JPH0318797A - System for disassembling internal structure of nuclear reactor by plasma arc cutting technique - Google Patents

System for disassembling internal structure of nuclear reactor by plasma arc cutting technique

Info

Publication number
JPH0318797A
JPH0318797A JP15412489A JP15412489A JPH0318797A JP H0318797 A JPH0318797 A JP H0318797A JP 15412489 A JP15412489 A JP 15412489A JP 15412489 A JP15412489 A JP 15412489A JP H0318797 A JPH0318797 A JP H0318797A
Authority
JP
Japan
Prior art keywords
cutting
reactor
internal structure
lifting shaft
dismantling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15412489A
Other languages
Japanese (ja)
Other versions
JPH0766079B2 (en
Inventor
Yoshihiro Seiki
清木 義弘
Satoshi Yanagihara
柳原 敏
Akinori Ueda
上田 明則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Science & Tech Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Science & Tech Agency
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science & Tech Agency, Agency of Industrial Science and Technology filed Critical Science & Tech Agency
Priority to JP1154124A priority Critical patent/JPH0766079B2/en
Publication of JPH0318797A publication Critical patent/JPH0318797A/en
Publication of JPH0766079B2 publication Critical patent/JPH0766079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve the function and the efficiency of operations necessary for preventing the expansion of radioactivity contamination by mounting a swivelable and liftable lifting shaft to travelable and traversable devices installed in the upper part of a reactor pressure vessel. CONSTITUTION:A driving device for cutting has a traveling driving device 10, a traversing driving device 13 and a swiveling driving device 16. The entire part is swiveled together with a swiveling table 18. A lifting driving mechanism 20 lifts the lifting shaft 21 and is mounted with a torch 23 in a front end part 26 of the lifting shaft. The in-pile structure 2 is cut by the torch 23. The driving mechanisms consist of the traveling driving mechanism 11 and traversing driving mechanism 14 which are driven by means of ball screws 24, ball nuts 25 and the swiveling driving mechanism 17 which is driven by a pinion and gear. All these mechanisms are driven respectively by motors. The respective driving devices can be controlled in speeds and positions as desired. The cutting route and speed are arbitrarily selected by the combinations thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマアーク切断技術を用いて原子炉炉内
構造物を解体するシステムに関するものである. (従来技術) 原子力発電プラントは、長期使用の後、寿命を迎え原子
炉炉内I!l!造物も他の機器と共に解体する必要が生
じる.解体する技術は、いくつか存在するが、プラズマ
アーク切断技術もその内の1つである. プラズマアーク切断技術は、従来原子炉炉内構造物の主
要構或材料であるステンレス鋼及び非鉄金属等を切断す
る技術として利用されてきたが、放射{ヒした原子炉炉
内構造物の解体用としての技術でなかったため、原子炉
炉内r!!造物からの放射能被曝低減及び切断時に発生
するカス及び放射化切断粉を回収する等のシステム化は
考慮されていない. (発明が解決しよ−うとする課題) 原子炉炉内構造物は、放射化あるいは放射能汚染してい
るため、解体作業を進める場合、作業員の放射m被曝低
減のため解体する炉内構造物を水中でしかも遠隔で解体
作業が必要となる。また、プラズマアーク切断技術で水
中切断を行うと切断のために供給するカス及び水分解に
よって発生する水素等のガスか水面に上昇するのにとも
なって炉内構造物の切断粉の一部が水面がらでて気中浮
遊物となる.また、切断粉の一部は水中に残り水中浮遊
物となり、一部はドロスとなって原子炉圧力容器の底部
に落下する.これら切断に伴う副次生戊物の対策等が必
要になる。そこで、原子炉炉内梢遣物をプラズマアーク
切断技術を用いて解体する場合、これら切断副次生戒物
の回収を含む問題点を解決するジステムが必要となる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a system for dismantling nuclear reactor internals using plasma arc cutting technology. (Prior art) After long-term use, a nuclear power plant reaches the end of its service life and the I! l! Structures will also need to be dismantled along with other equipment. There are several dismantling technologies, one of which is plasma arc cutting technology. Plasma arc cutting technology has traditionally been used to cut stainless steel and nonferrous metals, which are the main structural materials of nuclear reactor internals, but it is also used for dismantling nuclear reactor internals that have been exposed to radiation. Because it was not a technology for the inside of the nuclear reactor! ! Systematization such as reducing radiation exposure from structures and collecting scraps and radioactive cutting powder generated during cutting is not considered. (Problem to be solved by the invention) Since the internal reactor structures are activated or radioactively contaminated, when demolition work is proceeding, it is necessary to dismantle the reactor internal structures to reduce radiation exposure of workers. It is necessary to disassemble objects underwater and remotely. In addition, when underwater cutting is performed using plasma arc cutting technology, some of the cutting powder from the reactor internals rises to the water surface as the scraps supplied for cutting and hydrogen and other gases generated by water decomposition rise to the water surface. It becomes empty and becomes airborne. In addition, some of the cutting powder remains in the water and becomes suspended matter, and some of it becomes dross and falls to the bottom of the reactor pressure vessel. It is necessary to take measures against by-products caused by these cuttings. Therefore, when dismantling reactor internal debris using plasma arc cutting technology, a system is required that solves the problems including recovery of these cutting by-products.

原子炉炉内構造物を解体するジステムを考える場合、原
子炉施設という限られたスペースで必要な機能を有した
各機器を効率よく配置することおよび全体の効率をあげ
るため、各装置にどのような方式を採用するかが重要に
なってくる.例えば、トーチを保持し炉内構造物を切断
する切断駆動装置において、切断対象が上部から下部の
炉内楕造物に移るに従って切断位置は、下方に移る.こ
の場合トーチの移動ストロークが短い装置であれば、短
いストロークをカバーするため、クレーン等で切断駆動
装置全体を下げて切断位置にトーチを設定する方式の場
合、■移動の都度、切断駆動装置と炉内構造物の相対位
置か変わり移動後の両者の相対位置の確認が難しい、従
って炉内構造物に沿わせてトーチを移動する切断動作を
行わせることが困難となる、■切断駆動装置全体が作業
員と切断対象物の間になり、作業員が切断位置等を観察
するのに、視界が切断駆動装置で範囲が狭くなる、■切
り離された炉内W4造物は、切断駆動装置を回避して、
原子炉圧力容器から取り出すことはできず、切断駆動装
置を一度引き上げ移動する作業が伴う. (課題を解決するための手段) 本発明は、プラズマアーク切断技術を用いて原子炉炉内
構造物を安全かつ効率よく解体するジステムを提供する
ものである. 本発明によるプラズマアーク切断技術による原子炉炉内
m造物解体ジステムは、原子炉圧力容器の上部に設置し
た走行及び横行駆動が可能な装置の上部に旋回ならびに
昇降可能な昇降軸の下端にトーチを収り付けた切断駆動
装置、放射化した炉内構造物を切断する際に発生する放
射性の気中浮遊物を含んだ発生カスを回収する発生ガス
回収処理装置、放射性の落下ドロス及び水中浮遊固形物
を回収処理する水浄化装置及び切断する際に炉内楕造物
を保持固定するとともに切断後には切り離された炉内構
造物を搬送する切断物保持固定搬送装置からなっている
。またこれらを用いて原子炉炉内構造物を解体する作業
等を監視する監視カメラを有している. 従って、第1〜6図のようなジステムが必要となる. 切断駆動装置3は、圧力容器1内より広い開口部を有す
る作業床と同じレベルに設置し、長い昇降軸21を有す
る方式として切断片を取り出す際には昇降軸21を分割
上昇しウエル部87まで移動じ、切断装置全体を動かす
ことなく切断片取り出し作業が実施できるようにして、
作業の効率化円滑化を図る. 切断時に発生する副次生戒物はできるだけ発生場所で回
収し、既設系統への放射能汚染拡大を防止する方式を採
用している. 切断時に発生する気中浮遊固形物及び水素ガスを回収す
る発生ガス回収処理装置4については、原子炉上部の開
口部に設置し、その内側径は、原子炉圧力容器の外徨よ
り大きく、切断駆動装置3の切断動作及び切り離された
炉内構造物2を搬出する際の妨げとならないようにして
いる.また本装置は、給気系統及びフィルターを通過し
て排気する系統を有するエアーカーテン方式を採用して
できるだけ放射性の気中浮遊固形物がエアーカーテンよ
り上部に拡散することを防止し、汚染機器の減少を図っ
ている. 切断時に発生する水中浮遊物及び落下ドロスを回収する
水浄化装置については、梢*aa器のポンプ、ストレー
ナ、フィルターを一体に組み込んだ機器及び水中浮遊固
形物及び落下ドロスを回収時に使用するホースなどは、
切断駆動装置の切断動作を妨げないようにウエル部に設
置または仮置し、水中浮遊物等で満杯になったストレー
ナ及びフィルターは、作業員の被曝低減を考慮止して遠
隔で交換できる方式を採用している. 切断終了時の切り離された炉内楕遣掬の落下を防止する
ための保持固定と取り出し機能を兼ねた切断物保持固定
搬送装置7については、同装置を炉内構造物2に設定す
る際には炉内構造物2を内側に置き切断物保持固定搬送
装置7を炉内構造物2の外聞に置くように設定し、狭い
原子炉圧力容器1と炉内槽3a物2の間を避けて切断対
象の炉内構3a物2の内測から切断動作か行える方式を
採用している。
When considering a system for dismantling reactor internal structures, what should be done to each device in order to efficiently arrange each device with the necessary functions in the limited space of a nuclear reactor facility and to increase overall efficiency? It is important to decide which method to use. For example, in a cutting drive device that holds a torch and cuts a furnace internal structure, the cutting position moves downward as the object to be cut moves from the upper part to the lower part of the furnace internal structure. In this case, if the torch has a short movement stroke, in order to cover the short stroke, if the entire cutting drive device is lowered using a crane or the like and the torch is set at the cutting position, The relative positions of the reactor internals have changed, making it difficult to confirm the relative positions of both after they have been moved. Therefore, it is difficult to perform the cutting operation by moving the torch along the reactor internals. ■The entire cutting drive device. is between the worker and the object to be cut, and when the worker observes the cutting position, the field of view becomes narrow due to the cutting drive device.■ The separated W4 structure inside the furnace avoids the cutting drive device. do,
It cannot be removed from the reactor pressure vessel and requires the work of pulling up and moving the cutting drive device once. (Means for Solving the Problems) The present invention provides a system for safely and efficiently dismantling nuclear reactor internals using plasma arc cutting technology. The system for dismantling structures inside a nuclear reactor using plasma arc cutting technology according to the present invention has a torch attached to the lower end of an elevator shaft that can be rotated and raised/lowered at the top of a device that is installed at the top of a reactor pressure vessel and capable of running and traversing. Installed cutting drive equipment, generated gas collection and processing equipment that collects waste containing radioactive airborne substances generated when cutting activated reactor internals, radioactive fallen dross and suspended solids in water. It consists of a water purification device that collects and processes objects, and a cut object holding, fixing and conveying device that holds and fixes the furnace internal structure during cutting and transports the separated furnace internal structure after cutting. We also have surveillance cameras that use these to monitor work such as dismantling reactor internal structures. Therefore, a system like the one shown in Figures 1 to 6 is required. The cutting drive device 3 is installed at the same level as the work floor, which has an opening wider than the inside of the pressure vessel 1, and has a long lifting shaft 21, so that when taking out the cut piece, the lifting shaft 21 is raised in parts and raised to the well part 87. The cut piece can be retrieved without moving the entire cutting device.
Improve work efficiency and smoothness. By-products generated during cutting are collected as much as possible at the site of occurrence to prevent the spread of radioactive contamination to existing systems. The generated gas recovery and processing device 4, which recovers airborne solids and hydrogen gas generated during cutting, is installed in the opening at the top of the reactor, and its inner diameter is larger than the outer diameter of the reactor pressure vessel. This is done so that it does not interfere with the cutting operation of the drive device 3 and the removal of the separated reactor internals 2. In addition, this device uses an air curtain system that has an air supply system and an exhaust system that passes through a filter to prevent radioactive airborne solids from dispersing above the air curtain as much as possible, and to remove contaminated equipment. We are trying to reduce it. Regarding water purification equipment that collects floating solids and falling dross generated during cutting, equipment that incorporates a Kozue*AA pump, strainer, and filter, as well as hoses used to collect floating solids and falling dross, etc. teeth,
The strainer and filter, which are installed or temporarily placed in the well so as not to interfere with the cutting operation of the cutting drive device, are filled with floating objects in the water, and can be replaced remotely in order to reduce the exposure of workers. We are hiring. Regarding the cut object holding, fixing and conveying device 7, which has the function of holding and fixing the cut object to prevent the detached furnace oval scoop from falling at the end of cutting, and the function of taking it out, when setting the device to the furnace internal structure 2, The reactor internals 2 are placed inside and the cut object holding/transfer device 7 is placed outside the reactor internals 2, avoiding the narrow space between the reactor pressure vessel 1 and the reactor inner tank 3a. A method is adopted in which the cutting operation can be performed from the internal measurement of the reactor internal structure 3a object 2 to be cut.

(発明の効果) 本発明は、放射線量率の高い炉内構造物を水中で切断解
体することから作業員の被曝の低減fヒ、発生した放射
性の副次生戒物を解体場所で回収する機能を有すること
から既設処理系への放射能汚染拡大防止及び原子炉上部
に設置した切断駆動装置を移動しないで切断物を搬出で
き、また、原子炉圧力容器の下部に設置されている炉内
梢遣物を切断する際に長く継ぎ足した昇降軸を分割して
引き上げないで損傷したトーチを交換できるなどの解体
作業の効率化を考慮した装置で原子炉炉内構造物を安全
に解体するのに効果的なシステムである。
(Effects of the invention) The present invention reduces the radiation exposure of workers by cutting and dismantling reactor internal structures with high radiation dose rates underwater, and collects generated radioactive by-products at the dismantling site. This function prevents the spread of radioactive contamination to the existing treatment system, allows cut materials to be carried out without moving the cutting drive device installed at the top of the reactor, and allows for the removal of cut materials from the inside of the reactor, which is installed at the bottom of the reactor pressure vessel. The internal structures of a nuclear reactor can be safely dismantled using equipment designed to improve the efficiency of dismantling work, such as replacing a damaged torch without having to separate and pull up a long, extended lifting shaft when cutting tree trunks. It is an effective system.

(実施例) 次に本発明の一実施例について説明する.第1図は、プ
ラズマアーク切断技術による原子炉炉内構造物を解体す
るシステムの全体図であって、原子炉圧力容器1内に設
置されている炉内構造物2を切断駆動装置3で切断し、
切断時に発生するカス及び気中浮M物は、発生ガス回収
処理装置4で回収し、水中浮遊物及び蕩下ドロスは、水
浄fヒ装置5で回収する.切断片6は、切断片保持固定
搬送装置7で切断中は保持固定し、切断後は保持固定搬
送装置7と共にクレーン8で搬出する。
(Example) Next, an example of the present invention will be described. FIG. 1 is an overall diagram of a system for dismantling reactor internals using plasma arc cutting technology, in which reactor internals 2 installed in a reactor pressure vessel 1 are cut by a cutting drive device 3. death,
The scum and airborne substances generated during cutting are collected by the generated gas recovery and processing device 4, and the floating substances and dross in the water are collected by the water purification device 5. The cut pieces 6 are held and fixed during cutting by a cut piece holding, fixing and conveying device 7, and after cutting are carried out together with the holding, fixing and conveying device 7 by a crane 8.

なお、原子炉圧力容器1の上部には、覆いつかあって、
発生カス回収処理装置4で回収できない発生カス及び気
中浮遊物の拡散を防止している。
Note that there is a cover on the top of the reactor pressure vessel 1.
This prevents the dispersion of generated scum and airborne substances that cannot be recovered by the generated scum collection processing device 4.

第2図は、切断駆動装置3を示す図であり、これには水
平面を駆動する駆動用の走行駆動装置10(走行駆動機
ff111と走行ガイドレール12からなる)と、走行
ガイドレール12の上に走行駆動装置10と直交する駆
動を行う横行駆動装置13(横行駆動機構14と横行カ
イドレール15からなる)と、横行駆動装’It 1 
3の上部にある旋回駆動装置16(旋回駆動機構17と
旋回テーブル18からなる)とかあって、旋回テーブル
18と共に昇降駆動装置19(昇降駆動機?1120、
昇降軸21及び昇降ガイドレール22からなる)全体を
旋回する.昇降駆動a楕20は、昇降軸21を昇降し、
昇降軸の先端部26にはトーチ23を取り付けてあって
トーチ23により炉内構造物2を切断する.各々の駆動
@構については、走行駆動tll構11と横行駆動機構
14はポールスクリュウ24・ボールナット25駆動で
あり、旋回駆動R構17はピニオン・ギャー駆動であり
、昇降駆動機楕20はピニオン・ラック駆動であり、そ
れぞれモータによって駆動する.各駆動装置は、数値制
御方式を採用し速度と位置を任意に制御でき、制御する
駆動装置の組合せによって炉内構造物2を切断する場合
の切断経路及び速度を任意に選択することができる.昇
降軸21は、すでに提出している特許出願にかかる分割
繋ぎ足し方式である.なおトーチ23を取り付けている
昇降軸先端部26は、作業床から遠隔で取り外し、引き
上げてトーチ23を交換することができる. 第3図は、トーチ23を取り付けている昇降軸先端部2
6を作業床から遠隔で取り外す機構を示す図であって、
昇降軸先端部26取り外し機構全体27は、ワイヤー2
8で吊下げられており、昇降軸21をガイドとして切断
駆動装置上部に設置してある手巻ウインチ29によって
巻き上げ及び巻下げを行う。
FIG. 2 is a diagram showing the cutting drive device 3, which includes a traveling drive device 10 (consisting of a traveling drive device ff111 and a traveling guide rail 12) for driving a horizontal surface, and an upper part of the traveling guide rail 12. A traverse drive device 13 (consisting of a traverse drive mechanism 14 and a traverse guide rail 15) that drives orthogonally to the travel drive device 10, and a traverse drive device 'It 1
There is a turning drive device 16 (consisting of a turning drive mechanism 17 and a turning table 18) on the upper part of 3.
(consisting of the lifting shaft 21 and the lifting guide rail 22). The elevating drive a ellipse 20 moves up and down the elevating shaft 21,
A torch 23 is attached to the tip 26 of the lifting shaft, and the furnace internal structure 2 is cut with the torch 23. Regarding each drive mechanism, the traveling drive tll mechanism 11 and the traverse drive mechanism 14 are driven by a pole screw 24 and a ball nut 25, the swing drive R mechanism 17 is driven by a pinion gear, and the elevating drive mechanism elliptical 20 is driven by a pinion. - Rack driven, each driven by a motor. The speed and position of each drive device can be arbitrarily controlled using a numerical control method, and the cutting path and speed for cutting the reactor internals 2 can be arbitrarily selected by combining the drive devices to be controlled. The elevating shaft 21 is of the split and join type according to a patent application that has already been submitted. Note that the lifting shaft tip 26 to which the torch 23 is attached can be remotely removed from the work floor and pulled up to replace the torch 23. Figure 3 shows the lifting shaft tip 2 to which the torch 23 is attached.
6 is a diagram showing a mechanism for remotely removing 6 from the work floor,
The entire removal mechanism 27 of the lifting shaft tip 26 is connected to the wire 2
8, and is hoisted up and lowered by a manual winch 29 installed above the cutting drive device using the lifting shaft 21 as a guide.

昇降軸先端部取り外し機構全体27を所定の位置まで巻
下げた後、ボール30をピン31にセット回転するとロ
ツド32を中心として矢印33の方向に爪34が旋回、
爪34は昇降軸先端部26にセットされる.さらにポー
ル30をビン35にセットし、ボール30を回転すると
ピン35を中心として矢印36の方向に爪先端部37が
回り昇降軸先端部26をつかむ.エアージリンダ−38
にエアーを供給すると、エアージリンダ−38内のピス
トン39とピストン39に連結しているロッド40及び
ロッド40と連結しているブロック41か上昇する.ブ
ロソク41には4涸のピン42かあり、ビン42らブロ
ツ,ク41ととらに上昇する.ピン42が爪43の長孔
に差し込まれており、ビン42の上昇によって爪43は
ピン44を支点として矢印45の方向に回転し、爪43
は昇降先端部26から外れる.爪43か昇降軸先端部2
6から外れるとブロック41がリミットスイッチから離
れて作動して、爪43が昇降軸先端部26から外れたこ
とをランプで表示する.その後ボール30をビン31に
セットし、矢印33と反対にボールを回しロソド32を
中心として爪34及び爪先端部37で掴んだ昇降軸先端
部26を昇降軸21の中心からすらし、昇降軸先端部2
6とともに昇降軸先端部取り外しtl1構27を手巻ウ
インチ29で巻き上げる. 第4図は、発生ガス回収処理装置4を示す図であって、
送風系統49(送風B&50、送風ダクト51及び送風
ダクト出口52からなる)と排風系統53(排風ダクト
人口54、排風ダクト55、フィルター56及び排風機
57からなる)から梢戒される.送風機50により送ら
れた空気は、送風ダクト51を通り送風タクト出口52
から吹き出される.吹き出された空気は、排風機57に
より、発生ガス、気中浮遊物及び周囲の空気と共に排風
ダクト人口54から吸引され発生ガスを痛釈するととも
にこれらの気体の流れにより原子炉上部の開口部にエア
ーカーテンを形或し作業床などへの気中浮遊物の拡散を
減少させる。また、排風タクト人口54から吸引された
空気及び発生ガス並びに気中浮遊物は、排風ダクト55
を通りフィルター56で気中浮遊鞠を回収したのち排風
機57より原子炉施設の既設排気系統60へ吸引される
. 第5図は、水浄化装置5を示す図であって、水中浮遊固
形物あるいは、落下ドロスは、ボンプ61により、大口
径吸引ヘッド62または、小口径吸引ヘッド63より水
とともに吸引され、ストレーナゲーシング64に流入す
る.落下ドロス等の大きな粒子がストレーナ65でP過
された後、べ−ス66内の通#167を通りボンプ6l
からポンプ出口管68を経て、フィルタ一人口69から
フィルター70に流入する.フィルター70で水中浮遊
固形物等の小さな粒子が枦過され浄化された水はフィル
ター出口71から流出する.落下ドロスで満杯になった
ストレーナ65は、ストレーナゲーシング64のは71
をフックなどで開きストレーナ、吊具72を利用してワ
イヤーを掛け、第1図のクレーン8で吊上げて交換する
.目詰りを起こしたフィルター70は、ボールをフィル
ターグーシング旋回ピン73にセットしたフィルターゲ
ージング74を旋回させる.フィルターゲーシングピン
75とフィルター固定プレート切り欠き76が一致した
所でフィルター吊具77を利用してワイヤーを掛けフィ
ルターゲーシ・ング74を吊上げて交換する. 第6図は、切断物保持固定搬送装置7を示す図であって
、切断物保持固定搬送装置7の吊具78にワイヤー79
を掛け第1図のクレーン8によって炉内構造物2を内側
にして切断物保持固定搬送装置7を降ろす.その後、水
圧で駆動する8本の脚80を原子炉圧力容器1に押し付
け切断物保持固定搬送装置7を固定した後、水流で回転
するドリル81をピストン82で矢印83の方向に押し
付け炉内構造物2を貫通して炉内構造物2と切断物保持
固定搬送装置7を固定する.炉内構造物2と切断物保持
固定搬送装置7を固定したのち、ワイヤー79を収り外
し炉内構造物2を第1図の切断駆動装置3で切断する.
切断後ワイヤー79を吊具78に掛け吊った後8本の脚
80を引っ込め切断物保持固定搬送装置7を原子炉圧力
容器1から外し、切り離された炉内W4遣″$12とと
もに切断物保持固定搬送装置7を吊上げる.吊上げ後、
切り離された炉内構造物2と切断物保持固定搬送装置7
は、第1図の水中の通l!?t8 4を通過して第1図
のブール85に置いた後、ドリル81を抜いて切断物保
持固定搬送装置7を切断片から取り外し引き上げ、次の
炉内楕遠物を切断する際の保持固定・搬送に再使用する
After lowering the entire elevating shaft tip removal mechanism 27 to a predetermined position, the ball 30 is set on the pin 31 and rotated, and the claw 34 pivots in the direction of the arrow 33 about the rod 32.
The pawl 34 is set on the tip end 26 of the lifting shaft. Furthermore, when the pole 30 is set in the bottle 35 and the ball 30 is rotated, the claw tip 37 rotates in the direction of the arrow 36 around the pin 35 and grips the lifting shaft tip 26. Air Jirinda-38
When air is supplied to the cylinder 38, the piston 39 in the air cylinder 38, the rod 40 connected to the piston 39, and the block 41 connected to the rod 40 rise. There are four pins 42 in block 41, which rise from bottle 42 to block 41 and tora. A pin 42 is inserted into a long hole in a claw 43, and as the bottle 42 rises, the claw 43 rotates in the direction of an arrow 45 with the pin 44 as a fulcrum.
comes off from the lifting tip 26. Claw 43 or lifting shaft tip 2
6, the block 41 moves away from the limit switch and operates, and a lamp indicates that the claw 43 has come off the tip 26 of the lifting shaft. After that, set the ball 30 in the bottle 31, turn the ball in the opposite direction of the arrow 33, center the lifting shaft 32, and slide the lifting shaft tip 26, which is gripped by the claw 34 and the claw tip 37, from the center of the lifting shaft 21. Tip part 2
6 and hoist up the lifting shaft tip part removal tl1 structure 27 with the manual winding winch 29. FIG. 4 is a diagram showing the generated gas recovery processing device 4,
The exhaust system 49 (consisting of a blower B&50, a blower duct 51, and a blower duct outlet 52) and an exhaust system 53 (consisting of an exhaust duct 54, an exhaust duct 55, a filter 56, and an exhaust fan 57) are used to control air flow. The air sent by the blower 50 passes through the blower duct 51 and reaches the blower tact outlet 52.
It is blown out from. The blown air is sucked by the exhaust fan 57 from the exhaust duct 54 along with the generated gas, airborne substances, and surrounding air, and the generated gas is thoroughly removed, and the flow of these gases blows the opening at the top of the reactor. form an air curtain to reduce the spread of airborne particles onto the work floor, etc. In addition, the air, generated gas, and airborne substances sucked from the exhaust duct 54 are removed from the exhaust duct 55.
After passing through the filter 56 and collecting the airborne particles, they are sucked into the existing exhaust system 60 of the reactor facility by the exhaust fan 57. FIG. 5 is a diagram showing the water purification device 5, in which suspended solids in water or fallen dross are sucked together with water by a pump 61 through a large-diameter suction head 62 or a small-diameter suction head 63, and a strainer It flows into Thing 64. After large particles such as fallen dross are passed through the strainer 65, they pass through the passage #167 in the base 66 and are transferred to the pump 6l.
It flows from the filter port 69 into the filter 70 via the pump outlet pipe 68. The filter 70 filters out small particles such as suspended solids in the water, and the purified water flows out from the filter outlet 71. The strainer 65 filled with falling dross is 71 of the strainer gating 64.
Open it with a hook, hang a wire using a strainer and hanging tool 72, and lift it up with crane 8 in Figure 1 to replace it. In order to remove the clogged filter 70, a filter gauging 74 having a ball set on a filter gauging rotation pin 73 is rotated. At the point where the filter gating pin 75 and the filter fixing plate notch 76 are aligned, hang a wire using the filter hanging tool 77 to lift the filter gating 74 and replace it. FIG. 6 is a diagram showing the cut object holding and conveying device 7, in which a wire 79 is attached to a hanging tool 78 of the cut object holding and conveying device 7.
The cut object holding and transporting device 7 is lowered by the crane 8 shown in Fig. 1 with the furnace internals 2 facing inside. After that, eight legs 80 driven by water pressure are pressed against the reactor pressure vessel 1 to fix the cut object holding, fixing and conveying device 7, and then a drill 81 which is rotated by a water stream is pushed in the direction of an arrow 83 with a piston 82 to form the reactor internal structure. The furnace internal structure 2 and the cut object holding/transfer device 7 are fixed by penetrating the object 2. After fixing the furnace internal structure 2 and the cutting object holding and conveying device 7, the wire 79 is removed and the furnace internal structure 2 is cut by the cutting drive device 3 shown in FIG.
After cutting, the wire 79 is hung on the hanging tool 78, and the eight legs 80 are retracted to remove the cut object holding and conveying device 7 from the reactor pressure vessel 1, and the cut object is held together with the separated reactor W4 wire 12. Lift the fixed conveyance device 7. After lifting,
Separated reactor internal structure 2 and cut object holding and conveying device 7
is the underwater passage in Figure 1! ? After passing through t8 4 and placing it in the boule 85 in Fig. 1, the drill 81 is pulled out, and the cut object holding and transporting device 7 is removed from the cut object and pulled up to hold it and fix it when cutting the next elliptical object in the furnace.・Reuse for transportation.

本発明のプラズマアーク切断技術による原子炉炉内構造
物解体装置は、以上のように放射線量率の高い原子炉炉
内構造物を解体する上で作業員の被曝低減に必要な水深
での切断解体に必要な機能を具備し、また、放射能汚染
拡大防止に必要な機能並びに作業の効率化を図った装置
で原子炉炉内構造物を解体する上で有効な装置である。
As described above, the nuclear reactor internal structure dismantling equipment using the plasma arc cutting technology of the present invention can cut at the water depth necessary to reduce radiation exposure of workers when dismantling nuclear reactor internal structures with high radiation dose rates. It is an effective device for dismantling nuclear reactor internal structures, as it has the functions necessary for dismantling, as well as the functions necessary to prevent the spread of radioactive contamination, and is designed to improve work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、プラズマアーク切断技術による原子炉炉内楕
造物解体ジジステム全体図である。 第2図(a)及び(b)は、切UI駆動装置3の全体図
及びその部分詳細図である. 第3図(81,(b)及び(C)は、昇降軸先端部の収
り外し機構図及びその部分詳細図である.第4図(a)
及び(b)は、発生ガス回収処理装置4の気中浮遊物回
収装置全体の平面及び側面図である. 第5図(a), (b). (c)及び(d)は、水浄
化装置5の全体図及びその部分詳細図である。 第6図(a)及び(b)は、切断物保持固定搬送装置の
全体図及びその部分断面図である。 1・・・圧力容器    2・・・炉内構造物3・・・
切断駆動装置 4・・・発生ガス回収処理装置 5・・・水浄{ヒ装置   6・・・切断片7・・・切
断物保持固定搬送装置
FIG. 1 is an overall view of a system for dismantling ellipsoids in a nuclear reactor using plasma arc cutting technology. FIGS. 2(a) and 2(b) are an overall view of the cut UI drive device 3 and a detailed view of a portion thereof. Figure 3 (81, (b) and (C) is a diagram of the mechanism for storing and removing the tip of the lifting shaft and its partial details. Figure 4 (a)
and (b) are a plan view and a side view of the entire airborne matter recovery device of the generated gas recovery and processing device 4. Figure 5 (a), (b). (c) and (d) are an overall view of the water purification device 5 and a partial detailed view thereof. FIGS. 6(a) and 6(b) are an overall view and a partial sectional view of the cut object holding, fixing and conveying device. 1... Pressure vessel 2... Reactor internal structure 3...
Cutting drive device 4... Generated gas recovery processing device 5... Water purification device 6... Cut piece 7... Cut object holding and transporting device

Claims (1)

【特許請求の範囲】[Claims] 電極と対象物の間にアークを発生させ、アークの周囲に
ガスを供給し、アーク熱によりプラズマ化したガスによ
って対象物を溶融切断する技術を用いて、原子炉炉内構
造物を切断解体する装置において、原子炉圧力容器上部
に設置した走行及び横行可能な装置に旋回と昇降が可能
な昇降軸を取り付け、その先端にプラズマアークトーチ
を取り付けた切断駆動装置、切断対象となる炉内構造物
を保持・固定・搬送するための保持固定搬送装置、切断
時に発生する気中浮遊物を回収する気中浮遊物回収装置
、水中浮遊物を回収する水浄化装置及び切断解体作業を
確認するための監視カメラから成ることを特徴とするプ
ラズマアーク切断技術による原子炉炉内構造物解体シス
テム。
Cutting and dismantling the internal reactor structures using technology that generates an arc between the electrode and the object, supplies gas around the arc, and melts and cuts the object with the gas that becomes plasma due to the arc heat. In the equipment, a cutting drive device has a lifting shaft that can rotate and move up and down attached to a device that can travel and traverse installed on the top of the reactor pressure vessel, and a plasma arc torch is attached to the tip of the shaft, and the reactor internal structure to be cut. A holding, fixing and transporting device for holding, fixing and transporting materials, an airborne material collection device for collecting airborne materials generated during cutting, a water purification device for collecting floating materials in water, and a system for checking cutting and dismantling work. A nuclear reactor internal structure dismantling system using plasma arc cutting technology characterized by consisting of a surveillance camera.
JP1154124A 1989-06-16 1989-06-16 Reactor internal structure dismantling system by plasma arc cutting technology Expired - Lifetime JPH0766079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154124A JPH0766079B2 (en) 1989-06-16 1989-06-16 Reactor internal structure dismantling system by plasma arc cutting technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154124A JPH0766079B2 (en) 1989-06-16 1989-06-16 Reactor internal structure dismantling system by plasma arc cutting technology

Publications (2)

Publication Number Publication Date
JPH0318797A true JPH0318797A (en) 1991-01-28
JPH0766079B2 JPH0766079B2 (en) 1995-07-19

Family

ID=15577441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154124A Expired - Lifetime JPH0766079B2 (en) 1989-06-16 1989-06-16 Reactor internal structure dismantling system by plasma arc cutting technology

Country Status (1)

Country Link
JP (1) JPH0766079B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028495A (en) * 2014-10-06 2015-02-12 日立Geニュークリア・エナジー株式会社 Method for carrying out nuclear fuel material in atomic power plant
JP2016106232A (en) * 2016-03-17 2016-06-16 日立Geニュークリア・エナジー株式会社 Method of retrieving nuclear fuel materials in nuclear power plant
CN113351969A (en) * 2021-06-21 2021-09-07 中国核电工程有限公司 Cutting method, device and system for radioactive container
CN115351383A (en) * 2022-06-28 2022-11-18 西安理工大学 Pipe diameter intersecting line control method of cutting robot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570120B1 (en) * 2020-08-19 2023-08-24 한국원자력연구원 Apparatus and method for visualizing underwater cutting of nuclear power plant facilities
KR102694489B1 (en) * 2022-01-04 2024-08-09 한국수력원자력 주식회사 Nuclear power plant dismantling method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044898A (en) * 1983-08-23 1985-03-11 株式会社熊谷組 Dismantling system of concrete heat shield wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044898A (en) * 1983-08-23 1985-03-11 株式会社熊谷組 Dismantling system of concrete heat shield wall

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028495A (en) * 2014-10-06 2015-02-12 日立Geニュークリア・エナジー株式会社 Method for carrying out nuclear fuel material in atomic power plant
JP2016106232A (en) * 2016-03-17 2016-06-16 日立Geニュークリア・エナジー株式会社 Method of retrieving nuclear fuel materials in nuclear power plant
CN113351969A (en) * 2021-06-21 2021-09-07 中国核电工程有限公司 Cutting method, device and system for radioactive container
CN115351383A (en) * 2022-06-28 2022-11-18 西安理工大学 Pipe diameter intersecting line control method of cutting robot
CN115351383B (en) * 2022-06-28 2024-01-23 西安理工大学 Pipe diameter intersecting line control method of cutting robot

Also Published As

Publication number Publication date
JPH0766079B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US6881131B2 (en) Method and apparatus for diamond wire cutting of metal structures
JP4124643B2 (en) Reactor dismantling and removal methods
JPH0318797A (en) System for disassembling internal structure of nuclear reactor by plasma arc cutting technique
JP2001239462A (en) Ultra-high pressure polishing water-jet cutting machine
CN110127311B (en) Mobilizable intelligent building engineering waste recovery device
CN111963486A (en) Large-scale shielding main pump integral dismounting device and dismounting process in radioactive environment
JP2015017816A (en) Underwater suspended matter collection device and underwater suspended matter collection method
WO2022235024A1 (en) Wire saw apparatus for excavator
JP2003176911A (en) Stack demolition device, and method of demolition of stack
CN113314246B (en) Device and method for retirement of radioactive chimney
JP3092619B1 (en) Submerged cutting device
JPH07109440B2 (en) Equipment for cutting and dismantling reactor pressure vessels, etc.
JPH0262036B2 (en)
JPH07111478B2 (en) Cutting and demolition method for cylindrical structures
JP2006038790A (en) Band-saw cutting device and cutting method for nuclear equipment
JPH07111477B2 (en) Cutting and demolition equipment for cylindrical structures
JP2005351796A (en) Underwater filter equipment
JP2002341089A (en) Dismantling method and dismantling device of shielding wall
SE465236B (en) Arrangement for scrapping contaminated components without contaminating a surrounding gaseous or liquid medium
JPS594251B2 (en) pipe cutting equipment
JP2007024586A (en) Abrasive water jet cutting method
JP2001051092A (en) Fixed bolt remover for underwater structure
KR20040049381A (en) An apparatus for penetrating dust in dust catcher
JPH09105799A (en) Disassembling method by cutting for nuclear power plant facilities
JPS62220660A (en) Apparatus for transferring cut and disassembled block

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term