JPH0318663B2 - - Google Patents

Info

Publication number
JPH0318663B2
JPH0318663B2 JP4592083A JP4592083A JPH0318663B2 JP H0318663 B2 JPH0318663 B2 JP H0318663B2 JP 4592083 A JP4592083 A JP 4592083A JP 4592083 A JP4592083 A JP 4592083A JP H0318663 B2 JPH0318663 B2 JP H0318663B2
Authority
JP
Japan
Prior art keywords
resin
vinyl chloride
metal filler
ethylene
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4592083A
Other languages
Japanese (ja)
Other versions
JPS59172535A (en
Inventor
Kazuo Tanihira
Hideo Suzuki
Nobuyasu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4592083A priority Critical patent/JPS59172535A/en
Publication of JPS59172535A publication Critical patent/JPS59172535A/en
Publication of JPH0318663B2 publication Critical patent/JPH0318663B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、銅、アルミニウムなどの金属フイラ
ーをプラスチツクに混和させてなり、電磁波シー
ルド材料などに利用される導電性樹脂混和物に関
する。 〈従来技術の問題点〉 近年、電磁波シールドのため、導電性を有する
プラスチツク材料の開発が急がれている。このよ
うな材料を作る方法の一として、銅、アルミニウ
ムなどの金属フイラーをベースのプラスチツクに
充填することにより、導電性の樹脂混和物を得る
方法が知られている。そして、一般にはABS樹
脂、ポリプロピレン樹脂などの硬質樹脂をベース
としたものが使用されているが、現在までのとこ
ろ、適度の伸びなどを有し手頃な柔軟性を持つた
ものが提供されていない。その理由は、軟質ビニ
ル混和物やゴムなどのような軟質プラスチツクに
金属フイラーを充填すると、伸びがなくなるなど
軟質プラスチツクの物性が著しく低下してしま
い、実用的なものが得られなかつたからである。
このため、軟質ビニル混和物にあつては、従来カ
ーボンブラツクを入れて体積抵抗率を低くする方
法が取られているが、これだけでは電磁波のシー
ルド性としては不十分で、金属フイラーの導入が
不可欠とされる。 そこで、本発明者等が、ビニル混和物への金属
フイラー導入について、再検討を加えたところ、
次のような新事実を見い出した。すなわち、重合
度2500〜3000、エチレン含量2〜5%のエチレン
−塩化ビニル共重合体に多量の可塑剤を用いて軟
質化させた後、この混和物に金属フイラーを充填
しても物性の低下が殆んどないことを見い出し
た。一方、この際、低重合度の塩化ビニル樹脂を
用いた場合には多量の可塑剤を用いて軟質化する
と、樹脂が可塑剤を保持することができず、可塑
剤が浸み出す所謂ブルーム現象が生じ、また高温
雰囲気中での機械的強度の低下が著しく、さらに
高重合度のストレート塩化ビニル樹脂にあつて
は、金属との親和性が悪くかつ加工性も悪いた
め、金属フイラー練り込み時の金属フイラーの破
損が促進され、混和物の体積抵抗率低下はエチレ
ン−塩化ビニル共重合体の場合よりも大きく劣る
ことなどもわかつた。さらにまた、第1図に示す
ように本発明者等の行なつた実験によると、エチ
レン−塩化ビニル共重合体(重合度=2800)の
混和物(同図A曲線)の場合、ストレート塩化ビ
ニル樹脂(重合度=1100)のそれ(同図B曲
線)と比較して、金属フイラーの充填量を増加さ
せても、それほど伸びの低下のないことも見い出
した。 〈発明の目的〉 本発明は、かゝる事実に着目してなされたもの
で、電磁波シールド用の軟質シート、軟質チユー
ブ、電線またはケーブル被覆材として有用な、さ
らにはある程度の弾性によりパツキン類にも応用
可能な優れた導電性樹脂混和物を提供することを
目的とする。 〈発明の概要〉 本発明に係る導電性樹脂混和物は、重合度2500
〜3000、エチレン含量2〜5%のエチレン−塩化
ビニル共重合体のベース樹脂に、可塑剤を該樹脂
100重量部に対し60〜100重量部、および金属フイ
ラーを10〜20体積%混和してなることを特徴とす
るものである。 こゝで、ベース樹脂としてのエチレン−塩化ビ
ニル共重合体の重合度を2500〜3000としたのは、
この樹脂に多量に充填される可塑剤を保持するこ
とができるようにある程度の高重合度が必要なた
めであり、2500未満では、十分な保持作用が得ら
れず、また3000を越えると、高過ぎて加工性が悪
く、金属フイラー充填時金属の破壊を生じるため
不都合となるからである。また、充填される可塑
剤としては、例えばトリメリツト酸系の可塑剤
(トリメリツト酸トリオクチル)、フタル酸系可塑
剤(DOP)、ポリエステル系可塑剤などを挙げる
ことができ、その充填量をベース樹脂100重量部
に対し、60〜100重量部としたのは、60重量部未
満では十分なベース樹脂の軟質化を得ることがで
きず、また100重量部を越えると、軟かすぎるた
めの機械的強度の不足や、それにプルーム現象が
生じやすくなるため好ましくない。また、金属フ
イラーとしては、特に限定されないが、例えば
銅、アルミニウム、真鍮、鉄などが使用でき、そ
の充填量は電磁波のシールド性能からすると、10
〜20体積%とするとよい。すなわち、10体積%未
満であると、十分なシールド性が得られず、また
20体積%を越えると、混和物の機械的強度が低下
し、また柔軟性も極端に失われ実用的でなくな
る。 なお、本導電性樹脂混和物に充填することがで
きる他の成分としては、例えば、塩化ビニル樹脂
混和物用金属塩安定剤、無機塩、三酸化アンチモ
ン、また用途により、酸化防止剤、銅害防止剤、
カーボンブラツク、などを使用することができ、
それにより種々の必要な特性を付与することも可
能である。 〈実施例〉 次に、本発明の実施例を説明する。 金属フイラー、可塑剤などを、以下の第1表に
示す配合に従つて、重合度2800のエチレン−塩化
ビニル共重合体のベース樹脂に混和させることに
より、実施例1および2の導電性樹脂混和物を形
成した。実施例1は銅の金属フイラーを混和させ
たもので、実施例2はアルミニウムの金属フイラ
ーを混和させたものである。双方とも可塑剤を80
重量部用い軟質化させた。 また比較のため、同様な方法で第1表に示す配
合によつて、各比較例1〜6を形成した。比較例
1は重合度1100のストレート塩化ビニルの樹脂混
和物で、比較例2は比較例1に銅の金属フイラー
を充填させたものであり、比較例3は実施例1,
2と同配合のものから金属フイラーを除いたもの
である。 また、比較例4は重合度3500のエチレン−塩化
ビニル共重合体を用いたものであり、比較例5は
重合度1700のエチレン−塩化ビニル共重合体を用
いたものであり、比較例6は重合度1100のエチレ
ン−塩化ビニル共重合体を用いたものである。
<Industrial Application Field> The present invention relates to a conductive resin mixture which is made by mixing a metal filler such as copper or aluminum into plastic and is used as an electromagnetic shielding material. <Problems with the Prior Art> In recent years, there has been an urgent need to develop conductive plastic materials for shielding electromagnetic waves. One known method for producing such a material is to obtain a conductive resin mixture by filling a base plastic with a metal filler such as copper or aluminum. Generally, materials based on hard resins such as ABS resin and polypropylene resin are used, but to date, there has been no material that has moderate elongation and reasonable flexibility. . The reason for this is that when a metal filler is filled into a soft plastic such as a soft vinyl blend or rubber, the physical properties of the soft plastic deteriorate significantly, such as loss of elongation, making it impossible to obtain a practical product.
For this reason, conventional methods have been used to lower the volume resistivity of soft vinyl mixtures by adding carbon black, but this alone is insufficient to shield electromagnetic waves, and the introduction of metal fillers is essential. It is said that Therefore, the present inventors reconsidered the introduction of metal fillers into vinyl mixtures, and found that
We discovered the following new facts. That is, even if a large amount of plasticizer is used to soften an ethylene-vinyl chloride copolymer with a degree of polymerization of 2500 to 3000 and an ethylene content of 2 to 5%, the physical properties will not deteriorate even if this mixture is filled with a metal filler. I found that there were almost no On the other hand, when using a vinyl chloride resin with a low degree of polymerization, if a large amount of plasticizer is used to soften it, the resin will not be able to hold the plasticizer and the plasticizer will seep out, resulting in the so-called bloom phenomenon. In addition, straight vinyl chloride resin with a high degree of polymerization has poor affinity with metals and poor processability, so it is difficult to mix it into metal fillers. It was also found that the failure of the metal filler was accelerated, and the volume resistivity reduction of the mixture was much inferior to that of the ethylene-vinyl chloride copolymer. Furthermore, as shown in Figure 1, according to experiments conducted by the present inventors, in the case of a mixture of ethylene-vinyl chloride copolymer (degree of polymerization = 2800) (curve A in the figure), straight vinyl chloride It was also found that compared to that of resin (degree of polymerization = 1100) (curve B in the same figure), even if the amount of metal filler was increased, the elongation did not decrease significantly. <Object of the Invention> The present invention has been made with attention to the above fact, and is useful as a flexible sheet for electromagnetic wave shielding, a flexible tube, and a covering material for electric wires or cables. The purpose of the present invention is to provide an excellent conductive resin mixture that can also be applied. <Summary of the invention> The conductive resin mixture according to the present invention has a degree of polymerization of 2500
~3000, a plasticizer is added to the base resin of ethylene-vinyl chloride copolymer with an ethylene content of 2 to 5%.
It is characterized by being mixed with 60 to 100 parts by weight and 10 to 20% by volume of metal filler per 100 parts by weight. Here, the degree of polymerization of the ethylene-vinyl chloride copolymer as the base resin was set to 2500 to 3000 because
This is because a certain degree of high polymerization degree is required to be able to retain the large amount of plasticizer filled in this resin; if it is less than 2,500, sufficient retention effect will not be obtained, and if it exceeds 3,000, the polymerization degree will be too high. This is because the processability is poor and the metal is broken when filling the metal filler, which is inconvenient. Examples of plasticizers to be filled include trimellitic acid plasticizers (trioctyl trimellitate), phthalic acid plasticizers (DOP), and polyester plasticizers. The reason why the range is 60 to 100 parts by weight is that if it is less than 60 parts by weight, the base resin cannot be sufficiently softened, and if it exceeds 100 parts by weight, it will be too soft and the mechanical strength will be reduced. This is undesirable because it tends to cause a lack of water and a plume phenomenon. In addition, the metal filler is not particularly limited, but for example, copper, aluminum, brass, iron, etc. can be used, and the filling amount is 10% in terms of electromagnetic wave shielding performance.
It is recommended that the amount be ~20% by volume. In other words, if it is less than 10% by volume, sufficient shielding properties cannot be obtained, and
If it exceeds 20% by volume, the mechanical strength of the mixture will decrease and flexibility will also be extremely lost, making it impractical. Other ingredients that can be filled into this conductive resin mixture include, for example, metal salt stabilizers for vinyl chloride resin mixtures, inorganic salts, antimony trioxide, and depending on the application, antioxidants, copper poisons, etc. inhibitor,
carbon black, etc. can be used,
Thereby, it is also possible to impart various necessary properties. <Example> Next, an example of the present invention will be described. The conductive resins of Examples 1 and 2 were mixed by mixing metal fillers, plasticizers, etc. into the base resin of ethylene-vinyl chloride copolymer with a degree of polymerization of 2800 according to the formulations shown in Table 1 below. formed things. In Example 1, a copper metal filler was mixed, and in Example 2, an aluminum metal filler was mixed. Both contain 80% plasticizer
Part by weight was used for softening. For comparison, Comparative Examples 1 to 6 were formed in the same manner using the formulations shown in Table 1. Comparative Example 1 is a straight vinyl chloride resin mixture with a degree of polymerization of 1100, Comparative Example 2 is Comparative Example 1 filled with a copper metal filler, and Comparative Example 3 is Example 1,
This is a product with the same composition as No. 2 except that the metal filler was removed. Furthermore, Comparative Example 4 used an ethylene-vinyl chloride copolymer with a polymerization degree of 3500, Comparative Example 5 used an ethylene-vinyl chloride copolymer with a polymerization degree of 1700, and Comparative Example 6 used an ethylene-vinyl chloride copolymer with a polymerization degree of 1700. It uses an ethylene-vinyl chloride copolymer with a polymerization degree of 1100.

【表】 そして、導電性および機械的物性を調べるため
に、実施例1,2および各比較例1〜6の体積抵
抗率、引張強度および伸びを測定したところ、以
下の第2表に示す結果を得た。
[Table] In order to investigate the conductivity and mechanical properties, the volume resistivity, tensile strength and elongation of Examples 1 and 2 and each Comparative Examples 1 to 6 were measured, and the results are shown in Table 2 below. I got it.

【表】 この表から、本実施例1,2においては、所望
の導電性を有すると同時に、金属フイラーの充填
によつても、十分な引張り強度が得られ、かつ伸
びも大きく低下しないなど、機械的物性の低下が
殆んどないことがわかる。これに対し、比較例2
の場合、所望の導電性は得られるものゝ伸びが著
しく低下することがわかる。 また、比較例4は樹脂の粘度が高く、良好な混
練ができないため、長時間加工する必要があつ
て、金属フイラーが破壊されてしまい、体積抵抗
が上がり、さらに、樹脂がゲル化し難いため、良
好な物性が得られず、さらに、また、比較例5,
6では、樹脂が軟らかくなるため、体積抵抗は下
がるが、破壊強度が低下するだけでなく、ブルー
ムが発生するようになることがわかる。 〈発明の効果〉 本発明に係る導電性樹脂混和物は、以上説明し
たように、エチレン−塩化ビニル共重合体に多量
の可塑剤を充填することにより、金属フイラーの
混和によつて生じる機械的物性の低下を比較的小
さく抑え、十分な伸びを有する柔軟性を維持する
と同時に、金属フイラーの混和により、十分な導
電性が得られ、電磁波シールド用の軟質シート、
軟質チユーブ、電線またはケーブルの被覆材とし
て、さらにまた柔軟な弾性によりパツキン類とし
ても応用可能な優れた用途を有するなどの効果が
ある。
[Table] From this table, it can be seen that Examples 1 and 2 have the desired conductivity, and at the same time, sufficient tensile strength is obtained even when filled with metal filler, and the elongation does not decrease significantly. It can be seen that there is almost no decrease in mechanical properties. On the other hand, comparative example 2
It can be seen that in this case, although the desired conductivity can be obtained, the elongation is significantly reduced. In addition, in Comparative Example 4, the viscosity of the resin was high and good kneading was not possible, so it was necessary to process for a long time, the metal filler was destroyed, the volume resistance increased, and furthermore, the resin was difficult to gel. Good physical properties were not obtained, and furthermore, Comparative Example 5,
In No. 6, since the resin becomes softer, the volume resistance decreases, but not only does the breaking strength decrease, but also blooming begins to occur. <Effects of the Invention> As explained above, the conductive resin mixture according to the present invention has the advantage of filling an ethylene-vinyl chloride copolymer with a large amount of plasticizer, thereby reducing the mechanical strength caused by mixing a metal filler. While keeping the decline in physical properties relatively small and maintaining flexibility with sufficient elongation, the mixture of metal filler provides sufficient conductivity, making it a flexible sheet for electromagnetic shielding.
It has excellent uses as a covering material for soft tubes, electric wires or cables, and can also be used as packing materials due to its flexible elasticity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基礎となつた樹脂の種類と
金属フイラーの充填量とその伸びを示すグラフで
ある。
FIG. 1 is a graph showing the type of resin, the filling amount of the metal filler, and its elongation, which are the basis of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 重合度2500〜3000、エチレン含量2〜5%の
エチレン−塩化ビニル共重合体のベース樹脂に、
可塑剤を該樹脂100重量部に対して60〜100重量
部、および金属フイラーを10〜20体積%混和して
なることを特徴とする導電性樹脂混和物。
1 A base resin of ethylene-vinyl chloride copolymer with a degree of polymerization of 2500 to 3000 and an ethylene content of 2 to 5%,
1. A conductive resin mixture comprising 60 to 100 parts by weight of a plasticizer and 10 to 20% by volume of a metal filler based on 100 parts by weight of the resin.
JP4592083A 1983-03-22 1983-03-22 Electroconductive resin mixture Granted JPS59172535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4592083A JPS59172535A (en) 1983-03-22 1983-03-22 Electroconductive resin mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4592083A JPS59172535A (en) 1983-03-22 1983-03-22 Electroconductive resin mixture

Publications (2)

Publication Number Publication Date
JPS59172535A JPS59172535A (en) 1984-09-29
JPH0318663B2 true JPH0318663B2 (en) 1991-03-13

Family

ID=12732681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4592083A Granted JPS59172535A (en) 1983-03-22 1983-03-22 Electroconductive resin mixture

Country Status (1)

Country Link
JP (1) JPS59172535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166098A (en) * 1985-01-18 1986-07-26 品川商工株式会社 Electromagnetic shielding body
JP5990019B2 (en) * 2012-03-28 2016-09-07 矢崎エナジーシステム株式会社 Highly flexible vinyl chloride resin composition

Also Published As

Publication number Publication date
JPS59172535A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
JPH0813902B2 (en) Conductive resin composition
JPH10330558A (en) Abrasion-resistant flame-retardant resin composition, its production and electric wire insulated therewith
JPS6321980B2 (en)
EP0113785A1 (en) Composition for shielding electromagnetic waves
JPH039140B2 (en)
JPH0318663B2 (en)
JPH02127467A (en) Polyamide resin molding material
JPS624749A (en) Blend type electrically conductive composite material
JPS61101554A (en) Preparation of electrically conductive resin composition
JPS5968346A (en) Thermally recovering molding
JP2657681B2 (en) Backing composition for conductive carpet
JP2002363352A (en) Crosslinkable semiconductive resin composition and power cable obtained using the same
JPS58127750A (en) Thermoplastic resin composition with filler
JPH09176426A (en) Fluororesin composition
JP3056797B2 (en) Positive temperature characteristic resin composition and method for producing the same
JPS60260637A (en) Semiconducting plastic mixture
JP2604823B2 (en) Semiconductive resin composition
JPS6142568A (en) Electromagnetic wave-shielding resin mixture
JPH038385B2 (en)
US3654197A (en) Sulphur-crosslinkable molded substances
JPS58160345A (en) Composite plastic
JPS63281311A (en) Fluorine-containing elastic body covered electric wire
JPH03138815A (en) Flame retardant resin component material for electric wire/cable
JPS6072943A (en) Polyolefin composition
JPH0515683Y2 (en)