JPH03186196A - Heat transfer tube - Google Patents

Heat transfer tube

Info

Publication number
JPH03186196A
JPH03186196A JP32322089A JP32322089A JPH03186196A JP H03186196 A JPH03186196 A JP H03186196A JP 32322089 A JP32322089 A JP 32322089A JP 32322089 A JP32322089 A JP 32322089A JP H03186196 A JPH03186196 A JP H03186196A
Authority
JP
Japan
Prior art keywords
protrusion
groove
grooves
oblique
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32322089A
Other languages
Japanese (ja)
Other versions
JP2737799B2 (en
Inventor
Koji Yamamoto
山本 孝司
Hiroshi Kawaguchi
川口 寛
Toshiaki Hashizume
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1323220A priority Critical patent/JP2737799B2/en
Publication of JPH03186196A publication Critical patent/JPH03186196A/en
Application granted granted Critical
Publication of JP2737799B2 publication Critical patent/JP2737799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To improve the heat transfer performance by repeatedly forming protrusions of predetermined length each having an oblique part between grooves in a steplike state, and repeatedly forming oblique surfaces inclined reversely to the oblique part of the protrusion on the bottom of the respective grooves longitudinally in a steplike state. CONSTITUTION:Protrusions 3 each having an oblique part 31 in a predetermined direction are repeatedly formed between grooves 2, and the bottoms of the grooves 2 are formed to be uneven having oblique surfaces 21 reversely thereto. The relationship between a difference H between the maximum thickness Tmax of the protrusion at the upward oblique end of the protrusion 3 and the minimum thickness tmin of the groove at the down oblique end of the groove 2, and a difference (h) between the minimum thickness Tmin of the protrusion at the downward oblique end of the protrusion 3 and the maximum thickness tmax of the groove at the upward oblique end of the groove, is set to satisfy H-h/H<=0.6. Thus, an increase in pressure drop in a tube at the oblique parts and surfaces is prevented, and heat transfer performance of the protrusions 3 and the uneven part is improved.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は冷凍機や空!機器等の熱交換器に使用される伝
熱管に関するものてあり、特に、内部で冷媒を沸騰又は
凝縮させ、管外の流体との間で熱交換を行なう沸騰型又
は凝縮型の内面加工伝熱管に関するものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention is applicable to refrigerators and sky! This article relates to heat exchanger tubes used in heat exchangers for equipment, etc., especially boiling type or condensing type internally processed heat exchanger tubes that boil or condense refrigerant inside and exchange heat with fluid outside the tube. It is related to.

「従来技術及び発明か解決しようとする課題」空調機器
等の熱交換器については近年小型・軽量化の要請が強く
、ヒートポンプ式エアコンの普及とも相まって、これ等
に使用する伝熱管についても一層の小径・高性能化か要
請されている。
``Prior art and the problem to be solved by the invention'' In recent years, there has been a strong demand for smaller and lighter heat exchangers for air conditioners, etc., and with the spread of heat pump air conditioners, the heat exchanger tubes used in these devices have also become more and more popular. There is a demand for smaller diameter and higher performance.

このため、近時は第4図のように内面に直線状又は螺線
状に溝22を多数形成した伝熱管か使用されており、さ
らに前記のような溝を交叉させて形成した伝熱管も使用
されている。そして、これらの内面溝についても種々の
形状のものか提案されている。
For this reason, in recent years, heat exchanger tubes having a large number of linear or spiral grooves 22 formed on the inner surface as shown in Fig. 4 have been used, and heat exchanger tubes having grooves 22 intersecting each other as described above have also been used. It is used. Various shapes of these inner grooves have also been proposed.

前述のように内面に溝を形成した伝熱管は、内面が平滑
な伝熱管に比べ、伝熱面積の増大や溝内における薄液膜
の形成によって伝熱性能を向上させることができるが、
前述のような溝の形成や溝形状の改良のみでは伝熱性能
の向上に限界があるばかりでなく、例えば所定形状の溝
を交叉させて形成すると、内面に形成される凹凸により
管内の圧力損失か増大する欠点かあった。
As mentioned above, heat transfer tubes with grooves formed on the inner surface can improve heat transfer performance by increasing the heat transfer area and forming a thin liquid film within the grooves, compared to heat transfer tubes with smooth inner surfaces.
Not only is there a limit to improving heat transfer performance simply by forming grooves or improving the groove shape as described above, but for example, if grooves of a predetermined shape are formed to intersect, the unevenness formed on the inner surface will cause pressure loss inside the pipe. However, there were also increasing drawbacks.

本発明の目的は、第4図のような従来の内面溝付き伝8
管と比べ管内の圧力損失をさ程増大させることなく、伝
熱性能を大幅に向上させることがてきる伝熱管であって
、既存の製造装置をほぼそのまま使用して製造すること
かてきる伝熱管を提供することにある。
The object of the present invention is to solve the problem of the conventional internally grooved transmission 8 shown in FIG.
Heat transfer tubes are heat transfer tubes that can significantly improve heat transfer performance without significantly increasing the pressure loss inside the tubes compared to tubes, and can be manufactured using existing manufacturing equipment almost as is. Our goal is to provide heat pipes.

「課題を解決するだめの手段」 本発明に係る伝熱管は、前述の目的を遠戚するため、内
面へ長手方向に沿って直線状又は螺線状に溝を多数形成
した伝熱管において、前記各溝の間には、長手方向に沿
い上面に同一方向へ#4A1t。
"Means for Solving the Problem" In order to achieve the above-mentioned object, the heat exchanger tube according to the present invention is a heat exchanger tube in which a large number of grooves are formed on the inner surface in a linear or spiral shape along the longitudinal direction. Between each groove, #4A1t is placed in the same direction on the top surface along the longitudinal direction.

た傾斜部を有する所定長さの突起を階段状に繰返し形成
し、前記各溝の底部には、前記突起との隣接部分毎に当
該突起の傾斜部とは逆方向に傾斜する傾斜面を長手方向
へ階段状に繰返し形成し、前記突起の上り傾斜方向端部
における突起部最大因J’7Tmaxと前記溝の下り傾
斜方向端部における溝部最小肉厚twinの差Hと、前
記突起の下り傾斜方向端部における突起部最小肉厚Tm
inと前記溝の上り傾斜方向端部における溝部最大肉厚
tmaxの差りとの関係を、H−h/H≦0.6の範囲
C設定している。
A protrusion of a predetermined length having a sloped part is repeatedly formed in a step-like manner, and at the bottom of each groove, a sloped surface that slopes in a direction opposite to the sloped part of the protrusion is provided at the bottom of each groove in a longitudinal direction at a portion adjacent to the protrusion. The difference H between the maximum thickness of the protrusion J'7Tmax at the end of the protrusion in the upward inclination direction and the minimum wall thickness twin of the groove at the end of the groove in the downward inclination direction, and the downward inclination of the protrusion Minimum wall thickness of protrusion at end of direction Tm
The relationship between in and the difference in the maximum wall thickness tmax of the groove at the end of the groove in the upward slope direction is set in a range C of H-h/H≦0.6.

前記伝熱管においては、繰返し形成される突起の長さは
0.20〜3■であるのが好ましい。
In the heat exchanger tube, the length of the repeatedly formed protrusions is preferably 0.20 to 3 cm.

「作用」 本発明に係る伝熱管は、溝相互の間に前述のような一定
方向への傾斜部を有する突起か繰返し形成され、溝の底
部もその逆方向への傾斜面を有する凹凸になっており、
前述のように、前記突起の上り傾斜方向端部における突
起部最大肉厚Tmaxと前記溝の下り傾斜方向端部にお
ける溝部最小肉厚twinの差Hと、前記突起の下り傾
斜方向端部における突起部最小肉厚Tll1nと前記溝
の上り傾斜方向端部における溝部最大肉厚tmaxの差
りとの関係をH−h/H≦0.6の範囲に設定している
のて、前記傾斜部及び傾斜面か管内の圧力損失の増大を
防ぎ、かつ、これらの突起及び凹凸が伝熱性能を向上さ
せる。
"Function" In the heat exchanger tube according to the present invention, projections having slopes in a certain direction as described above are repeatedly formed between the grooves, and the bottoms of the grooves are also uneven with slopes in the opposite direction. and
As described above, the difference H between the maximum thickness Tmax of the protrusion at the end of the protrusion in the upward slope direction and the minimum thickness twin of the groove part at the end of the groove in the downward slope direction, and the difference H between the protrusion maximum thickness Tmax at the end of the protrusion in the downward slope direction Since the relationship between the minimum thickness Tll1n of the groove portion and the maximum thickness tmax of the groove portion at the end portion in the upward slope direction of the groove is set in the range of H-h/H≦0.6, the slope portion and The inclined surface prevents an increase in pressure loss within the pipe, and these protrusions and irregularities improve heat transfer performance.

「実施例」 第1図はその一例を示す伝熱管の一部を展開した拡大斜
視図であり、管内面に形成した!1線状の溝2の数60
、溝2の管軸に対するねじれ角18度、外径9.53m
m、溝2の底面からの溝部最小肉厚tIainか0.2
01mの鋼管よりなる伝熱管1を示している。
"Example" Fig. 1 is an enlarged perspective view of a part of a heat exchanger tube showing one example, and it is formed on the inner surface of the tube! Number of linear grooves 2: 60
, helix angle of groove 2 relative to the tube axis 18 degrees, outer diameter 9.53 m
m, the minimum thickness of the groove part from the bottom of groove 2 tIain or 0.2
A heat exchanger tube 1 made of a steel pipe with a length of 0.01 m is shown.

溝2相互の間には、溝2の長手方向に沿い、上面に一定
の方向に傾斜した傾斜部31を有する長さul、5+u
+の突起3か階段状に繰返し間断なく形成され、突起3
と隣接の突起3との間はそれぞれほぼ同し高さの段部3
2て区切られた状態になっており、各傾斜部31の幅は
上り傾斜方向に行くほど徐々に狭くなっている。
Between the grooves 2, along the longitudinal direction of the grooves 2, there is a length ul, 5+u, which has an inclined part 31 inclined in a certain direction on the upper surface.
+ protrusion 3 is formed in a step-like manner repeatedly without any interruption, protrusion 3
and the adjacent protrusion 3 are stepped portions 3 having approximately the same height.
The width of each slope portion 31 becomes gradually narrower as it goes up the slope direction.

6溝2の底部は、突起3との隣接部分毎に突起3の傾斜
部31とは逆方向に傾斜する階段状の傾斜面21に形成
され、隣接の傾斜面21相互はそれぞれほぼ同じ高さの
段部22によって区分された状態になっている。
The bottom of the six grooves 2 is formed into a step-like inclined surface 21 that slopes in the opposite direction to the inclined portion 31 of the protrusion 3 at each adjacent portion to the protrusion 3, and the adjacent inclined surfaces 21 have approximately the same height. It is in a state where it is divided by a step part 22.

この実施例の伝熱管lにおいて、前記突起3の上り傾斜
方向端部における突起部最大肉厚Tl1axと前記溝2
の下り傾斜方向端部における溝部最小肉厚twinとの
差Hは0.15mmに、前記突起3の下り傾斜方向端部
における突起部最小肉厚Tminと前記溝2の上り傾斜
方向端部における溝部最大肉厚tmaxとの差りは0.
1mmにそれぞれ設定されており、したがって、H−h
とHとの比H−h/Hはほぼ0.33である。
In the heat exchanger tube l of this embodiment, the maximum wall thickness Tl1ax of the protrusion 3 at the end in the upward slope direction and the groove 2
The difference H between the minimum thickness Tmin of the groove at the end of the downward slope of the projection 3 is 0.15 mm, and the difference H between the minimum wall thickness Tmin of the projection 3 at the end of the downward slope of the groove 2 and the groove part of the groove 2 at the end of the groove 2 in the upward slope direction is 0.15 mm. The difference from the maximum wall thickness tmax is 0.
1 mm respectively, therefore H-h
The ratio H-h/H between H and H is approximately 0.33.

前記実施例の伝熱管1は、例えば第2図のような公知の
製造装置により容易に製造することかできる。
The heat exchanger tube 1 of the embodiment described above can be easily manufactured using a known manufacturing apparatus as shown in FIG. 2, for example.

同図において、素管aを図示しない適当な引抜き機等で
右方向に定速て移動させながら、伝熱管1に製造される
前に、フローティンクブラク5と縮径ダイス6との共働
て縮径させる。
In the figure, while the raw tube a is moved at a constant speed in the right direction by an appropriate drawing machine (not shown), a floating blank 5 and a diameter reducing die 6 are used to move the raw tube a at a constant speed before it is manufactured into a heat exchanger tube 1. Reduce the diameter.

フローテインクプラク5には、先端側にロット41か固
定され、このロット41の先端には、周面に所定のねし
れ角の互いに平行な螺線状の溝4Oを有する満付きプラ
グ4が、素管a内で自在に回転するよう保持され、この
溝付きプラグ4の周囲には、120度の角度間隔てあっ
てプラグ4の先端部分に対し押圧するよう回転自在な転
造ロール7か設けである。
A rod 41 is fixed to the tip side of the floating plaque 5, and at the tip of the rod 41, a full plug 4 having parallel spiral grooves 4O with a predetermined helix angle on the circumferential surface, The grooved plug 4 is held so as to freely rotate within the blank tube a, and rolling rolls 7 are provided around the grooved plug 4 at an angular interval of 120 degrees and are rotatable so as to press against the tip of the plug 4. It is.

各転造ロール7は、素管aの挿入側が適当なテーパー7
1に形成しである。
Each rolling roll 7 has an appropriate taper 7 on the insertion side of the raw pipe a.
It is formed into 1.

この転造ロール7を遊星回転させなから溝付きプラク4
の先端部分に押圧させ、縮径された素管aを外周よりブ
ラタ4の先端部分に圧迫して、素管aを縮径しながら内
部に前記のように多数の溝2と突起3とを有する伝熱管
1を製造する。
Since this rolling roll 7 is rotated planetarily, the grooved plaque 4
The diameter-reduced base tube a is pressed against the front end of the bracket 4 from the outer periphery, and as the diameter of the base tube a is reduced, a large number of grooves 2 and protrusions 3 are formed inside as described above. A heat exchanger tube 1 having the following structure is manufactured.

このように、溝付きプラク4と複数の転造ロール7との
間に素管a′jt通して一定の速度て移動させながら、
遊星回転する転造ロール7により、J管aを外周より溝
付きプラク4の先端部分に圧迫すると、素管aには転造
ロール7て溝付きプラク4に多数回圧迫される部分と少
ない回数しか圧迫されない部分か生し、圧迫される回数
か多い部分はプラク4の溝40内に深くめり込んて高く
隆起した状態になり、圧迫される@数の少ない部分は溝
40内にめり込む度合か少なくなるので、前記のような
傾斜部31を有する突起3と同時に階段状の傾斜面21
を有する溝2が繰返し間断なく形成され多。
In this way, while passing the blank pipe a'jt between the grooved plaque 4 and the plurality of rolling rolls 7 at a constant speed,
When the J-tube a is pressed from the outer periphery against the tip of the grooved plaque 4 by the rolling rolls 7 that rotate planetarily, there are parts of the base tube a that are pressed against the grooved plaque 4 many times by the rolling rolls 7 and a small number of times. Parts that are only compressed will remain intact, and parts that are compressed more often will sink deeply into the grooves 40 of the plaque 4 and become highly raised, while areas that are compressed less often will sink into the grooves 40 to a lesser extent. Therefore, at the same time as the projection 3 having the slope portion 31 as described above, the step-like slope surface 21
The grooves 2 having the same diameter are formed repeatedly and without interruption.

突起3は、素管aの移動方向先端側か高く、後端側に行
くほど徐々に低くなるような傾斜部31を有する形状に
形成される。
The protrusion 3 is formed in a shape having an inclined portion 31 which is higher on the distal end side in the moving direction of the blank tube a and gradually becomes lower toward the rear end side.

また、プラク4における溝40の相互間は凸条になって
いるので、前記突起3か形成されると同様な理由により
、素管aの移動方向先端側か低く、後端側に行くほど徐
々に高くなるような傾斜面21か階段状に形成される。
Further, since the grooves 40 in the plaque 4 are formed in a convex line, when the protrusions 3 are formed, for the same reason, it is lower on the distal end side in the moving direction of the blank tube a, and gradually becomes lower toward the rear end side. The inclined surface 21 is formed in a step-like manner so that the height increases.

伝熱管1に対する転造ロール7の接触軌跡は管1に対し
て1!1線状になり、これによって突起3は溝2を介在
して螺線状に並ぶ状態に形成される。
The contact locus of the rolling roll 7 with respect to the heat exchanger tube 1 becomes a 1!1 line with respect to the tube 1, so that the protrusions 3 are formed in a spiral arrangement with the groove 2 interposed therebetween.

突起3の長さ文及び傾斜面31の傾斜角は、転造ロール
7の公転数と素vaの移動速度との相関関係により適宜
設定できる。
The length of the protrusion 3 and the inclination angle of the inclined surface 31 can be appropriately set according to the correlation between the number of revolutions of the rolling roll 7 and the moving speed of the element va.

転造ロール7の押圧力及び公転数を一定にした場合、素
管aの移動速度を上げると突起3の長さ交は長く、傾斜
面31の傾斜角は小さくなり、素管aの移動速度を下げ
るとその逆になる。溝2の傾斜面21についても同様で
ある。
When the pressing force and number of revolutions of the rolling rolls 7 are kept constant, as the moving speed of the raw tube a increases, the length intersection of the protrusions 3 becomes longer, the inclination angle of the inclined surface 31 becomes smaller, and the moving speed of the raw tube a increases. If you lower it, the opposite will happen. The same applies to the inclined surface 21 of the groove 2.

したかって、転造ロール7の公転数と素管aの移動速度
を調整することによっ“て、前述の比H−h/Hを適宜
設定することかできる。
Therefore, by adjusting the revolution number of the rolling rolls 7 and the moving speed of the blank tube a, the above-mentioned ratio H-h/H can be set appropriately.

製造条件によっては、段部32とそれに隣接する段部2
2とか順次一定方向へわずかにずれた状態に形成される
Depending on manufacturing conditions, the step 32 and the step 2 adjacent to it may
2 or so are formed in a slightly shifted state in a certain direction.

第2図の例ては、縮径のためフローティングプラク5及
び縮径タイス6を使用したが、素管aの縮径を要しない
場合はこれ等は不要である。
In the example shown in FIG. 2, a floating plaque 5 and a diameter reducing tie 6 are used for diameter reduction, but these are unnecessary if diameter reduction of the blank pipe a is not required.

前記の比H−h/Hをそれぞれ変化させた伝熱管を製造
し、溝2の深さ0.15■、肉厚0.2■、螺線溝2の
ねしれ角か18度である第4図のような従来の鋼管より
なる伝熱管を製造し、それぞれについて二重管式熱交換
器に組み込んて管内ブに発熱伝達率と管内圧力損失を測
定したところ、第31Aのような結果を得た。
Heat exchanger tubes were manufactured in which the ratio H-h/H was changed respectively, and the groove 2 had a depth of 0.15 cm, a wall thickness of 0.2 cm, and a helix angle of the spiral groove 2 of 18 degrees. When heat transfer tubes made of conventional steel tubes as shown in Fig. 4 were manufactured, each was assembled into a double-pipe heat exchanger, and the heat transfer coefficient and pressure loss inside the tube were measured, the results shown in No. 31A were obtained. Obtained.

第3図の線図における縦軸には、従来の伝熱管における
蒸発熱伝達率と管内圧力損失とを1とした場合の比を、
横軸には前記の比H−h/H(従来の伝熱管のそれはO
である)の変化を示している。
The vertical axis in the diagram of FIG. 3 shows the ratio when the evaporative heat transfer coefficient and the pressure loss inside the tube in the conventional heat transfer tube are set to 1.
The horizontal axis shows the ratio H-h/H (that of the conventional heat exchanger tube is O).
).

したがって、本発明に係る伝熱管のように前記比H−h
/Hか0.6以下であるとき、管内圧力損失か第4図の
ような従来の内面溝付き伝熱管とほとんど変らず、かつ
、熱伝達率か従来の内面溝付き伝熱管よりはるかによく
なる。
Therefore, as in the heat exchanger tube according to the present invention, the ratio H-h
/H is 0.6 or less, the pressure loss inside the tube is almost the same as that of a conventional heat exchanger tube with internal grooves as shown in Figure 4, and the heat transfer coefficient is much better than that of a conventional heat exchanger tube with internal grooves. .

「発明の効果」 本発明に係る伝熱管によれば、管の内面に無数の凹凸か
あるにもかかわらず、管内圧力損失をさ程低下させるこ
となく伝熱性能のよい伝熱管を得ることかでき、しかも
、従来の製造設備をほとんどそのまま使用して製造する
ことかできる。
"Effects of the Invention" According to the heat exchanger tube according to the present invention, it is possible to obtain a heat exchanger tube with good heat transfer performance without significantly reducing the pressure loss inside the tube, even though there are countless unevenness on the inner surface of the tube. Moreover, it can be manufactured using conventional manufacturing equipment almost as is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る伝熱管の一例を示す部分拡大展開
斜視図、第2図は第1図の実施例の伝熱管の製造方法を
説明するための装置の一例を示す概略断面図、fjS3
図は従来の内面溝付き伝熱管と本発明に係る実施例の伝
、!8管との管内圧力損失比と蒸発熱伝達率、比とを示
す線図、第4図は従来の内面溝付き伝熱管の一部を展開
して示す拡大斜視図である。 主要図中符号の説明 lは伝熱管、2は溝、21は傾斜面、22は段部、3は
突起、31傾斜部、32は段部、4は溝付きプラグ、4
0は溝、41はロッド、7は転造ロール、aは素管、見
は突起3の長さ、Tmaxは突起部最大肉厚、Tmin
は突起部最小肉厚、tmaxは溝部最大肉厚、La1n
は構部最小肉厚、HはTmaxとiinの差、hはTm
inとtmaxとの差を示す。 4、¥許出覇人代理人 J「埋土 河 野 茂 大同 
       弁理上 鎌 1)久 男第4図 ro 随()(財)K馳鯉鯛呼貿 しF農法も
FIG. 1 is a partially enlarged exploded perspective view showing an example of a heat transfer tube according to the present invention, FIG. 2 is a schematic sectional view showing an example of an apparatus for explaining the method for manufacturing the heat transfer tube of the embodiment of FIG. 1, fjS3
The diagram shows a conventional heat exchanger tube with internal grooves and an embodiment according to the present invention! FIG. 4 is an enlarged perspective view showing a part of a conventional heat exchanger tube with internal grooves. Explanation of the symbols in the main drawings: 1 is a heat exchanger tube, 2 is a groove, 21 is an inclined surface, 22 is a stepped portion, 3 is a protrusion, 31 is an inclined portion, 32 is a stepped portion, 4 is a grooved plug, 4
0 is the groove, 41 is the rod, 7 is the rolling roll, a is the raw pipe, s is the length of the protrusion 3, Tmax is the maximum thickness of the protrusion, Tmin
is the minimum thickness of the protrusion, tmax is the maximum thickness of the groove, La1n
is the minimum wall thickness of the structure, H is the difference between Tmax and iin, h is Tm
It shows the difference between in and tmax. 4, ¥Kode Hajin agent J “Buried soil Shigeru Kono Daido
Kama on Patent Law 1) Hisao Figure 4 ro Zui () (Foundation) K has carp sea bream trade and also F farming method

Claims (1)

【特許請求の範囲】[Claims] 内面へ長手方向に沿って直線状又は螺線状に溝を多数形
成した伝熱管において、前記各溝の間には、長手方向に
沿い上面に同一方向へ傾斜した傾斜部を有する所定長さ
の突起が階段状に繰返し形成され、前記各溝の底部には
、前記突起との隣接部分毎に当該突起の傾斜部とは逆方
向に傾斜する傾斜面が長手方向へ階段状に繰返し形成さ
れ、前記突起の上り傾斜方向端部における突起部最大肉
厚Tmaxと前記溝の下り傾斜方向端部における溝部最
小肉厚tminの差Hと、前記突起の下り傾斜方向端部
における突起部最小肉厚Tminと前記溝の上り傾斜方
向端部における溝部最大肉厚tmaxの差hとの関係が
、H−h/H≦0.6の範囲に設定されていることを特
徴とする伝熱管。
In a heat exchanger tube in which a large number of grooves are formed in a linear or spiral manner along the longitudinal direction on the inner surface, between each of the grooves, there is provided a predetermined length of grooves having sloped parts inclined in the same direction on the upper surface along the longitudinal direction. protrusions are repeatedly formed in a step-like manner, and at the bottom of each of the grooves, an inclined surface that slopes in a direction opposite to the slope of the protrusion is repeatedly formed in a step-like manner in the longitudinal direction for each adjacent portion to the protrusion; The difference H between the maximum thickness Tmax of the protrusion at the end of the protrusion in the upward slope direction and the minimum thickness tmin of the groove part at the end of the groove in the downward slope direction, and the minimum thickness Tmin of the protrusion at the end of the protrusion in the downward slope direction. and a difference h between the maximum wall thickness tmax of the groove portion at the end of the groove in the upward slope direction, the relationship being set in the range of H-h/H≦0.6.
JP1323220A 1989-12-13 1989-12-13 Heat transfer tube Expired - Fee Related JP2737799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323220A JP2737799B2 (en) 1989-12-13 1989-12-13 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323220A JP2737799B2 (en) 1989-12-13 1989-12-13 Heat transfer tube

Publications (2)

Publication Number Publication Date
JPH03186196A true JPH03186196A (en) 1991-08-14
JP2737799B2 JP2737799B2 (en) 1998-04-08

Family

ID=18152371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323220A Expired - Fee Related JP2737799B2 (en) 1989-12-13 1989-12-13 Heat transfer tube

Country Status (1)

Country Link
JP (1) JP2737799B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000466A (en) * 1995-05-17 1999-12-14 Matsushita Electric Industrial Co., Ltd. Heat exchanger tube for an air-conditioning apparatus
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
KR20030061548A (en) * 2002-01-14 2003-07-22 엘지전선 주식회사 Inner structure of heat transfer tube for enhancing heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000466A (en) * 1995-05-17 1999-12-14 Matsushita Electric Industrial Co., Ltd. Heat exchanger tube for an air-conditioning apparatus
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
KR20030061548A (en) * 2002-01-14 2003-07-22 엘지전선 주식회사 Inner structure of heat transfer tube for enhancing heat exchanger

Also Published As

Publication number Publication date
JP2737799B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US4438807A (en) High performance heat transfer tube
US5332034A (en) Heat exchanger tube
US4159739A (en) Heat transfer surface and method of manufacture
US7178361B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
CA1247078A (en) Heat transfer tube having internal ridges, and method of making same
EP0495453B1 (en) Heat transmission tube
US4733698A (en) Heat transfer pipe
US4425696A (en) Method of manufacturing a high performance heat transfer tube
US6182743B1 (en) Polyhedral array heat transfer tube
JPH04278193A (en) Inside-reinforced heat transfer tube
US6176301B1 (en) Heat transfer tube with crack-like cavities to enhance performance thereof
US10267573B2 (en) Polyhedral array heat transfer tube
JPH03186196A (en) Heat transfer tube
JPH04260793A (en) Heat transfer tube with inner surface groove
JP3592149B2 (en) Internal grooved tube
JP2773872B2 (en) Heat transfer tube for boiling and condensation
JP2706339B2 (en) Manufacturing method of heat transfer tube for inner surface processing
JPH0459968B2 (en)
JPS59202397A (en) Internally grooved pipe and manufacture thereof
JPH0615950B2 (en) Liquid-liquid heat exchanger heat transfer tubes
JPH06257978A (en) Heat transfer tube for heat exchanger
JPH07120184A (en) Heat exchanger tube with inner surface protrusion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees