JPH03185312A - Linear scale - Google Patents
Linear scaleInfo
- Publication number
- JPH03185312A JPH03185312A JP32403189A JP32403189A JPH03185312A JP H03185312 A JPH03185312 A JP H03185312A JP 32403189 A JP32403189 A JP 32403189A JP 32403189 A JP32403189 A JP 32403189A JP H03185312 A JPH03185312 A JP H03185312A
- Authority
- JP
- Japan
- Prior art keywords
- scale
- dimensional
- sensor
- moving
- movable plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 7
- 238000009499 grossing Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 7
- 241000668842 Lepidosaphes gloverii Species 0.000 abstract description 2
- 230000000007 visual effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、可動部材の直線的移動距離を測定するリニア
スケールに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a linear scale for measuring the linear movement distance of a movable member.
[従来の技術]
従来、この種のリニアスケールは、可動部材及び固定部
材のいずれか一方に所定間隔で設けられた目盛1例えば
白黒の縞、磁気信号等を、他方に設けられた光学的、又
は磁気的センサで検出し。[Prior Art] Conventionally, this type of linear scale has a scale 1 provided at predetermined intervals on one of a movable member and a fixed member, for example, black and white stripes, a magnetic signal, etc., and an optical scale provided on the other. Or detected by a magnetic sensor.
目盛の数をカウントすることによってその移動距離を測
定している。The distance traveled is measured by counting the number of tick marks.
例えば、従来のリニアスケールにおいて第6図(a)に
示す白黒の縞を目盛として用いた場合。For example, when black and white stripes shown in FIG. 6(a) are used as graduations in a conventional linear scale.
光センサは第6図(b)に示すような出力信号を出力す
る。この出力信号の方形パルスの数から移動距離を求め
ている。The optical sensor outputs an output signal as shown in FIG. 6(b). The moving distance is determined from the number of rectangular pulses of this output signal.
また、目盛の間隔以下の精度で移動距離を測定するには
、複数のセンサをその出力信号が位相差をHするように
設け、この出力信号の位相差から11盛の間隔以下の精
度での測定が行える。In addition, in order to measure the moving distance with an accuracy less than the interval of the scale, multiple sensors are installed so that their output signals have a phase difference of H, and from the phase difference of the output signals, it is possible to measure the distance with an accuracy of less than the interval of 11 graduations. Measurements can be made.
[発明が解決しようとする課題]
しかしながら、従来のリニアスケールの測定精度は、目
盛の間隔及びその精度に依存する。即ち。[Problems to be Solved by the Invention] However, the measurement accuracy of conventional linear scales depends on the scale interval and its accuracy. That is.
目盛の間隔が狭く、かつその間隔が高精度で一定でなけ
れば高精度でAg3定することができない。このため、
長尺の目盛の作成は困難かつ高価であるという問題があ
る。Ag3 cannot be determined with high accuracy unless the scale intervals are narrow and the intervals are highly accurate and constant. For this reason,
The problem is that creating long scales is difficult and expensive.
[、’ll′XJを角q決するための手段〕本発明は、
」11動部材と、固定部材と、前記i+J動部材を所定
の方向へ移動させる移動手段とを有し。[Means for determining the angle of 'll'XJ] The present invention includes:
11 movable member, a fixed member, and a moving means for moving the i+J movable member in a predetermined direction.
前記01動部材及び前記固定部材のいずれか一方に所定
間隔の複数の目盛を有するスケール部を、他方に前記目
盛を読み取る読取手段を設け、前記可動部材の移動距離
を測定するリニアスケールにおいて、 前記読取手段と
して一次元光センサを用い、前記目盛の間隔を前記一次
元光センサの視野の幅よりも狭くしたことを特徴とする
[実施例]
以ドに図面を参照して本発明の詳細な説明する。A linear scale for measuring the moving distance of the movable member, wherein one of the 01 movable member and the fixed member is provided with a scale portion having a plurality of scales at predetermined intervals, and the other is provided with a reading means for reading the scale, and the moving distance of the movable member is measured. A one-dimensional optical sensor is used as the reading means, and the interval between the scales is narrower than the width of the field of view of the one-dimensional optical sensor [Embodiment] The present invention will now be described in detail with reference to the drawings. explain.
第1図にmlの実施例の構成を示す。本実施例は、目盛
が設けられた移動板lとその目盛を読み取る一次元光セ
ンサ2.移動板1を移動させる移動装置(図示せず)、
一次元光センサ2の出力から移動板1の移動距離を求め
る信号処理袋wt(図示せず)を備えている。ここで一
次元光センサ2は台(図示せず)に固定されている。FIG. 1 shows the configuration of a ml example. This embodiment consists of a movable plate l provided with a scale and a one-dimensional optical sensor 2 for reading the scale. a moving device (not shown) for moving the moving plate 1;
A signal processing bag wt (not shown) is provided for determining the moving distance of the moving plate 1 from the output of the one-dimensional optical sensor 2. Here, the one-dimensional optical sensor 2 is fixed to a stand (not shown).
移動板1に設けられた目盛(ここで目盛は、白黒の縞紋
様、光を透過する穴、光を反射する反射材1発光部、バ
ーコード等を含む。)は、第2図に示すように一次元光
センサ2の幅りよりも目盛3の間隔pの方が小なるよう
にCL>1>設けられている。The scale provided on the moving plate 1 (here, the scale includes a black and white striped pattern, a hole that transmits light, a light emitting part of the reflective material 1 that reflects light, a bar code, etc.) is as shown in FIG. CL>1> is provided such that the interval p between the scales 3 is smaller than the width of the one-dimensional optical sensor 2.
目盛を読み取る方法を第3図に示す。第3図(a)に示
すリニアスケールは透過型リニアスケールであって、透
過性の材質からなる移動板に設けられた目盛又は光を透
過する穴等を透過してくる光源からの光を一次元光セン
サで検出するものである。Figure 3 shows how to read the scale. The linear scale shown in Figure 3(a) is a transmission type linear scale, which primarily uses light from a light source that passes through a scale or a hole that transmits light provided on a moving plate made of a transparent material. It is detected by the original light sensor.
第3図(b)に示すリニアスケールは反射型リニアスケ
ールで、移動板1の光源4からの光を反射する「1盛を
設け、その反射光を検出するものである。The linear scale shown in FIG. 3(b) is a reflective linear scale, in which a single plate is provided to reflect the light from the light source 4 on the movable plate 1, and the reflected light is detected.
第3図(C)に示すリニアスケールは発光型リニアスケ
ールで、移動板1には目盛として発光部材5が設けられ
ており9発光部5からの光を検出するものである。The linear scale shown in FIG. 3(C) is a light-emitting type linear scale, in which a light-emitting member 5 is provided as a scale on the movable plate 1, and light from nine light-emitting portions 5 is detected.
なお、このような一次元光センサは1画素数5000画
1g程度のものが市販されているので。Note that such one-dimensional photosensors are commercially available, each having 5,000 pixels and weighing approximately 1 g.
それを使用することができる。You can use it.
第4図に本実施例の一次元光センサ2の出力を示す。移
動板1が第4図(a)、(b)、(c)の順に右方へ移
動するに従って、一次元光センサ2の出力も1図上左側
の画素から右側の画素へと変化していく。この変化から
、移動板1の移動距離を求めることができる。FIG. 4 shows the output of the one-dimensional optical sensor 2 of this embodiment. As the moving plate 1 moves to the right in the order of FIG. go. From this change, the moving distance of the moving plate 1 can be determined.
第4図(b)に示す場合のように複数の画素が目盛を検
出した場合には、その出力の大小から所定の計算を行う
ことにより画素のピッチ以下の精度で測定することがで
きる。When a plurality of pixels detect a scale as shown in FIG. 4(b), by performing a predetermined calculation based on the magnitude of the output, measurement can be performed with an accuracy less than the pixel pitch.
更に上述の計算にいわゆる平滑化微分法を用いると、よ
り高精度の測定を行うことができる。Furthermore, if the so-called smoothing differential method is used in the above calculation, it is possible to perform measurements with higher precision.
ピーク位置を求める信号処理法としては一般的にゼロク
ロッシング法として知られる方法が用いられるが、ここ
でいう平滑化微分法とは、−次元センサの出力を平滑化
して微分係数を求め、微分係数の符号が正から負へ変化
する前後の点を一次式で近似して0となる点を求めて出
力信号のピーク位置を求めるものである。A method known as the zero-crossing method is generally used as a signal processing method to find the peak position, but the smoothing differential method here refers to smoothing the output of a -dimensional sensor to obtain a differential coefficient. The peak position of the output signal is determined by approximating the points before and after the sign changes from positive to negative using a linear equation to find the point where the sign becomes 0.
すなわち、出力信号f(x、)の微分係数f’(xt)
は、例えば、文献A、5aviLzky and
M、J。That is, the differential coefficient f'(xt) of the output signal f(x,)
For example, see Reference A, 5aviLzky and
M.J.
p、Golay、^nalyLical Cem1sL
ry、3B(8)、(1964)1B27に示されるよ
、うに、
1 。p, Golay, ^nalyLical Cem1sL
ry, 3B(8), (1964) 1B27, 1.
f’(xt)−−Σ J ” f (Xt+1
)w ”−1
で得られる。ここでWは正規化定数である。f'(xt)--Σ J'' f (Xt+1
) w ”-1 , where W is a normalization constant.
本発明によれば、微分係数f’(xm )、f’(x、
1)で符号が正から負へ変化する場合に、この間を一次
式で近似して、
x−xk+
f’(xh)
(Xi++ Xm)
f ’ (X * ) f ’ (X *−r
)となるXを求め、これをピーク位置とするものであ
る。According to the present invention, the differential coefficients f'(xm), f'(x,
When the sign changes from positive to negative in 1), by approximating this period with a linear equation, x-xk+ f'(xh) (Xi++ Xm) f' (X*) f' (X*-r
), and use this as the peak position.
第5図に第2の実施例を示す。第5図のリニアスケール
は、移動板1と一次元光センサとの間に光学系レンズ6
を設け、移動板1に設けられた目盛を拡大して読み取る
ものである。FIG. 5 shows a second embodiment. The linear scale shown in FIG. 5 has an optical system lens 6 between the moving plate 1 and the one-dimensional optical sensor.
The scale provided on the movable plate 1 is enlarged and read.
目盛を読み取る方法は第1の実施例と同様に透過型0反
射型1発光型等がある。As with the first embodiment, methods for reading the scale include transmission type, zero reflection type, and one emission type.
本発明では微細な目盛を必要としないので、目盛自体が
大きくても良く、バーコード等のコード化したパターン
を目盛として使用することがR1能となる。また、目盛
と目盛との間にバーコード等を書き込むことができる。Since the present invention does not require fine scales, the scales themselves may be large, and R1 functionality is achieved by using coded patterns such as bar codes as scales. Moreover, a bar code or the like can be written between the scales.
これにより、!11に移動距離だけでなく、移動板の細
体位置等の情報も得られる。With this,! 11, information such as not only the moving distance but also the position of the thin body of the moving plate can be obtained.
[発明の効果]
本発明によれば、可動部材と、固定部材と、前記可動部
材を所定の方向へ移動させる移動手段とをHし、前記可
動部材及び前記固定部材のいずれか一方に所定間隔の複
数の目盛を有するスケール部と、他方に前記目盛を読み
取る読取手段を設け。[Effects of the Invention] According to the present invention, a movable member, a fixed member, and a moving means for moving the movable member in a predetermined direction are H, and either the movable member or the fixed member is spaced at a predetermined interval. a scale part having a plurality of scales, and a reading means for reading the scales on the other side.
前記可動部材の移動距離を測定するリニアスケールにお
いて、前記読取手段として一次元光センサを用い、前記
目盛の間隔を前記一次元光センサの視野の幅よりも狭く
したことをで、微細な繰り返しパターンを作製する必要
がなくその作製が容易かつ安価になる。In the linear scale for measuring the moving distance of the movable member, a one-dimensional optical sensor is used as the reading means, and the interval between the scales is narrower than the width of the field of view of the one-dimensional optical sensor, so that a fine repeating pattern is formed. There is no need to fabricate it, making it easy and inexpensive to fabricate.
また q<滑化微分法を用いて信号処理を行う信号処理
手段を設けたことで、一次元光センサの画素ピッチ以下
の精度での測定が可能となる。Further, by providing a signal processing means that performs signal processing using the smoothing differential method, it becomes possible to perform measurement with an accuracy equal to or less than the pixel pitch of a one-dimensional optical sensor.
更に光学系レンズを可動部材と読取手段との間に設ける
ことで測定精度が向上する。Furthermore, measurement accuracy is improved by providing an optical lens between the movable member and the reading means.
第1図は1本発明の第1の実施例のリニアスケールの概
略図、第2図は、目盛と一次元光センサとの関係を説明
するための図、第3図は第1の実施例の読み取り方法を
説明するための図で、(a)は透過型、(b)は反射型
、(C)は発光型を示す、第4図(a)、(b)、(c
)は1本発明の目盛とその検出信号との関係を示す図、
第5図は本発明の第2の実施例の概略図、第6図は従来
の目盛とその検出信号との関係を示す図で、(a)は目
盛の拡大図、(b)は時間とセンサ出力との関係を示す
図である。
1・・・移動板、2・・・一次元光センサ、3・・・目
盛。
4・・・光源、5・・・発光部材、6・・・光学系レン
ズ。
第1図
第3図
第4図
第5図
(移動方向二
第6図
(b)
従来センサの出力信号Fig. 1 is a schematic diagram of a linear scale according to the first embodiment of the present invention, Fig. 2 is a diagram for explaining the relationship between the scale and a one-dimensional optical sensor, and Fig. 3 is a diagram of the first embodiment. (a) is a transmissive type, (b) is a reflective type, and (C) is an emissive type.
) is a diagram showing the relationship between the scale of the present invention and its detection signal,
FIG. 5 is a schematic diagram of the second embodiment of the present invention, and FIG. 6 is a diagram showing the relationship between the conventional scale and its detection signal, (a) is an enlarged view of the scale, and (b) is a diagram showing the relationship between time and FIG. 3 is a diagram showing the relationship with sensor output. 1... Moving plate, 2... One-dimensional optical sensor, 3... Scale. 4... Light source, 5... Light emitting member, 6... Optical system lens. Figure 1 Figure 3 Figure 4 Figure 5 (Movement direction 2 Figure 6 (b) Output signal of conventional sensor
Claims (1)
向へ移動させる移動手段とを有し、前記可動部材及び前
記固定部材のいずれか一方に所定間隔の複数の目盛を有
するスケール部を、他方に前記目盛を読み取る読取手段
を設け、前記可動部材の移動距離を測定するリニアスケ
ールにおいて、前記読取手段として一次元光センサを用
い、前記目盛の間隔を前記一次元光センサの視野の幅よ
りも狭くしたことを特徴とするリニアスケール。 2、前記一次元光センサから出力される読取信号を平滑
化微分法を用いて信号処理する信号処理手段を備えたこ
とを特徴とする請求項1記載のリニアスケール。 3、前記スケール部と前記読取手段との間に光学系レン
ズを設け、前記目盛を拡大して読み取りを行うことを特
徴とする請求項1及び2記載のリニアスケール。[Scope of Claims] 1. A movable member, a fixed member, and a moving means for moving the movable member in a predetermined direction, and either the movable member or the fixed member has a plurality of movable members arranged at predetermined intervals. In a linear scale that measures the moving distance of the movable member by providing a scale part having graduations on the other side and a reading means for reading the graduations, a one-dimensional optical sensor is used as the reading means, and the interval between the graduations is determined by the one-dimensional reading means. A linear scale characterized by being narrower than the width of the optical sensor's field of view. 2. The linear scale according to claim 1, further comprising signal processing means for processing the read signal output from the one-dimensional optical sensor using a smoothing differential method. 3. The linear scale according to claim 1, wherein an optical lens is provided between the scale section and the reading means, and the scale is enlarged for reading.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1324031A JP2711919B2 (en) | 1989-12-15 | 1989-12-15 | Linear scale |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1324031A JP2711919B2 (en) | 1989-12-15 | 1989-12-15 | Linear scale |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03185312A true JPH03185312A (en) | 1991-08-13 |
JP2711919B2 JP2711919B2 (en) | 1998-02-10 |
Family
ID=18161382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1324031A Expired - Lifetime JP2711919B2 (en) | 1989-12-15 | 1989-12-15 | Linear scale |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2711919B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008241338A (en) * | 2007-03-26 | 2008-10-09 | Tatsumo Kk | Position detecting device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968604A (en) * | 1982-10-13 | 1984-04-18 | Toyoda Mach Works Ltd | Optical displacement measuring device |
-
1989
- 1989-12-15 JP JP1324031A patent/JP2711919B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968604A (en) * | 1982-10-13 | 1984-04-18 | Toyoda Mach Works Ltd | Optical displacement measuring device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008241338A (en) * | 2007-03-26 | 2008-10-09 | Tatsumo Kk | Position detecting device |
Also Published As
Publication number | Publication date |
---|---|
JP2711919B2 (en) | 1998-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3168451B2 (en) | Rotary encoder | |
US4074131A (en) | Apparatus for measuring or setting two-dimensional position coordinates | |
US4794251A (en) | Apparatus for measuring lengths or angles | |
US5483831A (en) | Direct liquid level reading device | |
US5617201A (en) | Method for refractometer measuring using mathematical modelling | |
JPH07324948A (en) | Position measuring device | |
JPH06258102A (en) | Measuring device | |
JPS58147611A (en) | Method and device for measuring quantity of measurement | |
US3748043A (en) | Photoelectric interpolating arrangement for reading displacements of divided scales | |
DE60204495D1 (en) | Lens knife for measuring the property of a spectacle lens or a contact lens | |
US5456020A (en) | Method and sensor for the determination of the position of a position-control element relative to a reference body | |
Stone et al. | Corrections for wavelength variations in precision interferometric displacement measurements | |
CN105783738B (en) | A Measuring Method of Incremental Small Range Displacement Sensor | |
US4869110A (en) | Laser strain extensometer for material testing | |
JPH0213810A (en) | Linear encoder and linear scale | |
JPH03185312A (en) | Linear scale | |
JPH0526658A (en) | Measuring device | |
JP2732488B2 (en) | Length measuring or angle measuring device | |
CN105783740B (en) | A measuring method of alternating incremental measuring micro-displacement sensor | |
JP3327719B2 (en) | Position detection device | |
JP2697159B2 (en) | Absolute position detector | |
JPS6089713A (en) | Absolute type position encoder | |
JP2942906B2 (en) | Electronic level device | |
JP2678386B2 (en) | Position detection device | |
JPS58150804A (en) | Optical position detector |