JPH03187936A - Production of synthetic quarts glass powder - Google Patents

Production of synthetic quarts glass powder

Info

Publication number
JPH03187936A
JPH03187936A JP32463789A JP32463789A JPH03187936A JP H03187936 A JPH03187936 A JP H03187936A JP 32463789 A JP32463789 A JP 32463789A JP 32463789 A JP32463789 A JP 32463789A JP H03187936 A JPH03187936 A JP H03187936A
Authority
JP
Japan
Prior art keywords
silica
quartz glass
methyl silicate
synthetic quartz
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32463789A
Other languages
Japanese (ja)
Other versions
JPH0798666B2 (en
Inventor
Masatoshi Takita
滝田 政俊
Takaaki Shimizu
孝明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32463789A priority Critical patent/JPH0798666B2/en
Publication of JPH03187936A publication Critical patent/JPH03187936A/en
Publication of JPH0798666B2 publication Critical patent/JPH0798666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Abstract

PURPOSE:To obtain synthetic quartz glass powder having high purity and increased high-temperature viscosity by adding methyl silicate to an aqueous dispersion containing spherical silica particles to solidify the dispersion, heating and dehydrating the solid, subjecting the product to solvent-removal process and decarbonation process, vitrifying to transparent glass and crushing the obtained glass. CONSTITUTION:Methyl silicate and ammonia water are supplied from tanks 1, 2 with metering pumps 3 to a reactor 4 and continuously reacted under stirring with a stirring motor 5. The produced spherical silica having particle diameter of 300-700nm are delivered through an outlet port 6 to a reservoir 7. The silica is dispersed in extra-pure water, the pH is adjusted to 9-13 with ammonia water and the dispersion is solidified by adding 5-20% (based on the silica) of methyl silicate. The solidified product is heated at 800-1000 deg.C to effect the dehydration, solvent-removal and decarbonation, sieved to collect particles of 30-100 mesh and sintered at 1400-1600 deg.C for 1-2hr. The obtained synthetic quartz glass is crushed to form the objective powder.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は合成石英ガラス粉の製造方法、特には高純度で
高温粘度が高いことから半導体用耐熱治具などに好適と
される合成石英ガラス粉の製造方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing synthetic quartz glass powder, and in particular to synthetic quartz glass, which is suitable for heat-resistant jigs for semiconductors due to its high purity and high viscosity at high temperatures. This invention relates to a method for producing powder.

[従来の技術] 合成石英ガラスの製造については■四塩化けい素などの
けい素化合物を酸水素火炎中で加水分解してシリカ粒子
を作り、これを溶融して石英ガラスとする方法、■この
酸水素火炎をプラズマ炎とする方法、■アルコキシシラ
ンをアルコール溶媒中において酸触媒で加水分解してシ
リカを作り、これを焼結して石英ガラスとする、いわゆ
るゾル−ゲル法などが知られている。
[Prior art] Regarding the production of synthetic quartz glass, there are two methods: ■ A method of hydrolyzing silicon compounds such as silicon tetrachloride in an oxyhydrogen flame to create silica particles, and melting the particles to make quartz glass. Methods of converting oxyhydrogen flame into plasma flame include the so-called sol-gel method, in which silica is produced by hydrolyzing alkoxysilane with an acid catalyst in an alcohol solvent, and this is sintered to form quartz glass. There is.

しかし、この酸水素火炎を用いる方法には石英ガラス中
に1,000pp園ものOH基が残留するし、高温粘性
も低く、真空中高温では発泡するという問題点があるし
、プラズマ法はコストが高く、量産化が難しいという不
利があり、ゾル−ゲル法には比較的安価に石英ガラスが
得られるものの、これにはOH基が残り易く、製造に長
時間を要し、高温粘性の高いものが得られ難いという不
利がある。
However, this method using an oxyhydrogen flame has the problem that 1,000 pp of OH groups remain in the quartz glass, the viscosity at high temperatures is low, and foaming occurs at high temperatures in vacuum, and the plasma method is costly. The sol-gel method has the disadvantage of being expensive and difficult to mass produce.Although the sol-gel method can produce quartz glass at a relatively low cost, it tends to leave OH groups, takes a long time to manufacture, and is highly viscous at high temperatures. The disadvantage is that it is difficult to obtain.

[発明が解決しようとする課題] そのため、本発明者らはゾル−ゲル法によフて高温粘性
の高い合成石英の製造方法についての研究を進め、これ
についてはメチルシリケートをメタノール溶媒中でアン
モニアの存在下に加水分解させて粒径が200〜3,0
OOn讃のシリカを作り、焼結、粉砕後1,700℃で
溶融する方法(特願昭63−229333号明細書参照
)、メチルシリケートをアンモニアの存在下に加水分解
して粒径が1次粒子で100〜500nmのシリカを作
り、これを10〜100μlの凝集粒子としてから固液
分離し、焼結、粉砕、篩別し、1,700℃以上で溶融
成形する方法(特願昭63−335070号明細書参照
)、またメチルシリケートをアンそニアの存在下で加水
分解してシリカを生成させ、これを減圧下に1.500
〜1.700℃で焼結し、ついで常圧または加圧下に1
.800〜2,000℃で焼結する方法(特願平1−1
39619号明細書参照)を提案している。
[Problems to be Solved by the Invention] Therefore, the present inventors have conducted research on a method for producing synthetic quartz with high high temperature viscosity using a sol-gel method. When hydrolyzed in the presence of
OOnsan's silica is produced, sintered, crushed and then melted at 1,700°C (see Japanese Patent Application No. 63-229333). Methyl silicate is hydrolyzed in the presence of ammonia to reduce the particle size to the first order. A method in which silica of 100 to 500 nm in size is made from particles, agglomerated particles of 10 to 100 μl are separated, solid-liquid separated, sintered, pulverized, sieved, and melt-formed at 1,700°C or higher (Japanese Patent Application No. 1983- 335070), methyl silicate is hydrolyzed in the presence of anthonia to produce silica, which is then purified under reduced pressure to a
~1.Sintered at 700℃, then 1.
.. A method of sintering at 800 to 2,000°C (Patent Application Hei 1-1)
39619)).

しかし、これらの方法は高温粘性の高い合成石英を与え
るものの、いずれも工程が長いために大量生産性に欠け
るものであるし、焼結などのエネルギーコストが高く、
つくという不利があり、必ずしも満足すべ餘ものではな
い。
However, although these methods yield synthetic quartz with high temperature and viscosity, they all require long processes and lack mass productivity, and the energy costs for sintering and other processes are high.
There is a disadvantage in that it is not always satisfactory.

[課題を解決するための手段] 本発明はこのような不利を解決することのできる合成石
英ガラス粉の製造方法に関するもので、これはメチルシ
リケートとアンモニア水とを反応器に同時に滴下し、こ
の連続反応で生成した球状シリカ粒子を捕集したのち、
pH9〜13の水分散溶液とし、このシリカに対しシリ
カ換算で5〜20重量%のメチルシリケートを添加して
固化させ、ついで加熱し、a水、脱溶媒、脱炭を行なっ
た後、30〜100メツシュの範囲に篩別し、1,40
0〜IJOO℃で焼結し、これを解砕することを特徴と
するものである。
[Means for Solving the Problems] The present invention relates to a method for producing synthetic quartz glass powder that can solve these disadvantages. After collecting the spherical silica particles generated by continuous reactions,
An aqueous dispersion solution with a pH of 9 to 13 is prepared, 5 to 20% by weight of methyl silicate (calculated as silica) is added to the silica to solidify it, and then heated to remove a water, solvent, and decarburize. Sieve into a range of 100 mesh, 1,40
It is characterized by sintering at 0 to IJOO°C and crushing it.

すなわち、本発明者らはゾル−ゲル法によフて高温粘性
の高い石英ガラスをさらに効率よく製造する方法につい
て種々検討した結果、メチルシリケートの加水分解によ
るシリカ合成についてはメチルシリケートとアンモニア
とを反応器中に同時に滴下するとメチルシリケートの加
水分解が常に連続的に行なわれるのでこの工程が合理化
されること、この加水分解で得たシリカ粉をpH9〜1
3の水分散溶液とし、これにメチルシリケートを加える
と得られるシリカの緻密化が進み、その焼結温度を従来
法の1,500〜1,900℃から1.400〜1.6
00℃に低下させることができるし、この焼結体はロー
ルミルなどで容易に解砕することができるし、これを焼
結前に30−100メツシュに篩別するとこれはそのま
ま焼結原料として使用することができ、精製工程も不要
なので工程の省略、エネルギーコストの引下げが可能に
なるということを見出すと共に、この方法で作られた石
英ガラスは高温粘性の高いものになるということを確認
して本発明を完成させた。
That is, the present inventors have conducted various studies on methods for more efficiently producing quartz glass with high high temperature viscosity using the sol-gel method.As a result, for silica synthesis by hydrolysis of methyl silicate, we have found that methyl silicate and ammonia are If the methyl silicate is added dropwise simultaneously into the reactor, the hydrolysis of methyl silicate will always occur continuously, streamlining this process.
When methyl silicate is added to an aqueous dispersion solution of No. 3, the resulting silica becomes densified, and the sintering temperature is increased from 1,500 to 1,900°C in the conventional method to 1.400 to 1.6°C.
The temperature can be lowered to 00°C, and this sintered body can be easily crushed with a roll mill, etc., and if it is sieved into a 30-100 mesh size before sintering, it can be used as it is as a sintering raw material. They discovered that this method eliminates the need for a refining process, making it possible to omit the process and reduce energy costs, and also confirmed that the silica glass made by this method has high high-temperature viscosity. The present invention has been completed.

以下にこれをさらに詳述する。This will be explained in further detail below.

[作 用] 本発明は改良されたゾル−ゲル法によって高温粘性の高
い石英ガラスを製造する方法に関するものである。
[Function] The present invention relates to a method for producing quartz glass with high high temperature viscosity by an improved sol-gel method.

本発明におけるアルコキシシランの加水分解によるシリ
カの合成は、メチルシリケートとアンモニア水とを反応
器中に同時に滴下するという方法で行なわれる。これは
例えば第1図に示したようにメチルシリケート貯槽1と
アンモニア水貯槽2とから定量ポンプ3を用いてメチル
シリケートとアンモニア水の所定量を取り出し、これを
反応器4の中に同時に滴下すればよい。メチルシリケー
トの加水分解反応はこの滴下と共に始まり、これは反応
液が攪拌モーター5によって攪拌されていることから連
続的に行なわれ、この反応で発生したシリカは排出口6
からシリカ貯槽7に取り出される。
The synthesis of silica by hydrolysis of alkoxysilane in the present invention is carried out by dropping methyl silicate and aqueous ammonia into a reactor simultaneously. For example, as shown in FIG. 1, predetermined amounts of methyl silicate and ammonia water are taken out from a methyl silicate storage tank 1 and an ammonia water storage tank 2 using a metering pump 3, and these are simultaneously dropped into a reactor 4. Bye. The hydrolysis reaction of methyl silicate begins with this dropping, and this is carried out continuously as the reaction liquid is stirred by the stirring motor 5, and the silica generated in this reaction is discharged through the discharge port 6.
The silica is taken out from the silica storage tank 7.

ここに使用されるアルコキシシランはエチルシリケート
やメチルシリケート3量体では反応性が劣り、得られる
シリカが粒子の小さいものとなり、ブチルシリケートな
どは疎水性で反応は進まないので、これはメチルシリケ
ートとすることが必要であるし、アンモニア水は濃度が
15〜25重I%のものとすればよいが、この反応温度
は20〜45℃とすればよい。
The alkoxysilane used here has poor reactivity with ethyl silicate or methyl silicate trimer, and the resulting silica has small particles, and butyl silicate is hydrophobic and the reaction does not proceed, so this is different from methyl silicate. The ammonia water may have a concentration of 15 to 25% by weight, and the reaction temperature may be 20 to 45°C.

このメチルシリケートの加水分解をアンモニア水と同時
添加という方法で行なうとメチルシリケートの加水分解
反応が常に連続的に行なわれるようになるのでこの工程
が簡易化されるし、これによれば粒径が300〜700
nmという比較的粒子の大きい球状のシリカ粒子が連続
的に得られるが、このものは脱水処理することによって
含水率が20〜30%のシリカとされる。
If this hydrolysis of methyl silicate is carried out by adding aqueous ammonia at the same time, the hydrolysis reaction of methyl silicate will always be carried out continuously, which will simplify this process. 300-700
Spherical silica particles with a relatively large particle size of nm are continuously obtained, and these particles are dehydrated to form silica with a water content of 20 to 30%.

このシリカはついで水分散溶液とされるのであるが、こ
れにはこのシリカを超純水に分散させたのちこれにアン
モニア水な加えてそのpHを9〜13に調整する。これ
はこのpoが中性や酸性では強度が出ないし、213以
上の強アルカリとするとまた粒子ができて強度向上にな
らないので、適度の強度を与えるためにはこのpoを9
〜13とする必要がある。このアルカリ性の水分散溶液
にはついでメチルシリケートを添加してこれを固化させ
るのであるが、ここに添加されるメチルシリケートはこ
れが少なすぎると固化が不充分となって強度が出す、多
すぎるとこれを石英ガラスとしたときに石英ガラスの高
温粘度が低下するので、これは水分散溶液中に存在する
シリカ量に対し5〜20%の範囲とする必要がある。
This silica is then made into an aqueous dispersion solution, by first dispersing the silica in ultrapure water and then adding aqueous ammonia to the solution to adjust its pH to 9-13. This is because if this PO is neutral or acidic, it will not be strong, and if it is a strong alkali of 213 or higher, particles will be formed and the strength will not be improved.
~13. Methyl silicate is then added to this alkaline aqueous dispersion solution to solidify it. If too little methyl silicate is added, solidification will be insufficient and the strength will be increased; if too much methyl silicate is added, it will not solidify. Since the high-temperature viscosity of quartz glass decreases when silica glass is used as silica glass, this needs to be in the range of 5 to 20% with respect to the amount of silica present in the aqueous dispersion solution.

このようにして得られたシリカの塊はついで加熱して脱
水、脱溶媒、脱炭後焼結するのであるが、この脱水、脱
溶媒、脱炭のための加熱は800〜1,000℃で行な
えばよく、これは好ましくは室温から1,000℃まで
10時間以上かけて昇温してから1,000℃に1時間
以上保持するようにすることがよい。この加熱によって
シリカ粉は若干固化するが、このものは弱い解砕で数1
0〜数百ミクロンのものとなるので、これについては3
0〜100メツシュのものに篩別する必要がある。
The silica lump obtained in this way is then heated to dehydrate, desolvent, decarburize, and then sinter. The heating for dehydration, desolvation, and decarburization is performed at 800 to 1,000°C. Preferably, the temperature is raised from room temperature to 1,000°C over 10 hours or more, and then maintained at 1,000°C for 1 hour or more. This heating causes the silica powder to solidify slightly, but this powder can be broken down by several degrees when it is weakly crushed.
Since it is from 0 to several hundred microns, this is 3
It is necessary to sieve into 0 to 100 meshes.

このように篩別されたシリカはついで焼結することによ
って合成石英環とされるのであるが、この焼結は従来法
では1,500〜1.900℃という高い温度で行なわ
れていたのに対し、上記したような方法で得られた本発
明のシリカ塊は1,400〜1.600℃という比較的
低い温度で1〜2時間焼結すればよく、この焼結によフ
てシリカ塊は若干粒子径が小さくなるが、はぼ30〜1
00メツシュの透明な合成石英ガラス塊となる。
The silica sieved in this way is then sintered to form a synthetic quartz ring, but in the conventional method, this sintering was carried out at a high temperature of 1,500 to 1,900 degrees Celsius. On the other hand, the silica lump of the present invention obtained by the method described above may be sintered at a relatively low temperature of 1,400 to 1,600°C for 1 to 2 hours, and the silica lump is formed by this sintering. Although the particle size is slightly smaller, it is about 30~1
It becomes a transparent synthetic quartz glass block of 00 mesh.

この合成石英ガラス塊はこれを粉砕し、篩別することに
よって本発明の合成石英ガラス粉とされるのであるが、
この合成石英ガラス塊はロールミルなどで容易に解砕す
ることができるので、粉砕が容易であるし、これは上記
した各工程で不純物の混入するおそれはないので精製工
程が不要であるし、この石英ガラス粉は従来法のように
粉砕、篩別によりて損失される分(30〜40%)が全
くなく、歩留り100%で製造されるためにコスト的に
安価になるという有利性が与えられ、これはまた粒子形
状が粉砕粉のようにとがった形状ではなく、丸い粒子の
集合体となり、充填状態も均一なものとなるので利用性
が高いものとなり、ここに得られた合成石英ガラス粉末
はこれを例えば1.950℃で30分間焼結、溶融成形
すれば高温粘性の高い合成石英ガラス体とすることがで
きるので、半導体用耐熱器具例えばルツボなどの原料と
して有用とされるという工業的な有利性が与えられる。
This synthetic quartz glass lump is crushed and sieved to obtain the synthetic quartz glass powder of the present invention.
This synthetic quartz glass lump can be easily crushed with a roll mill, etc., so it is easy to crush, and there is no need for a refining process as there is no risk of contamination with impurities in each of the above steps. Silica glass powder has the advantage of being inexpensive because it can be manufactured with a 100% yield without any loss (30-40%) due to crushing and sieving as in conventional methods. Also, the particle shape is not a sharp shape like crushed powder, but an aggregate of round particles, and the filling state is uniform, making it highly usable, and the synthetic silica glass powder obtained here. For example, if this is sintered and melted at 1.950°C for 30 minutes, it can be made into a synthetic quartz glass body with high high temperature viscosity, making it useful as a raw material for heat-resistant semiconductor devices such as crucibles. It gives you a great advantage.

[実施例] つぎに本発明の実施例をあげる。[Example] Next, examples of the present invention will be given.

実施例1〜3.比較例1〜2 第1図に示した反応装置を使用し、メチルシリケート2
6.5it/時と20重量%のアンモニア水17.2J
27時とを5ILの反応フラスコ中に同時に滴下し、4
0〜50℃で反応させ、5時間後に反応を停止したとこ
ろ、シリカ濃度23%のシリカゾル液が得られたので、
これを脱水処理して含水率が25重量%のシリカを作っ
た。
Examples 1-3. Comparative Examples 1 to 2 Using the reaction apparatus shown in Figure 1, methyl silicate 2
6.5it/hour and 17.2J of 20% by weight ammonia water
At the same time, 27 hours and 4 hours were added dropwise into a 5IL reaction flask.
When the reaction was carried out at 0 to 50°C and the reaction was stopped after 5 hours, a silica sol solution with a silica concentration of 23% was obtained.
This was dehydrated to produce silica with a water content of 25% by weight.

ついでこのシリカ8kgを超純水8βに分tさせ、これ
に29重量%のアンモニア水350kを加えてそのpH
を11とし、このシリカに対しシリカ換算で5重量%、
 10重量%、20重量%、30重量%、40重量%と
なる量のメチルシリケートを添加してこ 0 れを固化させたのち、空気中において室温から1.00
0℃まで13時間かけて昇温させ、その後1.000℃
に1時間保持し、この粉をポリプロピレン製の30メツ
シュ篩とテフロン製の100メツシュ篩を用いて30〜
100メツシュのものに篩分けして、直径が12インチ
の石英ガラスルツボ中に仕込んだ。
Next, 8kg of this silica was divided into 8β of ultrapure water, and 350kg of 29% by weight ammonia water was added to the solution to adjust its pH.
is 11, and 5% by weight in terms of silica for this silica,
After adding methyl silicate in amounts of 10 wt%, 20 wt%, 30 wt%, and 40 wt% and solidifying this, the mixture was heated from room temperature to 1.00 wt% in air.
Raise the temperature to 0℃ over 13 hours, then 1.000℃
The powder was sieved for 30~1 hour using a polypropylene 30 mesh sieve and a Teflon 100 mesh sieve.
It was sieved into 100-mesh sieves and placed in a quartz glass crucible with a diameter of 12 inches.

つぎにこのルツボなアルゴンガス雰囲気下に1時間で1
,500℃まで昇温させて、この温度に2時間保持して
シリカを透明ガラス化し、放冷後取り出してから石英ガ
ラスローラーで解砕し、テフロン製の50メツシュ、1
00メツシュの篩で篩別したところ、収率95%で合成
石英ガラス粉が得られたが、このものについて電子顕微
鏡を撮影したところ、第2図に示したとおりのものが得
られ、これからこのものは丸味をおびた透明な粒子であ
ることが確認された。
Next, this crucible was heated in an argon gas atmosphere for one hour.
, The temperature was raised to 500°C, held at this temperature for 2 hours to turn the silica into transparent vitrification, and after cooling, it was taken out and crushed with a quartz glass roller.
When sieved through a 00 mesh sieve, synthetic quartz glass powder was obtained with a yield of 95%.When this powder was photographed with an electron microscope, the powder shown in Figure 2 was obtained. The particles were confirmed to be round, transparent particles.

また、このようにした合成石英ガラス粉を用いて公知の
方法でルツボを成型したところ、得られたルツボは天然
水晶を溶融して作ったものに比べて少し不透明であった
が、第1表に示したように純度が高く、粘度も高いもの
であることが確認された。
Furthermore, when a crucible was molded by a known method using the synthetic quartz glass powder, the resulting crucible was slightly more opaque than one made by melting natural quartz; As shown in , it was confirmed that the purity was high and the viscosity was also high.

菫! [発明の効果] 本発明は合成石英ガラス粉の製造方法に関するものであ
り、これは前記したようにメチルシリケートとアンモニ
ア水を反応器中に同時に滴下して球状シリカ粒子を作り
、これを捕集してpH9〜13の水分散溶液としたのち
メチルシリケートを添加して固化させ、ついで加熱し、
脱水、脱溶媒、脱炭後に300〜100メツシュに篩別
し、高温に加熱して焼結し透明ガラス化してから解砕す
るものであるが、これによれば加水分解によるシリカ生
成を確実にかつ連続に行なわせることができ、メチルシ
リケートで固化したシリカ塩の焼結も従来法にくらべて
低い温度で焼結させることができ、さらにはこの粉砕物
も精製工程なしで製品とすることができるし、ここに得
られた石英ガラス粉を焼結、溶融成形して得た合成石英
ガラスは高温粘度の高いものとなる。
Violet! [Effects of the Invention] The present invention relates to a method for producing synthetic quartz glass powder, which involves simultaneously dropping methyl silicate and aqueous ammonia into a reactor to form spherical silica particles, which are then collected. After making an aqueous dispersion solution with a pH of 9 to 13, methyl silicate was added to solidify it, and then heated.
After dehydration, solvent removal, and decarburization, the material is sieved into 300 to 100 mesh sieves, heated to high temperatures, sintered, turned into transparent vitrification, and then crushed. According to this method, silica production through hydrolysis is ensured. Moreover, it can be performed continuously, and sintering of silica salt solidified with methyl silicate can be performed at a lower temperature than in conventional methods, and furthermore, this pulverized product can be made into products without a refining process. Synthetic quartz glass obtained by sintering and melt-molding the quartz glass powder thus obtained has a high viscosity at high temperatures.

したがって、本発明の方法によれば1)反応の連続化、
2)焼結温度の低減、3)精製工程不要という効果が与
えられ、結果において合成石英ガラス粉3 4 の大量生産化、工程省略、省エネルギーが達成されると
いう有利性が与えられる。
Therefore, according to the method of the present invention, 1) continuous reaction;
2) a reduction in sintering temperature; and 3) no refining process required. As a result, the advantages of mass production of synthetic quartz glass powder 3 4 , process omission, and energy saving are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるメチルシリケートの加水分解工程
を示す縦断面要因であり、第2図は実施例により得られ
た合成石英ガラス粉の顕微鏡写真を示したものである。 1・・・メチルシリケート貯槽
FIG. 1 is a longitudinal cross-sectional view showing the hydrolysis process of methyl silicate according to the present invention, and FIG. 2 is a microscopic photograph of the synthetic quartz glass powder obtained in the example. 1... Methyl silicate storage tank

Claims (1)

【特許請求の範囲】 1、メチルシリケートとアンモニア水とを反応器に同時
に滴下し、この連続反応で生成した球状シリカ粒子を捕
集したのち、pH9〜13の水分散溶液とし、このシリ
カに対しシリカ換算で5〜20重量%のメチルシリケー
トを添加して固化させ、ついで加熱し、脱水、脱溶媒、
脱炭を行なった後、30〜100メッシュの範囲に篩別
し、高温に加熱して焼結し透明ガラス化してから解砕す
ることを特徴とする合成石英ガラス粉の製造方法。 2、請求項1の方法で作られた合成石英ガラス粉が30
〜100メッシュの範囲の粒度を有しており、合成石英
ガラスルツボ原料として使用されることを特徴とする合
成石英ガラス粉。
[Claims] 1. Methyl silicate and aqueous ammonia are simultaneously dropped into a reactor, and the spherical silica particles produced in this continuous reaction are collected, and then made into an aqueous dispersion solution with a pH of 9 to 13. 5 to 20% by weight of methyl silicate (calculated as silica) is added and solidified, then heated, dehydrated, desolventized,
A method for producing synthetic quartz glass powder, which comprises decarburizing the powder, sieving it to a size of 30 to 100 mesh, heating it to a high temperature, sintering it, turning it into transparent glass, and then crushing it. 2. Synthetic quartz glass powder produced by the method of claim 1 contains 30
A synthetic quartz glass powder having a particle size in the range of ~100 mesh and used as a raw material for a synthetic quartz glass crucible.
JP32463789A 1989-12-14 1989-12-14 Method for producing synthetic quartz glass powder Expired - Fee Related JPH0798666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32463789A JPH0798666B2 (en) 1989-12-14 1989-12-14 Method for producing synthetic quartz glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32463789A JPH0798666B2 (en) 1989-12-14 1989-12-14 Method for producing synthetic quartz glass powder

Publications (2)

Publication Number Publication Date
JPH03187936A true JPH03187936A (en) 1991-08-15
JPH0798666B2 JPH0798666B2 (en) 1995-10-25

Family

ID=18168054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32463789A Expired - Fee Related JPH0798666B2 (en) 1989-12-14 1989-12-14 Method for producing synthetic quartz glass powder

Country Status (1)

Country Link
JP (1) JPH0798666B2 (en)

Also Published As

Publication number Publication date
JPH0798666B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JP3751326B2 (en) Manufacturing method of high purity transparent quartz glass
JPH04219310A (en) Production of non-sintered cristobalite particle
JPS62176928A (en) Production of quartz glass powder
JPH0393638A (en) Production of synthetic quarts glass powder
JPH0280329A (en) Production of synthetic quartz glass
JPH04238808A (en) Production of highly pure crystalline silica
JPH03187936A (en) Production of synthetic quarts glass powder
JPH03275527A (en) Porous silica glass powder
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPH0912322A (en) High-purity transparent quartz glass and its production
JP2733860B2 (en) Manufacturing method of wear-resistant silica media
JPH0563416B2 (en)
JPH03228839A (en) Production of synthetic quartz powder
JP3071363B2 (en) Manufacturing method of synthetic quartz glass
JPH01270531A (en) Production of formed glass body
JPH0261423B2 (en)
JPH0521855B2 (en)
JPH0776101B2 (en) Method for manufacturing glass molded body
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JPH0776100B2 (en) Method for manufacturing glass molded body
JPH0567575B2 (en)
JPH0541565B2 (en)
JPH0745326B2 (en) Method for producing synthetic quartz glass ingot and synthetic quartz crucible
CN114180590A (en) Preparation method of silicate aqueous solution
JPH0492829A (en) Preparation of ultrapure synthetic quartz powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees