JPH03185339A - Apparatus for measuring spin polarization - Google Patents

Apparatus for measuring spin polarization

Info

Publication number
JPH03185339A
JPH03185339A JP32529689A JP32529689A JPH03185339A JP H03185339 A JPH03185339 A JP H03185339A JP 32529689 A JP32529689 A JP 32529689A JP 32529689 A JP32529689 A JP 32529689A JP H03185339 A JPH03185339 A JP H03185339A
Authority
JP
Japan
Prior art keywords
light
measured
spin polarization
probe
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32529689A
Other languages
Japanese (ja)
Inventor
Atsushi Takeuchi
淳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32529689A priority Critical patent/JPH03185339A/en
Publication of JPH03185339A publication Critical patent/JPH03185339A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the spin polarization of a carrier at high time resolution by projection exciting light on a material to be measured, forming spin polarization, thereafter projecting probe light on the material to be measured, and measuring the spin polarization with a photodetector. CONSTITUTION:The very-short-pulse light from a short-pulse dye laser light source 60 is made to be the circularly polarized very-short-pulse laser light with a circular-polarization converting device 62. The light beam is split into exciting light 24 and probe light 22. The probe light 22 is guided to an optical delaying device 10. A cube corner is finely moved at an equal speed by the driving of a step motor. The probe light 22 is optically delayed in a minute time from the exciting light 24. Therefore, up-spinning electrons are excited in a semiconductor 64 by the exciting light 24. The absorptivity of the semicon ductor 64 with the probe light 22 reaching the semiconductor 64 after the elapse of time DELTAt is changed at the exciting rate of the up-spinning. Therefore, the delay in light emitting time of the probe light 22 with respect to the exciting light 24 is finely shifted, and measurement is repeated. Thus the time change in absorptivity can be measured, and the time change in spin polarization can be measured.

Description

【発明の詳細な説明】 [概要] 半導体等の被測定物の電子等のキャリアのスピン分極を
高時間分解能で計測するスピン分極測定装置に関し、 半導体等の被測定物の電子等のキャリアのスピン分極を
高時間分解能で計測でき、室温付近での計測が容易なス
ピン分極測定装置を提供することを目的とし、 パルスレーザ光源と、前記パルスレーザ光源から射出し
たパルス光を円偏光の励起光とプローブ光に変換し、被
測定物に照射する円偏光変換手段と、前記プローブ光に
光学的時間遅延を発生させる光学的時間遅延手段と、前
記被測定物を透過した前記プローブ光の強度を測定する
受光素子とを備え、前記励起光を前記被測定物に照射し
てスピン分極を形成させた後、前記プローブ光を前記被
測定物に照射し、前記受光素子により測定されたプロー
ブ光の透過強度によりスピン分極を測定するように構成
する。
[Detailed Description of the Invention] [Summary] This invention relates to a spin polarization measuring device that measures the spin polarization of carriers such as electrons in a device to be measured such as a semiconductor with high time resolution. The purpose of the present invention is to provide a spin polarization measuring device that can measure polarization with high time resolution and that can easily measure near room temperature. circularly polarized light conversion means for converting into probe light and irradiating it onto the object to be measured; optical time delay means for generating an optical time delay in the probe light; and measuring the intensity of the probe light that has passed through the object to be measured. irradiating the object to be measured with the excitation light to form spin polarization, then irradiating the object to be measured with the probe light, and transmitting the probe light measured by the light receiving element. It is configured to measure spin polarization based on intensity.

[産業上の利用分野] 本発明は、半導体等の被測定物の電子等のキャリアのス
ピン分極を計測するスピン分極測定装置に関する。
[Industrial Application Field] The present invention relates to a spin polarization measurement device that measures spin polarization of carriers such as electrons in a device to be measured such as a semiconductor.

[従来の技術] 一般に、半導体に光を照射すると、価電子帯にある電子
が励起されて伝導帯へ遷移する。を子は、アップスピン
とダウンスピンの2種のスピン方向を有する。偏光して
いない光を半導体に照射すると、アップスピンとダウン
スピンの両スピンの電子が同じたけ励起される。
[Prior Art] Generally, when a semiconductor is irradiated with light, electrons in the valence band are excited and transition to the conduction band. The child has two spin directions: up spin and down spin. When a semiconductor is irradiated with unpolarized light, both spin-up and spin-down electrons are excited by the same amount.

しかし、照射する光に円偏光を用いた場合は、右円偏光
か左円偏光かによって遷移の仕方が異なる0例えば右円
偏光を半導体に照射すると、通常はアップスピンとダウ
ンスピンの電子の励起される比率は3対1で、価電子帯
には同じく3対1の割合でヘビーホールとライトホール
が生成される。
However, when circularly polarized light is used as the irradiating light, the transition mode differs depending on whether it is right-handed or left-handed circularly polarized light.For example, when right-handed circularly polarized light is irradiated onto a semiconductor, it usually causes excitation of up-spin and down-spin electrons. The ratio is 3:1, and heavy holes and light holes are also generated in the valence band at a 3:1 ratio.

この状態で放置すると、徐々にアップスピンの電子がダ
ウンスピンの電子に変化し、一定時間経過後にはアップ
スピンの電子とダウンスピンの電子の比率が50%ずつ
になる。このアップスピンの電子とダウンスピンの電子
の比率が時間と共に変化するのがスピン分極の時間変化
である。
When left in this state, up-spin electrons gradually change to down-spin electrons, and after a certain period of time, the ratio of up-spin electrons and down-spin electrons becomes 50% each. Changes in the ratio of up-spin electrons to down-spin electrons over time are changes in spin polarization over time.

このとき、アップスピンの電子がホールと再結合する場
合はルミネッセンス光は右円偏光となり、ダウンスピン
の電子がホールと再結合する場合は左円偏光となる。ル
ミネッセンス光の偏光を観察し、どの程度右円偏光があ
るかを計測すれば、伝導帯にどの程度の割合でアップス
ピンとダウンスピンの電子が存在するかを計測すること
ができる。
At this time, when up-spin electrons recombine with holes, the luminescence light becomes right-handed circularly polarized light, and when down-spin electrons recombine with holes, the luminescence light becomes left-handed circularly polarized light. By observing the polarization of luminescent light and measuring how much right-handed circularly polarized light there is, it is possible to measure the proportion of up-spin and down-spin electrons in the conduction band.

第5図に示す従来のスピン分極測定装置はこの原理を用
いてスピン分極を測定するものである。
The conventional spin polarization measurement apparatus shown in FIG. 5 measures spin polarization using this principle.

従来のスピン分極測定装置は、短パルスのレーザ光を発
生する短パルスレーザ光源60の光軸上に、レーザ光を
直線偏光に変換する偏光子と直線偏光を円偏光に変換す
る四分の一波長板とを有する円偏光変換装置62を介し
て、電子のスピン分極を計測するための被測定物である
半導体64が設置されている。
A conventional spin polarization measurement device has a polarizer that converts the laser beam into linearly polarized light and a quarter-wave polarizer that converts the linearly polarized light into circularly polarized light on the optical axis of a short-pulse laser light source 60 that generates short-pulse laser light. A semiconductor 64, which is an object to be measured, is installed to measure spin polarization of electrons via a circular polarization conversion device 62 having a wavelength plate.

短パルスレーザ光源60の光軸と異なる光軸に、半導体
64が発する円偏光のルミネッセンス光80を直線偏光
に変換する四分の一波長板66と偏光子68とが一直線
状に配置され、その先にルミネッセンス光80の左右円
偏光の一方から生じた直線偏光のルミネッセンス光80
の時間強度変化を記録するストリークカメラ70が設置
されている。
A quarter-wave plate 66 that converts the circularly polarized luminescence light 80 emitted by the semiconductor 64 into linearly polarized light and a polarizer 68 are arranged in a straight line on an optical axis different from the optical axis of the short pulse laser light source 60. Linearly polarized luminescent light 80 generated from one of left and right circularly polarized luminescent light 80
A streak camera 70 is installed to record temporal intensity changes.

ストリークカメラ70は光の高速度時間変化を記録する
カメラで、光学像を電子線像に変換する光電陰極72及
び陽極74と、電子線を高速掃引するための掃引電圧用
型f#176を有し、さらに画像増幅を行うチャネルプ
レート78を有する。
The streak camera 70 is a camera that records high-speed temporal changes in light, and has a photocathode 72 and an anode 74 that convert an optical image into an electron beam image, and a sweep voltage type f#176 for sweeping the electron beam at high speed. Furthermore, it has a channel plate 78 that performs image amplification.

次に、動作を説明する。Next, the operation will be explained.

短パルスレーザ光源60により発生した短パルス光は、
円偏光変換装置62によって例えば右円偏光にされ、電
子のスピン分極の励起光79として半導体64に照射さ
れる。半導体64中の電子のスピン分極は照射された円
偏光により発生し、また半導体64のスピン分極により
発生したルミネッセンス光80もスピン分極に依存した
円偏光成分を持つ、従って、半導体結晶64からのフォ
トルミネッセンスの強度の時間変化を計測することによ
り、半導体64中でのスピン分極の時間変化が計測でき
る。
The short pulse light generated by the short pulse laser light source 60 is
The light is converted into, for example, right-handed circularly polarized light by the circularly polarized light converter 62, and is irradiated onto the semiconductor 64 as excitation light 79 for spin polarization of electrons. The spin polarization of electrons in the semiconductor 64 is generated by the irradiated circularly polarized light, and the luminescence light 80 generated by the spin polarization of the semiconductor 64 also has a circularly polarized component that depends on the spin polarization. By measuring the time change in luminescence intensity, the time change in spin polarization in the semiconductor 64 can be measured.

半導体64から発生する円偏光のルミネッセンス光80
を四分の一波長板66を通過させ、偏光面が90度異な
る2つの直線偏光のルミネッセンス光80に変換し、さ
らに偏光子68を通過させることにより例えば右円偏光
成分に応じた直線偏光のルミネッセンス光80のみをス
トリークカメラ70の光電陰極72へ入射させる。
Circularly polarized luminescence light 80 generated from the semiconductor 64
is passed through a quarter-wave plate 66 and converted into two linearly polarized luminescent lights 80 with polarization planes different by 90 degrees, and further passed through a polarizer 68 to convert linearly polarized light according to the right-handed circularly polarized component, for example. Only the luminescent light 80 is made incident on the photocathode 72 of the streak camera 70.

光電陰極72へ入射した光学像は、電子像に変換され掃
引電圧用型[i76により高速掃引され、チャネルプレ
ート78上にストリーク(流れ)像を形成し、電気信号
に変換され解析される(図示せず)。
The optical image incident on the photocathode 72 is converted into an electronic image, which is quickly swept by a sweep voltage type [i76, forming a streak image on the channel plate 78, which is converted into an electrical signal and analyzed (Fig. (not shown).

[発明が解決しようとする課題] しかし、ストリークカメラの時間分解能は現在10ps
程度に止まっており、またフォトルミネッセンスは室温
で発光効率が悪いため、室温付近での計測が容易ではな
いという欠点がある。
[Problems to be solved by the invention] However, the temporal resolution of streak cameras is currently 10 ps.
Furthermore, since photoluminescence has poor luminous efficiency at room temperature, it is difficult to measure near room temperature.

本発明は、上記事情を考慮してなされたもので、半導体
等の被測定物の電子等のキャリアのスピン分極を高時間
分解能で計測でき、室温付近での計測が容易なスピン分
極測定装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and provides a spin polarization measuring device that can measure the spin polarization of carriers such as electrons in a semiconductor or other measured object with high time resolution and that can easily perform measurements near room temperature. The purpose is to provide.

[課題を解決するための手段] 上記目的は、パルスレーザ光源と、前記パルスレーザ光
源から射出したパルス光を円偏光の励起光とプローブ光
に変換し、被測定物に照射する円偏光変換手段と、前記
プローブ光に光学的時間遅延を発生させる光学的時間遅
延手段と、前記被測定物を透過した前記プローブ光の強
度を測定する受光素子とを備え、前記励起光を前記被測
定物に照射してスピン分極を形成させた後、前記プロー
ブ光を前記被測定物に照射し、前記受光素子により測定
されたプローブ光の透過強度によりスピン分極を測定す
ることを特徴とするスピン分極測定装置によって達成さ
れる。
[Means for Solving the Problem] The above object is to provide a pulsed laser light source and a circularly polarized light conversion means for converting the pulsed light emitted from the pulsed laser light source into circularly polarized excitation light and probe light and irradiating the object to be measured with the circularly polarized excitation light and probe light. and an optical time delay unit that generates an optical time delay in the probe light, and a light receiving element that measures the intensity of the probe light that has passed through the object to be measured, and directs the excitation light to the object to be measured. A spin polarization measuring device characterized in that after irradiating the object to form spin polarization, the object to be measured is irradiated with the probe light, and the spin polarization is measured based on the transmitted intensity of the probe light measured by the light receiving element. achieved by

上記目的は、請求項1記載のスピン分極測定装置におい
て、前記円偏光変換手段は、前記パルスレーザ光源から
射出したパルス光から同一の円偏光の励起光とプローブ
光を生成することを特徴とするスピン分極測定装置によ
って達成される。
The above object is achieved in the spin polarization measurement apparatus according to claim 1, wherein the circularly polarized light conversion means generates excitation light and probe light of the same circularly polarized light from the pulsed light emitted from the pulsed laser light source. This is accomplished by a spin polarization measurement device.

上記目的は、請求項1記載のスピン分極測定装置におい
て、前記円偏光変換手段は、前記パルスレーザ光源から
射出したパルス光から相互に逆の円偏光の励起光とプロ
ーブ光を生成することを特徴とするスピン分極測定装置
によって達成される。
The above object is achieved by providing the spin polarization measurement apparatus according to claim 1, wherein the circularly polarized light conversion means generates excitation light and probe light of mutually opposite circular polarization from the pulsed light emitted from the pulsed laser light source. This is achieved using a spin polarization measuring device.

[作用] 本発明は以上のように構成されているので、半導体等の
材料の電子等のキャリアのスピン分極を高時間分解能で
計測でき、室温付近での計測を容易に行うことができる
[Function] Since the present invention is configured as described above, the spin polarization of carriers such as electrons in a material such as a semiconductor can be measured with high time resolution, and measurement can be easily performed near room temperature.

[実施例] 本発明の第1の実施例によるスピン分極測定装置を第1
図を用いて説明する。
[Example] The spin polarization measuring device according to the first example of the present invention was
This will be explained using figures.

短パルスのレーザ光を発生する短パルス色素レーザ光源
60の光軸上に、レーザ光を直線偏光に変換する漏光子
と直線偏光を円偏光に変換する四分の一波長板を有する
円偏光変換装置62が設置され、その先にビームスプリ
ッタ14が設置されている。ビームスプリッタ14で光
は2つに分割され、一方の光は光学的時間遅電装210
へ向がい、もう一方は反射鏡17へ向かう。
A circular polarization conversion device that has a light filter that converts laser light into linearly polarized light and a quarter-wave plate that converts linearly polarized light into circularly polarized light on the optical axis of a short-pulse dye laser light source 60 that generates short-pulse laser light. A device 62 is installed, and a beam splitter 14 is installed ahead of it. The beam splitter 14 splits the light into two parts, one of which is sent to an optical time delay device 210.
The other side heads toward the reflecting mirror 17.

光学的時間遅延装置10は、例えばステップモータの駆
動によりキューブコーナを移動することにより光路長を
変化するものである。光学的時間遅延装置10から出た
光は被測定物である半導体64に入射する。半導体64
を透過した光は受光素子20で受光される。
The optical time delay device 10 changes the optical path length by moving a cube corner by driving, for example, a step motor. The light emitted from the optical time delay device 10 is incident on the semiconductor 64 which is the object to be measured. semiconductor 64
The light that has passed through is received by the light receiving element 20.

一方、反射鏡17へ進む光の光軸は、被測定物である半
導体64上で反射!i16からの光軸と一致するが、受
光素子20には入射しないように調整されている。
On the other hand, the optical axis of the light traveling to the reflecting mirror 17 is reflected on the semiconductor 64 which is the object to be measured! Although it coincides with the optical axis from i16, it is adjusted so that it does not enter the light receiving element 20.

半導体64は、超格子構造をしており、照射された光が
透過できるように800nm程度の厚さに形成され、1
mm程度の厚さのガラス板上に透明な接着剤で接着され
ている。
The semiconductor 64 has a superlattice structure and is formed to have a thickness of about 800 nm so that the irradiated light can pass through.
It is glued onto a glass plate with a thickness of about mm using a transparent adhesive.

次に、動作を説明する。Next, the operation will be explained.

一般に、円偏光を半導体に照射した場合、アップスピン
又はダウンスピンの電子の励起される比率は3対1で、
価電子帯にはヘビーホールとライトホールが生成される
。半導体超格子においては、価電子帯のヘビーホールの
エネルギレベルはライトホールのエネルギレベルより少
し低く、半導体超格子中の励起子共III@準位のうち
例えば電子−ヘビーホール遷移に相当する波長の円偏光
を照射すると、例えばアップスピンの電子のみが励起さ
れ、また電子−ライトホール遷移に相当する波長と同一
の円偏光を照射するとダウンスピンの電子のみが励起さ
れる。
Generally, when a semiconductor is irradiated with circularly polarized light, the ratio of up-spin or down-spin electrons to be excited is 3:1.
Heavy holes and light holes are generated in the valence band. In a semiconductor superlattice, the energy level of heavy holes in the valence band is slightly lower than that of light holes, and among the exciton co-III@ levels in the semiconductor superlattice, for example, the energy level of heavy holes in the valence band is When circularly polarized light is irradiated, for example, only up-spin electrons are excited, and when circularly polarized light is irradiated with the same wavelength as the electron-lighthole transition, only down-spin electrons are excited.

本実總例では、電子−ヘビーホール遷移に相当する波長
の円偏光パルスを発生させ、超格子構造を有する半導体
に照射し、アップスピンの電子のみを励起させる。
In this practical example, a circularly polarized light pulse with a wavelength corresponding to the electron-heavy hole transition is generated and irradiated onto a semiconductor having a superlattice structure, thereby exciting only up-spin electrons.

ここで、アップスピンの電子を励起させる円偏光を励起
光と呼び、この励起光と同じ円偏光で励起光よりΔを秒
間遅れて半導体に到達する光をプローブ光と呼ぶことと
する。
Here, circularly polarized light that excites up-spin electrons is called excitation light, and light that is the same circularly polarized light as this excitation light and reaches the semiconductor with a delay of Δ seconds from the excitation light is called probe light.

励起光の照射によって励起されたアップスピンの電子は
時間と共に緩和する。Δを秒間だけ遅れて到達するプロ
ーブ光はその一部がスピン緩和の程度に応じてアップス
ピンの電子を励起させるが、残りはそのまま半導体を透
過する。従って、このプローブ光の透過光の強度を調べ
れば、スピン分極のΔを砂径におけるアップスピンの電
子の割合を知ることができる0本実施例はこの原理によ
りスピン分極を測定するものである。
Up-spin electrons excited by irradiation with excitation light relax over time. A portion of the probe light, which arrives with a delay of Δ seconds, excites up-spin electrons depending on the degree of spin relaxation, but the rest passes through the semiconductor as is. Therefore, by examining the intensity of the transmitted light of the probe light, the spin polarization Δ can be determined as the proportion of up-spin electrons in the sand diameter.The present embodiment measures spin polarization based on this principle.

電子−へビーホール遷移に相当する波長の円偏光パルス
を発生させる短パルス色素レーザ光源60からパルス@
lpsの極短パルス光を82MH2のパルス周波数で発
生させ、円偏光変換装置62によって円偏光の極短パル
ス光とし、ビームスプリッタ14により励起光24とプ
ローブ光22に分ける。
A pulse @ from a short-pulse dye laser light source 60 that generates a circularly polarized pulse of wavelength corresponding to the electron-heavy hole transition.
Ultrashort pulsed light of lps is generated at a pulse frequency of 82 MH2, converted into circularly polarized ultrashort pulsed light by a circular polarization conversion device 62, and split into excitation light 24 and probe light 22 by a beam splitter 14.

プローブ光22は光学的時間遅延装置10へ寝かれ、ス
テップモータの駆動によりキューブコーナを等速微動す
ることにより、プローブ光22に励起光24よりも微少
の光学的時間遅延を起こさせる(第2図)。
The probe light 22 is fed to the optical time delay device 10, and by driving the step motor to slightly move the cube corner at a constant velocity, the probe light 22 is caused to undergo a minute optical time delay compared to the excitation light 24 (second figure).

従って、最初に励起光24が半導体64に到達し、励起
光24によって半導体64中のアップスピンの電子が励
起される。Δtの時間経過後、半導体64に到達したプ
ローブ光22による半導体64の吸収率はアップスピン
の励起の割合に応じて変化する。従って、プローブ光2
2の透過光もアップスピンの電子の励起の割合に応じて
変化することになり、受光素子20に到達する透過光の
強度が変化する。
Therefore, the excitation light 24 first reaches the semiconductor 64, and the up-spin electrons in the semiconductor 64 are excited by the excitation light 24. After the time Δt has elapsed, the absorption rate of the semiconductor 64 due to the probe light 22 that has reached the semiconductor 64 changes depending on the rate of up-spin excitation. Therefore, probe light 2
The transmitted light of No. 2 also changes according to the rate of excitation of up-spin electrons, and the intensity of the transmitted light that reaches the light receiving element 20 changes.

励起光24に対するプローブ光22の発光時間の遅れを
微小にずらしながら繰り返し計測することにより、吸収
率の時間変化が測定できる。即ち、スピン分極の時間変
化が測定できる。
By repeatedly measuring while slightly shifting the delay in the emission time of the probe light 22 relative to the excitation light 24, the change in absorption rate over time can be measured. In other words, changes in spin polarization over time can be measured.

本発明の第2の実施例によるスピン分極測定装置を第3
図を用いて説明する。
The spin polarization measuring device according to the second embodiment of the present invention is
This will be explained using figures.

第1図に示すスピン分極測定装置と同一の構成要素には
同一の符号を付して説明を省略または簡略にする。
Components that are the same as those of the spin polarization measuring device shown in FIG. 1 are given the same reference numerals, and description thereof will be omitted or simplified.

本実施例のスピン分極測定装置は、第1の実施例のスピ
ン分極測定装置において、ビームスプリッタ14と光学
的時間遅延装置10の間に二分の一波長板3oを設置し
たものである。
The spin polarization measurement device of this embodiment is the same as the spin polarization measurement device of the first embodiment, except that a half-wave plate 3o is installed between the beam splitter 14 and the optical time delay device 10.

励起光24とプローブ光22の円偏光方向を逆にすると
、半導体64を透過したプローブ光22の光はダウンス
ピンの電子の比率の時間変化に応じた強度変化をするの
で、励起光24によって励起されたアップスピンの電子
がダウンスピンの電子に緩和した過程を[1測すること
が可能になる。
When the circularly polarized directions of the excitation light 24 and the probe light 22 are reversed, the intensity of the probe light 22 transmitted through the semiconductor 64 changes in accordance with the time change in the ratio of down-spin electrons, so that the excitation light 24 excites the probe light 22. It becomes possible to measure the process in which up-spin electrons relax into down-spin electrons.

まず、電子−ヘビーホール遷移に相当する波長の円偏光
パルスを発生させる短パルス色素レーザ光源60がらパ
ルス幅1psの[i短パルス光ヲ82MHzのパルス周
波数で発生させ、円偏光変換装置62によって円偏光の
極短パルス光とし、ビームスプリッタ14により励起光
24とプローブ光22に分ける。
First, a short pulse dye laser light source 60 that generates a circularly polarized light pulse with a wavelength corresponding to the electron-heavy hole transition is used to generate short pulse light with a pulse width of 1 ps at a pulse frequency of 82 MHz, and a circularly polarized light converter 62 generates a short pulse light with a pulse frequency of 82 MHz. The polarized ultra-short pulse light is split into excitation light 24 and probe light 22 by a beam splitter 14.

プローブ光22は二分の一波長板3oを通過して左円偏
光となり、光学的時間遅延装置1oへ導かれる。ステッ
プモータの駆動によりキューブコーナを等速微動し、プ
ローブ光22に励起光24よりも微少の光学的時間遅延
を起こす(第2図)。
The probe light 22 passes through the half-wave plate 3o, becomes left-handed circularly polarized light, and is guided to the optical time delay device 1o. The cube corner is slightly moved at a constant speed by driving the step motor, causing a slight optical time delay in the probe light 22 compared to the excitation light 24 (FIG. 2).

従って、最初に励起光24が半導体64に到達し、励起
光24によって半導体64中のアップスピンの電子が励
起される。Δtの時間経過後、半導体64に到達したプ
ローブ光22による半導体64の吸収率はダウンスピン
の電子の励起の割合に応じて変化する。従って、プロー
ブ光22の透過光もダウンスピンの電子の割合に応じて
変化することになり、受光素子20に到達する透過光の
強度が変化する。
Therefore, the excitation light 24 first reaches the semiconductor 64, and the up-spin electrons in the semiconductor 64 are excited by the excitation light 24. After a period of time Δt has elapsed, the absorption rate of the semiconductor 64 due to the probe light 22 that has reached the semiconductor 64 changes depending on the rate of excitation of down-spin electrons. Therefore, the transmitted light of the probe light 22 also changes according to the proportion of down-spin electrons, and the intensity of the transmitted light that reaches the light receiving element 20 changes.

励起光24に対するプローブ光22の発光時間の遅れを
微小にずらしながら繰り返し計測することにより、吸収
率の時間変化が分かる。即ち、アップスピンの電子がダ
ウンスピンの電子に緩和した過程を観測することが可能
になり、スピン分極の時間変化が測定できる。
By repeatedly measuring the delay in the emission time of the probe light 22 with respect to the excitation light 24 while slightly shifting the time, changes in the absorption rate over time can be determined. That is, it becomes possible to observe the process in which up-spin electrons relax into down-spin electrons, and it is possible to measure changes in spin polarization over time.

本発明の第3の実施例によるスピン分極測定装置を第4
図を用いて説明する。
The spin polarization measuring device according to the third embodiment of the present invention is
This will be explained using figures.

第1図又は第3図に示すスピン分極測定装置と同一の構
成要素には同一の符号を付して説明を省略または簡略に
する。
Components that are the same as those of the spin polarization measurement apparatus shown in FIG. 1 or 3 are given the same reference numerals, and explanations thereof will be omitted or simplified.

本実施例のスピン分極測定装置は、短パルス色素レーザ
光源60から射出した極短パルス光をビームスプリッタ
14で励起光24とプローブ光22とに分割した後、各
々の光路に円偏光変換装置62.63を設置したもので
ある。
The spin polarization measuring device of this embodiment splits ultrashort pulse light emitted from a short pulse dye laser light source 60 into an excitation light 24 and a probe light 22 by a beam splitter 14, and then connects each optical path to a circular polarization converter 62. .63 was installed.

円偏光変換装置62と円偏光変換装置63が互に逆回り
の円偏光を発生させるように、円偏光変換装置62.6
3内部の偏光子及び四分の一波長板は、光の振動方向が
相互に90度傾くように設定する。
The circularly polarized light converter 62.6 is configured such that the circularly polarized light converter 62 and the circularly polarized light converter 63 generate circularly polarized light with opposite directions.
The polarizer and quarter-wave plate inside 3 are set so that the vibration directions of light are tilted 90 degrees to each other.

以上のようにして、第2の実施例と同様の測定をするこ
とができる。
In the manner described above, measurements similar to those in the second embodiment can be made.

本実施例では、原理的に測定系の時間分解能が光パルス
の時間分解能によって決まるため時間分解能は、例えば
現在可能なO,lpsのオーダーまで減少させることが
可能である。また、フォトルミネッセンス光を用いない
ので常温での計測が容易に行えるという優れた特徴を持
つ。
In this embodiment, since the time resolution of the measurement system is determined in principle by the time resolution of the optical pulse, the time resolution can be reduced to, for example, the currently available order of O, lps. It also has the excellent feature of being able to easily perform measurements at room temperature because it does not use photoluminescence light.

本発明は上記実施例に限らず種々の変形が可能である。The present invention is not limited to the above-mentioned embodiments, and various modifications are possible.

例えば、本実施例では、短パルスレーザ光源として短パ
ルス色素レーザを用いたが、他に半導体レーザ、YAG
レーザ等の固体レーザ、Arレーザ等のガスレーザでも
よい。
For example, in this example, a short pulse dye laser was used as the short pulse laser light source, but other lasers such as semiconductor laser, YAG
A solid laser such as a laser, or a gas laser such as an Ar laser may be used.

また、本実施例では、円偏光変換装置として、偏光子と
四分の一波長板を用いたが、偏光レーザを光源とし、四
分の一波長板を用いてもよい。
Further, in this embodiment, a polarizer and a quarter-wave plate are used as the circularly polarized light conversion device, but a polarized laser may be used as a light source and a quarter-wave plate may be used.

また、本実施例では、光学的時間遅延をプローブ光に与
えたが、相対的に励起光よりプローブ光の方に時間遅延
を与えられるものであればよい。
Further, in this embodiment, an optical time delay is given to the probe light, but any other device may be used as long as it can give a relatively more time delay to the probe light than to the excitation light.

従って、励起光の光路長をプローブ光の光路長よりも相
対的に短くしてもよい。
Therefore, the optical path length of the excitation light may be relatively shorter than the optical path length of the probe light.

[発明の効果] 以上の通り、本発明によれば、半導体等の材料の電子等
のキャリアのスピン分極を高時間分解能で計測でき、室
温付近での計測を容易に行うことができる。
[Effects of the Invention] As described above, according to the present invention, spin polarization of carriers such as electrons in a material such as a semiconductor can be measured with high time resolution, and measurement can be easily performed near room temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例によるスピン分極測定
装置を示す図、 第2図は、第1の実施例の時間遅延のタイムチャートを
示す図、 第3図は、本発明の第2の実施例によるスピン分極測定
装置を示す図、 第4図は、本発明の第3の実方飽例によるスピン分極測
定装置を示す図、 第5図は、従来のスピン分極測定装置を示す図である。 図において、 10・・・光学的時間遅延装置 14・・・ビームスプリッタ 17・・・反射鏡 20・・・受光素子 22・・・プローブ光 24・・・励起光 30・・・二分の一波長板 60・・・短パルスレーザ光源 62・・・円偏光変換装置 63・・・円偏光変換装置 64・・・半導体 66・・・四分の一波長板 68・・・偏光子 70・・・ストリークカメラ 72・・・光電陰極 74・・・陽極 76・・・掃引電圧用電極 78・・・チャネルプレート 79・・・励起光 80・・・ルミネッセンス光
FIG. 1 is a diagram showing a spin polarization measuring device according to a first embodiment of the present invention, FIG. 2 is a diagram showing a time delay time chart of the first embodiment, and FIG. FIG. 4 is a diagram showing a spin polarization measurement device according to the second embodiment; FIG. 4 is a diagram showing a spin polarization measurement device according to a third real-plane saturation example of the present invention; FIG. FIG. In the figure, 10... optical time delay device 14... beam splitter 17... reflecting mirror 20... light receiving element 22... probe light 24... excitation light 30... half wavelength Plate 60... Short pulse laser light source 62... Circular polarization conversion device 63... Circular polarization conversion device 64... Semiconductor 66... Quarter wavelength plate 68... Polarizer 70... Streak camera 72...Photocathode 74...Anode 76...Sweep voltage electrode 78...Channel plate 79...Excitation light 80...Luminescence light

Claims (1)

【特許請求の範囲】 1、パルスレーザ光源と、 前記パルスレーザ光源から射出したパルス光を円偏光の
励起光とプローブ光に変換し、被測定物に照射する円偏
光変換手段と、 前記プローブ光に光学的時間遅延を発生させる光学的時
間遅延手段と、 前記被測定物を透過した前記プローブ光の強度を測定す
る受光素子とを備え、 前記励起光を前記被測定物に照射してスピン分極を形成
させた後、前記プローブ光を前記被測定物に照射し、前
記受光素子により測定されたプローブ光の透過強度によ
りスピン分極を測定することを特徴とするスピン分極測
定装置。 2、請求項1記載のスピン分極測定装置において、 前記円偏光変換手段は、前記パルスレーザ光源から射出
したパルス光から同一の円偏光の励起光とプローブ光を
生成することを特徴とするスピン分極測定装置。 3、請求項1記載のスピン分極測定装置において、 前記円偏光変換手段は、前記パルスレーザ光源から射出
したパルス光から相互に逆の円偏光の励起光とプローブ
光を生成することを特徴とするスピン分極測定装置。
[Scope of Claims] 1. A pulsed laser light source; a circularly polarized light conversion means for converting the pulsed light emitted from the pulsed laser light source into circularly polarized excitation light and probe light and irradiating the object to be measured; and the probe light. an optical time delay unit that generates an optical time delay in the object to be measured, and a light receiving element that measures the intensity of the probe light that has passed through the object to be measured, and irradiates the object to be measured with the excitation light to generate spin polarization. 2. A spin polarization measurement apparatus, characterized in that after forming a probe light, the object to be measured is irradiated with the probe light, and spin polarization is measured based on the transmitted intensity of the probe light measured by the light receiving element. 2. The spin polarization measuring device according to claim 1, wherein the circularly polarized light conversion means generates excitation light and probe light of the same circularly polarized light from the pulsed light emitted from the pulsed laser light source. measuring device. 3. The spin polarization measuring device according to claim 1, wherein the circularly polarized light conversion means generates excitation light and probe light of mutually opposite circular polarization from the pulsed light emitted from the pulsed laser light source. Spin polarization measurement device.
JP32529689A 1989-12-15 1989-12-15 Apparatus for measuring spin polarization Pending JPH03185339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32529689A JPH03185339A (en) 1989-12-15 1989-12-15 Apparatus for measuring spin polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32529689A JPH03185339A (en) 1989-12-15 1989-12-15 Apparatus for measuring spin polarization

Publications (1)

Publication Number Publication Date
JPH03185339A true JPH03185339A (en) 1991-08-13

Family

ID=18175233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32529689A Pending JPH03185339A (en) 1989-12-15 1989-12-15 Apparatus for measuring spin polarization

Country Status (1)

Country Link
JP (1) JPH03185339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010722A1 (en) * 2000-07-27 2002-02-07 Hamamatsu Photonics K.K. Light track observing device
US7046365B1 (en) 1999-01-27 2006-05-16 Hamamatsu Photonics K.K. Light track observing device
WO2017119237A1 (en) * 2016-01-08 2017-07-13 国立大学法人東北大学 Magneto-optical measurement method and magneto-optical measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046365B1 (en) 1999-01-27 2006-05-16 Hamamatsu Photonics K.K. Light track observing device
WO2002010722A1 (en) * 2000-07-27 2002-02-07 Hamamatsu Photonics K.K. Light track observing device
WO2017119237A1 (en) * 2016-01-08 2017-07-13 国立大学法人東北大学 Magneto-optical measurement method and magneto-optical measurement device

Similar Documents

Publication Publication Date Title
US11466316B2 (en) Pulsed laser and bioanalytic system
Heritage et al. Surface picosecond Raman gain spectra of a molecular monolayer
US9617594B2 (en) Pulsed laser and bioanalytic system
KR102330080B1 (en) Compact Mode Synchronous Laser Module
JP2023055903A (en) Pulsed laser and bioanalytic system
US7961379B2 (en) Pump probe measuring device and scanning probe microscope apparatus using the device
JP5610399B2 (en) Pump probe measuring device
US20210277463A1 (en) Pulsed laser and bioanalytic system
RU2004132718A (en) SPECTROMETER BASED ON A SEMICONDUCTOR DIODE LASER: DEVICE AND METHOD
JPWO2019131410A1 (en) Sample inspection apparatus and sample inspection method
US20240145315A1 (en) Substrate inspection system and method of manufacturing semiconductor device using substrate inspection system
JP2003046173A (en) Laser, wavelength changing element, laser oscillator, wavelength changing device, and method for laser beam machining
Buller et al. All‐solid‐state microscope‐based system for picosecond time‐resolved photoluminescence measurements on II‐VI semiconductors
Tino et al. Spectroscopy of the 689 nm intercombination line of strontium using an extended-cavity InGaP/InGaAIP diode laser
JP2850839B2 (en) Crystal plane orientation measuring method and crystal plane orientation measuring apparatus
JPH03185339A (en) Apparatus for measuring spin polarization
JP3918054B2 (en) Method and apparatus for measuring the photoresponse of a substance
JPH09189612A (en) Time-resolved emission imaging device
JPH06102086A (en) Laser measuring device
Fauchet Carrier dynamics in porous silicon: from the femtosecond to the second
Link et al. Stabilized microwave frequency comb from a dual-comb modelocked semiconductor disk laser
JPH01187435A (en) Method and device for time-resolved spectroscopy
Beck et al. Real-time phonon detection by filling of persistent spectral holes
JP2010019647A (en) Electromagnetic wave measuring instrument and method
CN114069368A (en) Laser light source device containing solid-state slice group and measuring system