JPH0318730B2 - - Google Patents

Info

Publication number
JPH0318730B2
JPH0318730B2 JP59204622A JP20462284A JPH0318730B2 JP H0318730 B2 JPH0318730 B2 JP H0318730B2 JP 59204622 A JP59204622 A JP 59204622A JP 20462284 A JP20462284 A JP 20462284A JP H0318730 B2 JPH0318730 B2 JP H0318730B2
Authority
JP
Japan
Prior art keywords
electrolytic
butyrolactone
corrosion
valerolactone
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59204622A
Other languages
Japanese (ja)
Other versions
JPS6182418A (en
Inventor
Junko Kaga
Yutaka Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP59204622A priority Critical patent/JPS6182418A/en
Publication of JPS6182418A publication Critical patent/JPS6182418A/en
Publication of JPH0318730B2 publication Critical patent/JPH0318730B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は電解コンデンサの電解液に係り、特
に基板洗浄剤による電解コンデンサの腐食抑制に
優れた電解液に関するものである。 〔従来の技術〕 電解コンデンサは、アルミニウム等の被膜形成
性金属の表面に拡面化のためのエツチング処理を
施したのち、さらにその表面へ陽極酸化処理によ
り、誘電体となる酸化被膜層を形成したものを陽
極として用い、この陽極体に対抗させて陰極体を
配置するとともに、前記陽極体と陰極体との間に
セパレータ紙を介在させ巻回あるいは積み重ねて
コンデンサ素子を形成している。そしてこのコン
デンサ素子には、電解液が含浸されている。この
電解液は一般に、エチレングリコールなどの多価
アルコール類、ジメチルフオルムアミドなどの酸
アミド類等を主たる溶媒とし、ここへ硼酸、アジ
ピン酸等の各種の無機酸、有機酸もしくはこれら
の塩を溶解したものが用いられている。 そしてこの電解液は、前記セパレータ紙に保持
されて陽極体と陰極体との間に介在し、拡面化さ
れた陽極体表面に接して真の陰極としての役割を
果たす。また電解液はこの機能の他に、陽極体表
面に形成された誘電体酸化被膜の欠損部を修復さ
せる機能を有しており、電解コンデンサの電気特
性、寿命特性を左右する重要な要素である。 ところで、最近の電解コンデンサは、プリント
配線基板に取りつけて用いられる場合が極めて多
いが、プリント基板の組立は、電解コンデンサを
始めとして各種の電子部品を半田により取りつけ
た後、半田に含まれるフラツクス分や、組立時の
汚れ等を除去するために、1,2,2−トリクロ
ル−1,1,2−トリフルオロエタン、1,1,
1−トリクロロエタンなどのハロゲン系の基板洗
浄剤により洗浄がなされる。 ところが、電解コンデンサは、このハロゲン特
に塩素イオンに極めて弱く、この塩素イオンが電
解コンデンサの封口部から僅かでも浸透すると、
内部のアルミニウム電極が腐食を起こし、電解コ
ンデンサを使用不能にしてしまう。そこでこの腐
食を防止し、洗浄剤に耐える電解コンデンサを得
ることが要求されている。 従来からも、洗浄剤による腐食を防止する対策
が考えられている。 例えば、電解コンデンサの封口部を各種の合成
ゴム等からなる弾性封口体で密閉し、その外面に
熱硬化性の樹脂等を塗布して樹脂層を形成し、洗
浄剤の浸透を防止したもの(特開昭55−52217号)
がある。しかし、このような構造にした場合、製
造工程が増えるとともに、電解コンデンサの全長
が樹脂層分長くなり小型化に適さない。 また、電解液に腐食防止剤を添加したものとし
て、各種の銀化合物を添加したもの(特公昭58−
1538号)のほか、幾つかの腐食防止剤の添加が提
案されている。しかしながら、従来の腐食防止剤
は、1,2,2−トリクロル−1,1,2−トリ
フルオロエタンに対しては、比較的良好な腐食抑
制の効果を示すが、1,1,1−トリクロロエタ
ンの洗浄に対しては、1,1,1−トリクロロエ
タンが電解コンデンサの封口部分からの浸透度が
高く、殆ど250時間以内で腐食を発生させており、
十分な腐食抑制がおこなわれていないのが現状で
あつた。 〔発明が解決しようとする課題〕 この発明は、従来のこのような欠点を改良した
もので、電解コンデンサを装着した印刷配線基板
の洗浄に際し、洗浄剤として用いられるハロゲン
系炭化水素、特に1,1,1−トリクロロエタン
による洗浄に対して腐食を抑制することのできる
電解コンデンサ用電解液の提供を目的としてい
る。 〔課題を解決するための手段〕 この発明の電解液は、主たる溶質としてサリチ
ル酸のアミン塩を用い、溶媒としてβ−ブチロラ
クトン、δ−ノナラクトン、DL−パントイルラ
クトン、δ−バレロラクトン、γ−バレロラクト
ンの群から選ばれた一種もしくは二種以上の混合
物あるいは、前記溶媒群から選ばれた一種もしく
は二種以上とγ−ブチロラクトンとの混合物を溶
媒として用いたものからなる。 β−ブチロラクトン、δ−ノナラクトン、DL
−パントイルラクトン、δ−バレロラクトン、γ
−バレロラクトンは、いずれも環内に −C(=0)−C−を含む環式化合物であるが、
この発明では、これらラクトン類を単独あるいは
電解コンデンサ用電解液に多用されるγ−ブチロ
ラクトンとの混合溶媒で用いることを特徴として
いる。 これらラクトン化合物の構造は以下に示すとお
りである。 β−ブチロラクトン δ−ノナラクトン DL−パントイルラクトン δ−バレロラクトン γ−バレロラクトン 〔作用〕 この発明は、サリチル酸のアミン塩を主たる溶
質とし、溶媒としてβ−ブチロラクトン、δ−ノ
ナラクトン、DL−パントイルラクトン、δ−バ
レロラクトン、γ−バレロラクトンのラクトン類
のいずれかを用いた電解液を使用することにより
理由は明らかでないが、ハロゲン系炭化水素、特
に腐食作用の強い1,1,1−トリクロロエタン
による腐食に耐えることができる。 また、ラクトン類の中で、従来から電解液の溶
媒として用いられている、γ−ブチロラクトンに
これらのラクトン類を混合使用することで耐腐食
性を向上させることができる。 〔実施例〕 次に実施例に基づきこの発明を詳細に説明す
る。 実験はこの発明による電解液ならびに従来から
用いられている電解液をそれぞれ準備し、これを
電解コンデンサ素子に含浸し、電解コンデンサを
製作し、1,1,1−トリクロロエタン中に浸漬
後高温負荷試験を実施し、腐食発生の状態を調べ
た。 製作した電解コンデンサは、定格電圧50V、静
電容量47μFのもので、コンデンサ素子はすべて
の実施例とも共通のものを用い、これに従来から
の電解液、およびこの発明の電解液を含浸し、ア
ルミニウム製の有底筒状ケースに含浸済みのコン
デンサ素子を収納し、開口部を弾性封口体で密閉
し、封口部を加締付けして電解コンデンサを完成
させた。 使用した電解液は、まず比較例1として、通常
の低圧用電解コンデンサの電解液として多用され
ているエチレングリコール−アジピン酸系の電解
液を使用している。この電解液の組成は次のとお
りである。 比較例 1 電解液組成 (重量%) エチレングリコール 84 アジピン酸アンモニウム 12 水 4 次に比較例2として、溶質にサリチル酸塩を用
い、溶媒にγ−ブチロラクトンを用いた電解液を
使用した。この電解液の組成は次のとおりであ
る。 比較例 2 電解液組成 (重量%) γ−ブチロラクトン 82 サリチル酸トリエチルアミン 18 そして、この発明の電解液として、溶質にサリ
チル酸のアミン塩を用い、溶媒として、β−ブチ
ロラクトン、δ−ノナラクトン、DL−パントイ
ルラクトン、δ−バレロラクトン、γ−バレロラ
クトンを各々用いた電解液(本発明例1ないし
5)と、γ−ブチロラクトンとの混合溶媒例(本
発明例6、7)のものを用いた。本発明例の電解
液組成は、表1のとおりである。
[Industrial Field of Application] The present invention relates to an electrolytic solution for an electrolytic capacitor, and particularly to an electrolytic solution that is excellent in inhibiting corrosion of an electrolytic capacitor caused by a substrate cleaning agent. [Prior technology] Electrolytic capacitors are manufactured by etching the surface of a film-forming metal such as aluminum to enlarge the surface, and then anodizing the surface to form an oxide film layer that becomes a dielectric. This is used as an anode, a cathode body is placed opposite to this anode body, and a separator paper is interposed between the anode body and the cathode body and they are wound or stacked to form a capacitor element. This capacitor element is impregnated with an electrolyte. This electrolytic solution generally uses polyhydric alcohols such as ethylene glycol, acid amides such as dimethyl formamide, etc. as the main solvent, and various inorganic acids such as boric acid and adipic acid, organic acids, or salts thereof are dissolved therein. is used. This electrolytic solution is held by the separator paper, interposed between the anode body and the cathode body, and serves as a true cathode in contact with the enlarged surface of the anode body. In addition to this function, the electrolyte also has the function of repairing defects in the dielectric oxide film formed on the surface of the anode body, and is an important element that influences the electrical characteristics and life characteristics of electrolytic capacitors. . By the way, recent electrolytic capacitors are very often used by being attached to printed wiring boards, but in order to assemble printed circuit boards, after attaching various electronic components including electrolytic capacitors by soldering, the flux contained in the solder is removed. 1,2,2-trichloro-1,1,2-trifluoroethane, 1,1,
Cleaning is performed using a halogen-based substrate cleaning agent such as 1-trichloroethane. However, electrolytic capacitors are extremely susceptible to these halogens, especially chlorine ions, and if even a small amount of chlorine ions penetrates through the sealing part of the electrolytic capacitor,
The internal aluminum electrodes will corrode, rendering the electrolytic capacitor unusable. Therefore, there is a need to obtain an electrolytic capacitor that can prevent this corrosion and withstand cleaning agents. Conventionally, measures have been taken to prevent corrosion caused by cleaning agents. For example, the sealing part of an electrolytic capacitor is sealed with an elastic sealing body made of various types of synthetic rubber, etc., and a thermosetting resin or the like is applied to the outer surface to form a resin layer to prevent the penetration of cleaning agents ( (Japanese Patent Publication No. 55-52217)
There is. However, such a structure increases the number of manufacturing steps and increases the overall length of the electrolytic capacitor by the resin layer, making it unsuitable for miniaturization. In addition, various silver compounds are added to the electrolytic solution as corrosion inhibitors (Special Publications No. 58-
1538), the addition of several corrosion inhibitors has been proposed. However, conventional corrosion inhibitors show relatively good corrosion inhibition effects on 1,2,2-trichloro-1,1,2-trifluoroethane; For cleaning, 1,1,1-trichloroethane has a high penetration rate from the sealing part of the electrolytic capacitor, causing corrosion in most cases within 250 hours.
At present, sufficient corrosion control has not been carried out. [Problems to be Solved by the Invention] This invention improves the above-mentioned drawbacks of the conventional technology, and uses halogen-based hydrocarbons, especially 1, The object of the present invention is to provide an electrolytic solution for an electrolytic capacitor that can suppress corrosion when washed with 1,1-trichloroethane. [Means for Solving the Problems] The electrolytic solution of the present invention uses an amine salt of salicylic acid as the main solute, and β-butyrolactone, δ-nonalactone, DL-pantoyllactone, δ-valerolactone, and γ-valerolactone as the solvent. It consists of one or a mixture of two or more selected from the group of lactones, or a mixture of one or more selected from the group of solvents and γ-butyrolactone as a solvent. β-butyrolactone, δ-nonalactone, DL
-pantoyllactone, δ-valerolactone, γ
-Valerolactone is a cyclic compound containing -C(=0)-C- in the ring, but
The present invention is characterized in that these lactones are used alone or in a mixed solvent with γ-butyrolactone, which is often used in electrolytes for electrolytic capacitors. The structures of these lactone compounds are shown below. β-butyrolactone δ-nonalactone DL-pantoyllactone δ-valerolactone γ-valerolactone [Operation] This invention uses an amine salt of salicylic acid as the main solute, and uses any of the lactones β-butyrolactone, δ-nonalactone, DL-pantoyllactone, δ-valerolactone, and γ-valerolactone as a solvent. The use of an electrolytic solution makes it possible to withstand corrosion by halogenated hydrocarbons, particularly 1,1,1-trichloroethane, which has a strong corrosive effect, although the reason is not clear. Further, among lactones, corrosion resistance can be improved by mixing these lactones with γ-butyrolactone, which has been conventionally used as a solvent for electrolytes. [Example] Next, the present invention will be described in detail based on Examples. In the experiment, an electrolytic solution according to the present invention and a conventionally used electrolytic solution were prepared, and an electrolytic capacitor element was impregnated with the electrolytic solution, an electrolytic capacitor was manufactured, and a high-temperature load test was conducted after immersing it in 1,1,1-trichloroethane. was carried out to investigate the state of corrosion occurrence. The manufactured electrolytic capacitor has a rated voltage of 50 V and a capacitance of 47 μF. The capacitor element used is the same for all the examples, and is impregnated with the conventional electrolyte and the electrolyte of the present invention. The impregnated capacitor element was housed in an aluminum cylindrical case with a bottom, the opening was sealed with an elastic sealing member, and the sealing part was crimped to complete the electrolytic capacitor. First, in Comparative Example 1, the electrolytic solution used was an ethylene glycol-adipic acid based electrolytic solution, which is often used as an electrolytic solution for ordinary low-voltage electrolytic capacitors. The composition of this electrolyte is as follows. Comparative Example 1 Electrolyte Composition (% by Weight) Ethylene Glycol 84 Ammonium Adipate 12 Water 4 Next, as Comparative Example 2, an electrolyte was used in which salicylate was used as the solute and γ-butyrolactone was used as the solvent. The composition of this electrolyte is as follows. Comparative Example 2 Electrolyte composition (wt%) γ-butyrolactone 82 Triethylamine salicylate 18 As the electrolyte of the present invention, an amine salt of salicylic acid was used as the solute, and β-butyrolactone, δ-nonalactone, and DL-pantoyl were used as the solvent. Electrolytes using lactone, δ-valerolactone, and γ-valerolactone (inventive examples 1 to 5) and mixed solvent examples with γ-butyrolactone (inventive examples 6 and 7) were used. The electrolyte composition of the present invention example is shown in Table 1.

【表】 そしてこれらの電解コンデンサを超音波洗浄機
(発振周波数29KHz)の洗浄槽に入れ、1,1,
1−トリクロロエタンを注入して5分間超音波洗
浄をおこなつた後、空気中で1,1,1−トリク
ロロエタンを蒸発乾燥させ、その後110℃の恒温
槽で定格電圧(50V)を印加して寿命試験をおこ
ない、腐食の発生を調べた。 試験は、いずれの実施例についても、試料20個
を準備し、これを10個づつに分け、各々を500時
間、1000時間負荷試験し、試験終了後、試料を分
解して腐食の発生数を調べた。この結果を表2に
示す。
[Table] Then, put these electrolytic capacitors into the cleaning tank of an ultrasonic cleaner (oscillation frequency 29KHz) and
After injecting 1-trichloroethane and performing ultrasonic cleaning for 5 minutes, evaporate the 1,1,1-trichloroethane to dryness in the air, and then apply the rated voltage (50V) in a thermostat at 110°C to determine the lifespan. Tests were conducted to investigate the occurrence of corrosion. For each example, 20 samples were prepared, divided into 10 pieces, each was subjected to a load test for 500 hours and 1000 hours, and after the test was completed, the samples were disassembled to calculate the number of corrosion occurrences. Examined. The results are shown in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の電解液を用いた
電解コンデンサは、ハロゲン系炭化水素、特にそ
の腐食作用の強い1,1,1−トリクロロエタン
を用いた基板洗浄処理をおこなつても、腐食の発
生が殆どみられず、長期間にわたつて安定した特
性が維持でき、電子機器の信頼性を向上させるこ
とができる。
As described above, the electrolytic capacitor using the electrolyte of the present invention does not corrode even when the substrate is cleaned using halogenated hydrocarbons, especially 1,1,1-trichloroethane, which has a strong corrosive effect. Almost no occurrence is observed, stable characteristics can be maintained over a long period of time, and the reliability of electronic equipment can be improved.

Claims (1)

【特許請求の範囲】[Claims] 1 主たる溶質としてサリチル酸のアミン塩を用
い、溶媒としてβ−ブチロラクトン、δ−ノナラ
クトン、DL−パントイルラクトン、δ−バレロ
ラクトン、γ−バレロラクトンの群から選ばれた
一種もしくは二種以上の混合物あるいは、前記溶
媒群から選ばれた一種もしくは二種以上とγ−ブ
チロラクトンとの混合物を溶媒として用いたこと
を特徴とする電解コンデンサ用電解液。
1 Using an amine salt of salicylic acid as the main solute and a mixture of one or more selected from the group of β-butyrolactone, δ-nonalactone, DL-pantoyllactone, δ-valerolactone, γ-valerolactone, or An electrolytic solution for an electrolytic capacitor, characterized in that a mixture of one or more selected from the above solvent group and γ-butyrolactone is used as a solvent.
JP59204622A 1984-09-29 1984-09-29 Electrolytic liquid for electrolytic capacitor Granted JPS6182418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59204622A JPS6182418A (en) 1984-09-29 1984-09-29 Electrolytic liquid for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204622A JPS6182418A (en) 1984-09-29 1984-09-29 Electrolytic liquid for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS6182418A JPS6182418A (en) 1986-04-26
JPH0318730B2 true JPH0318730B2 (en) 1991-03-13

Family

ID=16493520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204622A Granted JPS6182418A (en) 1984-09-29 1984-09-29 Electrolytic liquid for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6182418A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220106A (en) * 1992-03-27 1993-06-15 Exxon Research And Engineering Company Organic non-quaternary clathrate salts for petroleum separation
JP2017228738A (en) * 2016-06-24 2017-12-28 ニチコン株式会社 Electrolytic solution and electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694722A (en) * 1979-12-28 1981-07-31 Marukon Denshi Kk Electrolytic condenser
JPS5734327A (en) * 1980-08-08 1982-02-24 Elna Co Ltd Electrolyte for driving electrolytic condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694722A (en) * 1979-12-28 1981-07-31 Marukon Denshi Kk Electrolytic condenser
JPS5734327A (en) * 1980-08-08 1982-02-24 Elna Co Ltd Electrolyte for driving electrolytic condenser

Also Published As

Publication number Publication date
JPS6182418A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
KR100376129B1 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JPH0318730B2 (en)
JPH0318727B2 (en)
JPH0318728B2 (en)
JPH0318729B2 (en)
JPH11126732A (en) Aluminium electrolytic capacitor
JPH0645199A (en) Solid-state electrolytic capacitor
JP7274440B2 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
KR100348923B1 (en) electrolyte for driving electrolytic condenser and electrolytic condenser using the same
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JPS63261826A (en) Electrolytic capacitor
JP3691546B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2561323B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH0364905A (en) Electrolyte for driving electrolytic capacitor
JPH088203B2 (en) Electrolytic solution for electrolytic capacitors
JPS63177410A (en) Aluminum electrolytic capacitor
JPH0262026A (en) Electrolyte for driving electrolytic capacitor
JPH0410515A (en) Electrolyte for electrolytic capacitor
JPS63245916A (en) Aluminum electrolytic capacitor
JP4082405B2 (en) Aluminum electrolytic capacitor
JP2960153B2 (en) Electrolyte for driving electrolytic capacitors
JPS622514A (en) Electrolytic capacitor
JPH0370116A (en) Electrolyte for driving electrolytic capacitor
JPS6314862B2 (en)
JPH03127812A (en) Electrolyte for electrolytic capacitor