたり、スパークしたりする
ことが無く、従って上記の優れた亜鉛合金電気めっき方
法を有効に安定して行うことができる。
Furthermore, in the gas diffusion electrode device used in the zinc alloy electroplating method of the present invention, the mechanical strength of the gas diffusion electrode as an anode is improved, so even if the steel sheet passes through a narrow plating bath at high speed, gas diffusion is possible. Since the electrodes do not stir or flex, and the steel plate does not touch the gas diffusion electrodes, there is no scratching or sparking, and therefore the above-mentioned superior zinc alloy electrical The plating method can be performed effectively and stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは本発明のガス拡散電極装置の一実施例を
示す図で、a図は平面図、b図は同a図のA−A断面図
、第2図は第1図のガス拡散電極装置を用いた亜鉛合金
電気めっき方法を示す図である。
Figures 1a and 1b are views showing one embodiment of the gas diffusion electrode device of the present invention, where figure a is a plan view, figure b is a sectional view taken along line A-A in figure a, and figure 2 is a cross-sectional view of figure 1. FIG. 2 is a diagram showing a zinc alloy electroplating method using a gas diffusion electrode device.

Claims (1)

【特許請求の範囲】 1)電解セル内に、ガス拡散層と反応層が接合されたガ
ス拡散電極を通電性の補強枠に多数支持したガス拡散電
極装置を陽極として配し、この陽極に区画された反応層
側のセル内に亜鉛合金めっき浴を充填し、ガス拡散層側
のセル内に水素ガスを供給すると共に前記補強枠を介し
てガス拡散電極に通電し、前記めっき浴中に鋼板を陰極
素材として通して、該鋼板に亜鉛合金を電気めっきする
ことを特徴とする亜鉛合金電気めっき方法。 2)疎水性カーボンブラックとポリテトラフロロエチレ
ン等の弗素樹脂とから成るガス拡散層と、触媒が担持さ
れた親水性カーボンブラック又は触媒微粒子と疎水性カ
ーボンブラック及びポリテトラフロロエチレン等の弗素
樹脂とから成る反応層が接合されたガス拡散電極を、通
電性の補強枠に多数支持したことを特徴とするガス拡散
電極装置。
[Claims] 1) A gas diffusion electrode device in which a large number of gas diffusion electrodes each having a gas diffusion layer and a reaction layer joined to each other are supported on an electrically conductive reinforcing frame is disposed as an anode in an electrolytic cell, and this anode is divided into sections. A zinc alloy plating bath is filled in the cell on the side of the reaction layer, hydrogen gas is supplied into the cell on the gas diffusion layer side, and electricity is applied to the gas diffusion electrode through the reinforcing frame, and a steel plate is placed in the plating bath. 1. A method for electroplating a zinc alloy, which comprises electroplating a zinc alloy on the steel sheet through the steel plate as a cathode material. 2) A gas diffusion layer consisting of hydrophobic carbon black and a fluororesin such as polytetrafluoroethylene, hydrophilic carbon black on which a catalyst is supported or catalyst fine particles, hydrophobic carbon black and a fluororesin such as polytetrafluoroethylene. 1. A gas diffusion electrode device comprising a plurality of gas diffusion electrodes each having a reaction layer bonded thereto supported on an electrically conductive reinforcing frame.
JP32556289A 1989-12-15 1989-12-15 Method for electroplating with zinc alloy and gas diffusion electrode device used therefor Pending JPH03188299A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32556289A JPH03188299A (en) 1989-12-15 1989-12-15 Method for electroplating with zinc alloy and gas diffusion electrode device used therefor
DE1990611304 DE69011304T2 (en) 1989-12-15 1990-12-14 Method of electroplating a zinc alloy and device therefor.
EP19900830585 EP0435835B1 (en) 1989-12-15 1990-12-14 Process for electroplating zinc alloy and apparatus employed therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32556289A JPH03188299A (en) 1989-12-15 1989-12-15 Method for electroplating with zinc alloy and gas diffusion electrode device used therefor

Publications (1)

Publication Number Publication Date
JPH03188299A true JPH03188299A (en) 1991-08-16

Family

ID=18178282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32556289A Pending JPH03188299A (en) 1989-12-15 1989-12-15 Method for electroplating with zinc alloy and gas diffusion electrode device used therefor

Country Status (3)

Country Link
EP (1) EP0435835B1 (en)
JP (1) JPH03188299A (en)
DE (1) DE69011304T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202489A (en) * 1989-12-29 1991-09-04 Nkk Corp Manganese and manganese alloy plating method
JP2006322069A (en) * 2005-04-19 2006-11-30 Yuken Industry Co Ltd Recovery type electrogalvanizing method and device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399202B1 (en) 1999-10-12 2002-06-04 Cabot Corporation Modified carbon products useful in gas diffusion electrodes
US6280871B1 (en) 1999-10-12 2001-08-28 Cabot Corporation Gas diffusion electrodes containing modified carbon products
US7541308B2 (en) 2001-04-11 2009-06-02 Cabot Corporation Fuel cells and other products containing modified carbon products
CN104073862A (en) * 2014-07-11 2014-10-01 张钰 Insoluble anode device for alkaline zinc-nickel alloy electroplating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326723A (en) * 1963-01-04 1967-06-20 Leesona Corp Fuel cell electrode construction
JPS62208554A (en) * 1986-03-07 1987-09-12 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode and its manufacture
NL8801511A (en) * 1988-06-14 1990-01-02 Hoogovens Groep Bv METHOD FOR ELECTROLYTICALLY COATING A METAL SUBSTRATE WITH A METAL COATING COAT.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202489A (en) * 1989-12-29 1991-09-04 Nkk Corp Manganese and manganese alloy plating method
JP2006322069A (en) * 2005-04-19 2006-11-30 Yuken Industry Co Ltd Recovery type electrogalvanizing method and device

Also Published As

Publication number Publication date
EP0435835B1 (en) 1994-08-03
EP0435835A2 (en) 1991-07-03
DE69011304T2 (en) 1994-11-17
DE69011304D1 (en) 1994-09-08
EP0435835A3 (en) 1991-11-13

Similar Documents

Publication Publication Date Title
US5674365A (en) Electrode composition for electrolysis of water
US5599437A (en) Electrolysis of electroactive species using pulsed current
US5804053A (en) Continuously electroplated foam of improved weight distribution
CN108140845A (en) Metal porous body, fuel cell and the method for manufacturing metal porous body
Farndon et al. Studies of platinized Ebonex® electrodes
KR20050085863A (en) Anode used for electroplating
Walsh Electrode reactions in metal finishing
JPH03188299A (en) Method for electroplating with zinc alloy and gas diffusion electrode device used therefor
Jiang et al. Reactive deposition of cobalt electrodes: V. Mechanistic studies of oxygen reduction in unbuffered neutral solutions saturated with oxygen
CN109786800A (en) Using the hot recycling ammonia battery and preparation method of the Ni-based copper-plating electrode of foam
JPH02236298A (en) Coating of belt-like metal substrate with electrolytic metal and apparatus for performing it
US4354905A (en) Method for the electrolysis of an aqueous solution of an alkali metal chloride and an anode therefor
JPH03202489A (en) Manganese and manganese alloy plating method
JP3455705B2 (en) Electro-copper plating apparatus and copper plating method using said apparatus
CN114622238A (en) Preparation and application of transition metal-based hydrogen evolution and oxygen evolution dual-functional electrode
Walsh Electrochemical cell reactions in metal finishing
JP3257831B2 (en) Lead dioxide electrode and method for producing the same
Huang et al. The use of air fuel cell cathodes to remove contaminants from spent chromium plating solutions
ES8707570A1 (en) Electrolytic galvanizing processes
CN217556342U (en) External metal ion electrolysis supplementary device
Wilcox et al. The kinetics of electrode reactions III practical aspects
JPH10277551A (en) Electrolyte water generating device
Walsh Understanding cathodes and cells
Wang et al. Influence of parameters of bidirectional pulse power supply on copper plating on printed circuit board
JPH07173694A (en) Gas diffusion electrode