JPH03185239A - Fuel injection controller at startup time of internal combustion engine - Google Patents

Fuel injection controller at startup time of internal combustion engine

Info

Publication number
JPH03185239A
JPH03185239A JP32520489A JP32520489A JPH03185239A JP H03185239 A JPH03185239 A JP H03185239A JP 32520489 A JP32520489 A JP 32520489A JP 32520489 A JP32520489 A JP 32520489A JP H03185239 A JPH03185239 A JP H03185239A
Authority
JP
Japan
Prior art keywords
cylinder
fuel injection
explosion
detected
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32520489A
Other languages
Japanese (ja)
Inventor
Katsushi Anzai
安西 克史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32520489A priority Critical patent/JPH03185239A/en
Publication of JPH03185239A publication Critical patent/JPH03185239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Abstract

PURPOSE:To maintain air-fuel ratios in all cylinders at a proper value and improve startability by performing variable control of fuel injection quantity only at a cylinder which is not started, and approaching the air-fuel ratio of the cylinder which is not started to the proper value gradually. CONSTITUTION:The operation state of a multiple-cylinder internal combustion engine M1 is detected by a means M2. Fuel injection quantity of each cylinder is calculated by a means M3 according to the detected operation state, and the fuel injection quantity at a startup time is variably controlled according to a period from the start of operation. First explosion of each cylinder is detected by a means M4 based on the detected operation state. In any cylinder detected in its first explosion, the variable control of the fuel injection quantity at the startup time is stopped by a means M5. The variable control of the fuel injection quantity is performed only in the cylinders which are not started, so that the air-fuel ratios of the cylinders which are not started are shifted close to the proper value gradually. Consequently, the air-fuel ratios of all the cylinders are maintained to the proper values so as to improve startability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロコンピュータ(以下「マイコン」と
称す〉等を用いて、内燃機関の始動時の燃料噴射量をI
IJlilFする装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a microcomputer (hereinafter referred to as "microcomputer") etc. to control the fuel injection amount at the time of starting an internal combustion engine.
The present invention relates to a device for performing IJliIF.

〔従来の技術〕[Conventional technology]

従来よりマイコン等を用いて内燃機関の燃料噴射量を1
lltllする場合、始vJFRには燃料噴射量を増量
して始動性を向上させている。
Conventionally, microcontrollers, etc. have been used to control the fuel injection amount of internal combustion engines by 1.
In the case of lltll, the fuel injection amount is increased at the beginning of vJFR to improve startability.

この場合、始動時に所定期間以上ウランキングしても始
動せず空燃比がオーバーリッチであることが考えられる
ときは燃料噴射量を徐々に減量して点火プラグの燃料か
ぶりを防止しオーバーリッチ状態を解消することが例え
ば特開昭60−3451号に記載されている。また、始
動時にオーバーリーン状態から燃料噴射量を徐々に増量
してオーバーリーンがら空燃比を適正な値とすることが
例えば特開昭60−173339号に記載されている。
In this case, if the engine does not start even if the engine is cranked for a predetermined period of time or more, and the air-fuel ratio is thought to be over-rich, the fuel injection amount is gradually reduced to prevent the spark plug from being covered with fuel and prevent the over-rich condition. A solution to this problem is described, for example, in Japanese Patent Laid-Open No. 60-3451. Further, it is described in, for example, Japanese Patent Laid-Open No. 173339/1983 that the amount of fuel injection is gradually increased from an over-lean state at the time of starting to maintain an appropriate air-fuel ratio while still being over-lean.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

多気筒エンジンの場合、金気筒の始動即ち完爆には至ら
なくても、一部の気筒は初爆している場合がある。この
ような状態で全気筒−律に燃料噴射量を徐々に減量又は
増量する制御を行なうと、既に初爆している気筒の空燃
比がオーバーリーン又はオーバーリッチとなって失火し
てしまい、最終的は始動不能となるおそれがあるという
問題があった。
In the case of a multi-cylinder engine, some of the cylinders may initially explode even if the golden cylinders do not start, that is, complete explosion does not occur. If the fuel injection amount is controlled to gradually decrease or increase in all cylinders under such conditions, the air-fuel ratio of the cylinder that has already exploded for the first time will become over-lean or over-rich, resulting in a misfire. There was a problem that the target could become unable to start.

本発明は上記の点に鑑みてなされたもので、初爆が検出
された気筒又はその気筒が属するグループの始動開始よ
りの期間に応じた燃料噴射量の可変制御を停止させ、金
気筒の空燃比を適正な値にして始動性を向上させること
を目的とする。
The present invention has been made in view of the above points, and it stops variable control of the fuel injection amount according to the period from the start of the cylinder in which the first explosion is detected or the group to which the cylinder belongs, and The purpose is to improve starting performance by setting the fuel ratio to an appropriate value.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理図を示す。 FIG. 1 shows a diagram of the principle of the present invention.

同図中、多気筒内j!411SIM 1の運転状態は運
転状態検出手段M2によって検出され、演算手段M3は
運転状態検出手段M2の検出結果に応じて各気筒又は各
グループの気筒毎に燃料噴tJJffiを算出し、かつ
始動時の燃料噴射量を始動開始よりの期間に応じて可変
糾t[Iする。
In the figure, inside the multi-cylinder j! The operating state of the 411SIM 1 is detected by the operating state detecting means M2, and the calculating means M3 calculates the fuel injection tJJffi for each cylinder or each group of cylinders according to the detection result of the operating state detecting means M2, and calculates the fuel injection tJJffi at the time of startup. The fuel injection amount is varied according to the period from the start of the engine.

初爆検出手段M4は運転状態検出手段M2の検出結果か
ら各気筒毎に初爆を検出する。
The first explosion detection means M4 detects the first explosion for each cylinder based on the detection result of the operating state detection means M2.

燃料噴射準可変停止手段M5は、初爆検出手段M4で初
爆が検出された気筒又は初爆が検出された気筒の属する
グループの始動時の燃料噴射量の可変i++御を停止さ
せる。
The fuel injection semi-variable stopping means M5 stops the variable i++ control of the fuel injection amount at the time of startup of the cylinder in which the first explosion has been detected by the first explosion detection means M4 or the group to which the cylinder in which the first explosion has been detected belongs.

〔作用〕[Effect]

本発明においては、初爆検出手段M4が初爆を検出した
気筒又はその気筒の属するグループの燃料噴射量につい
ては、燃料噴射量可変停止手段M5が演算手段M3の燃
料噴射量の可変制御を停止させるため、この燃料噴射量
の可変制御は初爆していない気筒についてのみ行なわれ
、初爆した気筒又はその気筒の属するグループの空燃比
は適正な値を維持し、かつ始動していない気筒の空燃比
は適正な鉛に徐々に近づき、金気筒の始動が確実に行な
われる。
In the present invention, for the fuel injection amount of the cylinder in which the first explosion detection means M4 has detected the first explosion or the group to which the cylinder belongs, the fuel injection amount variable stop means M5 stops the variable control of the fuel injection amount of the calculation means M3. In order to ensure that the fuel injection amount is controlled only for cylinders that are not firing for the first time, the air-fuel ratio of the cylinder that has fired for the first time or the group to which that cylinder belongs remains at an appropriate value, and The air/fuel ratio gradually approaches the proper lead, ensuring a golden cylinder start.

〔実施例〕〔Example〕

第2図は本発明装置を適用したガソリンエンジンの一実
施例の構成図を示す。
FIG. 2 shows a configuration diagram of an embodiment of a gasoline engine to which the device of the present invention is applied.

同図中、1はガソリンエンジン本体、2はピストン、3
は点火プラグ、4は排気マニホールド、5は吸気マニホ
ールドであり、6は吸入空気の脈動を吸収するサージタ
ンク、7は吸入空気量を調節するスロットルバルブ、8
は吸入空気量を測定するエアフローメータである。排気
7ニボールド4には排気ガス中の残存酸素濃度を検出す
る酸素セン+j9が設けられ、吸気マニホールド5には
ガソリンエンジン本体1の吸入空気中に燃料を噴射する
燃料噴射弁10が設けられている。吸気温センサ11は
吸入空気の温度を検出し、スロットルセンサ12はスロ
ットルバルブ7の開度を検出し、水温センサ13はガソ
リンエンジン冷却水の水温を検出する。
In the figure, 1 is the gasoline engine body, 2 is the piston, and 3
is a spark plug, 4 is an exhaust manifold, 5 is an intake manifold, 6 is a surge tank that absorbs the pulsation of intake air, 7 is a throttle valve that adjusts the amount of intake air, 8
is an air flow meter that measures the amount of intake air. The exhaust 7 nibold 4 is provided with an oxygen sensor +j9 that detects the residual oxygen concentration in the exhaust gas, and the intake manifold 5 is provided with a fuel injection valve 10 that injects fuel into the intake air of the gasoline engine body 1. . Intake air temperature sensor 11 detects the temperature of intake air, throttle sensor 12 detects the opening degree of throttle valve 7, and water temperature sensor 13 detects the temperature of gasoline engine cooling water.

また、イグナイタ16は点火に必要な高電圧を発生して
ディストリビュータ17に供給し、ディストリビュータ
17はクランクシャフト〈図示せず〉の回転に連動して
上記高電圧を各気筒の点火プラグに分配供給する。回転
角センサ18はデイストリビュー夕17の1回転部らク
ランクシャツ12回転に24パルスの回転角信号NEを
出力し、気筒判別センサ19はディストリビュータ17
の1回転に1パルスの回転検出信号Gを出力する。
Further, the igniter 16 generates the high voltage necessary for ignition and supplies it to the distributor 17, and the distributor 17 distributes and supplies the high voltage to the spark plugs of each cylinder in conjunction with the rotation of the crankshaft (not shown). . The rotation angle sensor 18 outputs a rotation angle signal NE of 24 pulses from the 1st rotation of the distributor 17 to the 12th rotation of the crankshaft, and the cylinder discrimination sensor 19 outputs a rotation angle signal NE of 24 pulses from the 1st rotation of the distributor 17 to the 12th rotation of the crankshaft.
A rotation detection signal G of one pulse is output for each rotation of the motor.

20は電″Fi11御回路、21はキースイッチ、22
はスタータを示す。
20 is the electric Fi11 control circuit, 21 is the key switch, 22
indicates a starter.

電子υI’8回路20は第3図に示す構成で、中央処理
袋@(CPtJ)30と、処理プログラムを格納したリ
ードオンリメモリ(ROM)31と、作業領域として使
用されるランダムアクセスメモリ(RAM>32と、C
PU等で用いるクロックを発生するクロック発生器(C
LOCK)33と、マルチプレクサ34と、A/D変換
器35と、入出力ボート36.37と、出力ボート38
.39と、整形回路40と、駆動回路41.42とより
なり、CPU30.ROM31.RAM32.CLOC
K33.入出力ボート36,37.出力ボート38.3
9はパスライン43で相互に接続されている。
The electronic υI'8 circuit 20 has the configuration shown in FIG. >32 and C
A clock generator (C
LOCK) 33, multiplexer 34, A/D converter 35, input/output ports 36, 37, and output ports 38
.. 39, a shaping circuit 40, and drive circuits 41 and 42, and the CPU 30. ROM31. RAM32. CLOC
K33. Input/output boats 36, 37. Output boat 38.3
9 are mutually connected by a pass line 43.

マルチプレクサ34はエア70−メータ8よりの空気流
量信号と、水温センサ13よりの水温信号と、スタータ
21よりのスタート信号等を供給されて、各信号を順次
選択し、選択された(i号はA/DI換器35でディジ
タル化され、これらのディジタル信号はCP(J30に
より読み取られる。
The multiplexer 34 is supplied with the air flow rate signal from the air 70-meter 8, the water temperature signal from the water temperature sensor 13, the start signal from the starter 21, etc., and sequentially selects each signal. The signals are digitized by the A/DI converter 35, and these digital signals are read by the CP (J30).

また整形回路40には回転角センサ18.気筒判別セン
サ19等よりの信号が入来し、ここで波形整形された各
信号は入出力ボート37よりCPU30より読み取られ
る。
The shaping circuit 40 also includes a rotation angle sensor 18. Signals from the cylinder discrimination sensor 19 and the like come in, and each signal whose waveform has been shaped is read by the CPU 30 from the input/output port 37.

CPU30は各センサの検出データに基づいて点火タイ
ミング、燃料噴射量大々を算出し、得られた点火信号、
燃料噴射信号が出力ボート38゜39夫々から駆動回路
41.42夫々を通してイグナイタ16.燃料噴射弁1
0夫々に供給される。
The CPU 30 calculates the ignition timing and fuel injection amount based on the detection data of each sensor, and calculates the obtained ignition signal,
The fuel injection signal is transmitted from the output boats 38 and 39 to the igniters 16 and 16 through drive circuits 41 and 42, respectively. fuel injection valve 1
0 respectively.

次に本発明装置の一実施例の制御プログラムについて説
明する。
Next, a control program for an embodiment of the apparatus of the present invention will be explained.

第4図は4気筒エンジンの燃料噴射tiIIallIB
理の一実施例の70−チャートを示す。この処理はメイ
ンルーチンの一部であり、数1sec毎に実行される。
Figure 4 shows fuel injection tiIIIallIB for a four-cylinder engine.
70-chart of one embodiment of the principle is shown. This process is part of the main routine and is executed every few seconds.

同図中、ま(n (nは1.2.3.4)l気筒(#n
)の燃料噴射時間(TAU)rgも燃料噴射量の算出タ
イミングであるかどうかを判別する(ステップ50)。
In the same figure, ma(n (n is 1.2.3.4) l cylinder (#n
) also determines whether the fuel injection time (TAU) rg is the timing for calculating the fuel injection amount (step 50).

このn番気筒のTAU算出タイミングでなければ処理を
終了し、このタイミングであれば例えばスタート信号を
参照して始動時であるかどうかを判別する(ステップ5
1〉。
If it is not the TAU calculation timing for the n-th cylinder, the process is terminated, and if this is the timing, for example, the start signal is referred to to determine whether or not it is starting time (step 5).
1〉.

始動中であれば始動時用の燃料II割待時間TAυSf
)を算出しくステップ52)。n番気筒の初爆検出フラ
グFST#nがvlwでn番気筒の初爆が検出されてい
るかどうかを判別する(ステップ53)。初爆が検出さ
れていなれば第5図(A)、(B)に示すテーブルを参
照して係数FTを求める(ステップ54)。
If it is starting, the fuel II allowance time for starting TAυSf
) is calculated in step 52). It is determined whether the first explosion detection flag FST#n of the n-th cylinder is vlw and the first explosion of the n-th cylinder is detected (step 53). If the first explosion has not been detected, the coefficient FT is determined with reference to the tables shown in FIGS. 5(A) and 5(B) (step 54).

ここで、始動時に空燃比がオーバーリッチになるタイプ
のエンジンでは第5図(A)に示すテーブルを用い、こ
こでは始動開始より所定期間(9サイクル)後に係数F
Tが徐々に減少する。また始vJ時に空燃比がオーバー
リーンになるタイプのエンジンでは第5図(B)に示す
テーブルを用い、ここでは始動開始より所定期間(10
サイクル〉後に係数「Tが徐々に増加する。この後、ス
テップ53で算出(、タ始!l]時燃料l1vJ時fm
TAtJsTに上記係数FTを乗算しくステップ55)
、この値をn番気筒の一時保持時間#nTALJOにセ
ットする(ステップ56)。また、ステップ53で初爆
が検出されていれば、ステップ59で前回の一時保持1
fil#nT−AIJOを始動時燃料噴射時間TAUS
Tにセットし、ステップ57に進む。これは、初爆が検
出された時には、初爆直前の始動時用噴射時間をセット
するものである。ステップ57では、始動時燃料噴射時
間TAUSTの値を燃料噴射信号TAUにセットし、ス
テップ58に進む。
Here, for a type of engine in which the air-fuel ratio is overrich at the time of starting, the table shown in Fig. 5 (A) is used, and here, the coefficient F
T gradually decreases. In addition, for an engine of the type in which the air-fuel ratio is over lean at the start of VJ, the table shown in Fig. 5 (B) is used.
After the cycle, the coefficient "T" gradually increases. After this, in step 53, the coefficient "T" is calculated as follows:
Step 55) Multiply TAtJsT by the above coefficient FT.
, this value is set to the temporary holding time #nTALJO of the n-th cylinder (step 56). In addition, if the first explosion is detected in step 53, the previous temporary hold 1 is detected in step 59.
fil#nT-AIJO fuel injection time when starting TAUS
Set to T and proceed to step 57. This is to set the starting injection time immediately before the first explosion when the first explosion is detected. In step 57, the value of the starting fuel injection time TAUST is set in the fuel injection signal TAU, and the process proceeds to step 58.

ステップ51で始動中ではないと判別された場合にはス
テップ60で通常の燃料噴射時間TAUを粋出しステッ
プ58に進む。ステップ5Bでは燃料噴射vf間TAt
Jをn番気筒の燃料噴射時間#nTAUにセットし、処
理を終了する。
If it is determined in step 51 that the engine is not starting, the normal fuel injection time TAU is determined in step 60 and the process proceeds to step 58. In step 5B, TAt between fuel injection vf
J is set to the fuel injection time #nTAU for the n-th cylinder, and the process ends.

一方、各気筒の初爆検出フラグは第6図に示す処理でセ
ットされる。この第6図の処理は金気筒の下死点(BD
C)検出時に割込みにより実行される。なお始動開始時
には全ての初爆検出フラグFSr#nは707にリセッ
トされている。
On the other hand, the first explosion detection flag for each cylinder is set in the process shown in FIG. The process shown in Fig. 6 is the bottom dead center of the gold cylinder (BD
C) Executed by an interrupt upon detection. Note that all first explosion detection flags FSr#n are reset to 707 at the start of engine startup.

第6図中、まず気筒番号を表わす変数m(rr+は1.
2,3.4>を「1」にセットしくステップ70)、回
転角センサ18及び気筒判別センサ19の信号によりm
番気筒の爆発下死点であるかどうかを判別する(ステッ
プ71)。
In FIG. 6, first, the variable m (rr+ is 1.
2, 3.4> is set to "1" (Step 70), m
It is determined whether the number cylinder is at the bottom dead center of the explosion (step 71).

ml!気筒の爆発BDCでなければ変数mの値を「1]
だけインクリメントしくステップ72)、変数mの値が
「5」未満と判別したとき(ステップ73)にのみステ
ップ71に戻り、「5」以上のときは処理を終了する。
ml! If it is not cylinder explosion BDC, set the value of variable m to “1”
step 72), and returns to step 71 only when it is determined that the value of variable m is less than "5" (step 73), and ends the process when it is equal to or greater than "5".

これによって変数mの値が現存の爆発下死点である気筒
番号に一致した後ステップ71からステップ74に進む
As a result, after the value of the variable m matches the cylinder number that is the existing explosion bottom dead center, the process proceeds from step 71 to step 74.

ステップ74では前例の下死点割込みから今回の下死点
割込みまでの回転速度NST iを算出する。この後、
今回求めた回転速度NST iと前回の下死点割込みで
求めた回転速度N S T i−1とを比較しくステッ
プ75)、今回の回転速度N5Tiが大なるときは今回
の割込みを発生したm番目気筒の爆発によるトルク発生
であるためステップ76でm番気筒の初爆検出フラグF
ST#mにv−1tをセットする。今回の回転速度NS
T iが小なるときはこのm番気筒が爆発せずトルクを
発生してないので初爆検出フラグFST#mをセットす
ることなく処理を終了する。
In step 74, the rotation speed NST i from the previous bottom dead center interrupt to the current bottom dead center interrupt is calculated. After this,
Compare the rotational speed NST i obtained this time with the rotational speed NST i-1 obtained in the previous bottom dead center interrupt (step 75), and if the current rotational speed N5Ti is large, the current interrupt is generated. Since the torque is generated due to the explosion of the m-th cylinder, the first explosion detection flag F of the m-th cylinder is set in step 76.
Set v-1t in ST#m. Current rotation speed NS
When T i is small, this m-th cylinder has not exploded and is not generating torque, so the process ends without setting the first explosion detection flag FST#m.

ここで、始動時に空燃比がオーバーリッチになるタイプ
の4気筒エンジンで、回転速度NSTが第7図<A)の
如く変化し時刻t1で同図(B)に示す如く1番気筒の
初爆が検出されて初爆検出フラグFST#1がvlvと
なり、更に時刻t2で同図(C)に示す如く3番気筒の
初爆検出フラグFST#3がゞ1vとなり、その後燃料
噴射時間TAtJ#1.TALJ#3夫々の可変制御は
行なわれない。所定111間丁1を経過すると第5図(
A>のテーブル参照により係数FTが徐々に減少し、4
1気筒及び2番気筒の燃料噴射時間rAU#4゜丁AL
I92夫々は第7図(D)、(E)に示す如く徐々に減
少してオーバーリッチから適正な空燃比に近づき、時刻
i3.j+夫々で初爆検出フラグFST#4.FST#
2夫々が91?となり、その時点で燃料噴射時間TIJ
#4.TAU#2夫々の可変υ110は停止され、金気
筒の始動が完了する。この後時刻t5でスタート信号に
より始動終了が検出されると、始動時増量がなくなり、
金気筒の燃料噴射時間TALJ#1.TAU#3.TA
(J#4.TAtJ#2は第4図のステップ60で通常
の燃料噴射時間に設定される。このようにして点火プラ
グの燃料かぶりが防止され、確実に金気筒の始動が行な
われる。
Here, in a four-cylinder engine in which the air-fuel ratio becomes overrich at startup, the rotational speed NST changes as shown in Figure 7 <A), and at time t1, the first explosion of the No. 1 cylinder occurs as shown in Figure 7 (B). is detected, the first explosion detection flag FST#1 becomes vlv, and further, at time t2, the first explosion detection flag FST#3 of the No. 3 cylinder becomes 1v as shown in FIG. .. Variable control of each TALJ #3 is not performed. After passing through the predetermined 111 rooms 1, Fig. 5 (
By referring to the table of A>, the coefficient FT gradually decreases and becomes 4.
Fuel injection time for cylinder 1 and cylinder 2 rAU#4゜d AL
As shown in FIGS. 7(D) and 7(E), I92 gradually decreases from overrich to a proper air-fuel ratio, and at time i3. First explosion detection flag FST#4 for each j+. FST#
2 each is 91? At that point, the fuel injection time TIJ
#4. The variable υ110 of each TAU #2 is stopped, and the starting of the gold cylinder is completed. After this, when the end of starting is detected by the start signal at time t5, there is no increase in the amount at starting.
Gold cylinder fuel injection time TALJ#1. TAU#3. T.A.
(J#4.TAtJ#2 is set to the normal fuel injection time at step 60 in FIG. 4. In this way, fuel fogging of the spark plug is prevented, and the engine is reliably started in the cylinder.

また、始動時に空燃比がオーバーリーンになるタイプの
4気筒エンジンで、回転速度N S Tが第8図(A)
の如く変化し時刻1+で同図(B)に示す如く1番気筒
の初爆が検出されて初爆検出フラグFS丁#1が717
となり、更に時刻t 12で同図(C)に示す如く3番
気筒の初爆検出フラグFS r#3カ’ 1 ’ J−
tK’3、ソノ後燃料噴1M間TAU#1.TAU#3
夫々の可変制御は行なわれない。所定J′Il1間To
を経過すると第5図(B)のテーブル参照により係数F
Tが徐々に増加し、4番気筒及び2番気筒の燃料噴射時
間TAU#4゜TAU#2夫々は第8図(D)、(E)
に示す如く徐々に増加してオーバーリーンから適正な空
燃比に近づき、時刻t+a、t14夫々で初爆検出フラ
グFST#4.FST#2夫’?が’ 1 ’となり、
その時点で燃料噴射時間TAtJ#4.TAU#2夫々
の可変制御は停止され、金気筒の始動が完了する。この
後時aIltじでスタート信号により始動終了が検出さ
れると、始動時増量がなくなり、金気筒の燃料噴射時間
TAU#1.TAU#3.TALI4.TAU2は第4
図のステップ60で通常の燃料噴射時間に設定される。
In addition, in a 4-cylinder engine whose air-fuel ratio is over lean when starting, the rotational speed NST is as shown in Figure 8 (A).
At time 1+, the first explosion of the No. 1 cylinder is detected and the first explosion detection flag FS #1 becomes 717 as shown in (B) of the same figure.
Then, at time t12, the first explosion detection flag FSr#3 is set as shown in FIG.
tK'3, TAU#1 during 1M of fuel injection after sono. TAU#3
No individual variable control is performed. To between predetermined J'Il1
After passing through, the coefficient F is determined by referring to the table in Figure 5 (B).
T gradually increases, and the fuel injection times TAU#4 and TAU#2 for the 4th and 2nd cylinders are shown in Fig. 8 (D) and (E), respectively.
As shown in , the air-fuel ratio gradually increases from over-lean to the proper air-fuel ratio, and the first explosion detection flag FST#4. FST#2 Husband'? becomes '1',
At that point, fuel injection time TAtJ#4. The variable control of each TAU#2 is stopped, and the starting of the gold cylinder is completed. After this, when the end of starting is detected by the start signal at the same time as aIlt, the amount increase at starting is stopped and the fuel injection time of the gold cylinder TAU#1. TAU#3. TALI4. TAU2 is the 4th
At step 60 in the figure, the normal fuel injection time is set.

このようにして確実に金気筒の始動が行なわれる。In this way, the starting of the gold cylinder is reliably performed.

なお、例えば1番及び3番気筒のグループと、2番及び
4番気筒のグループとに分け、グループ別に燃料噴射量
の制御を行なう場合にも第6図のステップ76でグルー
プに属する単一の気筒又は全気筒の初爆検出時にそのグ
ループの初爆検出フラグに717をセットして上記実施
例と同様に金気筒の始動を確実に行なうことができる。
Note that even when controlling the fuel injection amount for each group by dividing it into a group of cylinders No. 1 and 3 and a group of cylinders No. 2 and 4, for example, in step 76 of FIG. When the first explosion of a cylinder or all cylinders is detected, the first explosion detection flag of that group is set to 717, so that it is possible to reliably start the golden cylinders in the same manner as in the above embodiment.

なお、上記実施例において、初爆を検出する方法として
は各気筒の爆発行程の回転数(爆発行程の時間)が例え
ば200rp−となったか否かを検出すればよい。この
他にも、#回爆発時の回転数より今回の回転数が例えば
100rD11以上上昇したか否かとか、今回の気筒の
直前に爆発した気筒の爆発行程回転数から今回の気筒の
回転数が例えば、50rpm上昇したか否かを判断して
もよい。また、完爆−始動〉を判断するには、エンジン
回転数が例えば、4oorpm以上となったか否かで判
断してもよい。
In the above-described embodiment, the first explosion may be detected by detecting whether the rotational speed (explosion stroke time) of each cylinder reaches, for example, 200 rpm. In addition, whether or not the current rotational speed has increased by 100rD11 or more from the rotational speed at # explosion, or whether the current cylinder rotational speed is higher than the explosion stroke rotational speed of the cylinder that exploded immediately before this cylinder. For example, it may be determined whether the rpm has increased by 50 rpm. Further, in order to determine whether the engine has completely exploded or started, the determination may be made based on whether or not the engine rotational speed has reached, for example, 4oorpm or higher.

〔発明の効果) 上述の如く、本発明の内ffi機関の始動時燃料噴fJ
4邑iI制御装置によれば、燃料am射量の可変制御は
始動していない気筒についてのみ行なわれ、始動した気
筒又はその気筒の属するグループの空燃比は適正な値を
維持し、かつ始動していない気筒の空燃比は適正な値に
徐々に近づき、金気筒の始動が確実に行なわれ、実用上
きわめて有用である。
[Effect of the invention] As described above, the fuel injection fJ at the time of starting of the ffi engine of the present invention
According to the 4-iI control device, variable control of the fuel am injection amount is performed only for cylinders that are not started, and the air-fuel ratio of the cylinder that has started or the group to which that cylinder belongs is maintained at an appropriate value, and the air-fuel ratio of the cylinder that has started is maintained at an appropriate value, and The air-fuel ratio of the cylinders that are not in use gradually approaches the appropriate value, and the starting of the cylinders is ensured, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明8置の原理図、 第2図は本発明装置を適用したガソリンエンジンの一実
施例の構成図、 第3図は電子制御回路の70ツク図、 第4図、第6図夫々はCPUの実行する処理の70−ヂ
ャート、 第5図は係数FTのテーブルを示す図、第7図、第8図
夫々は本発明′!iA慟の動作を説明するための図であ
る。 Ml・・・内燃機関、Ml・・・運転状態検出手段、M
3・・・演算手段、M4・・・初爆検出手段、M5・・
・燃料噴射星可変停止手段、1・・・ガソリンエンジン
、3・・・点火プラグ、10・・・燃料噴射弁、16・
・・イグナイタ、30・・・CPLJ、50〜66・・
・スアップ。
Fig. 1 is a principle diagram of the 8-position device of the present invention, Fig. 2 is a configuration diagram of an embodiment of a gasoline engine to which the device of the present invention is applied, Fig. 3 is a 70-step diagram of an electronic control circuit, Figs. Each figure shows a 70-diagram of the processing executed by the CPU, FIG. 5 shows a table of coefficients FT, and FIGS. 7 and 8 show the present invention'! FIG. 3 is a diagram for explaining the operation of the iA-go. Ml... Internal combustion engine, Ml... Operating state detection means, M
3... Calculating means, M4... First explosion detection means, M5...
- Fuel injection star variable stop means, 1... gasoline engine, 3... spark plug, 10... fuel injection valve, 16.
...Igniter, 30...CPLJ, 50-66...
・Suup.

Claims (1)

【特許請求の範囲】[Claims]  多気筒内燃機関の各気筒又は各グループの気筒毎に燃
料噴射量を制御し、かつ始動時の燃料噴射量を始動開始
よりの期間に応じて可変制御する内燃機関の始動時燃料
噴射制御装置において、各気筒毎に初爆を検出する初爆
検出手段と、該初爆検出手段で初爆が検出された気筒又
は初爆が検出された気筒の属するグループの始動時の燃
料噴射量の可変制御を停止させる燃料噴射量可変停止手
段を有することを特徴とする内燃機関の始動時燃料噴射
制御装置。
In a starting fuel injection control device for an internal combustion engine, which controls the fuel injection amount for each cylinder or each group of cylinders of a multi-cylinder internal combustion engine, and variably controls the fuel injection amount at startup depending on the period from the start of the engine. , a first explosion detection means for detecting the first explosion for each cylinder, and variable control of the fuel injection amount at the time of startup of the cylinder in which the first explosion is detected by the first explosion detection means or the group to which the cylinder in which the first explosion is detected belongs. 1. A starting fuel injection control device for an internal combustion engine, comprising variable fuel injection amount stopping means for stopping the engine.
JP32520489A 1989-12-15 1989-12-15 Fuel injection controller at startup time of internal combustion engine Pending JPH03185239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32520489A JPH03185239A (en) 1989-12-15 1989-12-15 Fuel injection controller at startup time of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32520489A JPH03185239A (en) 1989-12-15 1989-12-15 Fuel injection controller at startup time of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03185239A true JPH03185239A (en) 1991-08-13

Family

ID=18174185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32520489A Pending JPH03185239A (en) 1989-12-15 1989-12-15 Fuel injection controller at startup time of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03185239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595162A (en) * 1994-12-28 1997-01-21 Toyota Jidosha Kabushiki Kaisha Start up fuel control device for an engine
US5836288A (en) * 1996-07-18 1998-11-17 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling fuel injection in a multicylinder internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595162A (en) * 1994-12-28 1997-01-21 Toyota Jidosha Kabushiki Kaisha Start up fuel control device for an engine
US5836288A (en) * 1996-07-18 1998-11-17 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling fuel injection in a multicylinder internal combustion engine

Similar Documents

Publication Publication Date Title
US5626117A (en) Electronic ignition system with modulated cylinder-to-cylinder timing
JPH05214985A (en) Fuel injection control method for engine
US6823849B2 (en) Fuel injection system and control method for internal combustion engine starting time
US6499460B2 (en) Ignition timing control device for internal combustion engine
JPH10274078A (en) Fuel injection control device for internal combustion engine
JPS5929733A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH03185239A (en) Fuel injection controller at startup time of internal combustion engine
JP2008248740A (en) Method for discriminating cylinder in start for internal combustion engine
US6978761B2 (en) Cylinder event based spark
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JP4304669B2 (en) Crank angle discrimination device for internal combustion engine
JPH0530984B2 (en)
JP3348690B2 (en) Cylinder discriminator for multi-cylinder internal combustion engine
US11421623B2 (en) Internal combustion engine control device
JPH06185387A (en) Fuel injection controller for internal combustion engine
JPS58180766A (en) Ignition timing controller for internal-combustion engine
JPH11351050A (en) Engine control system
JPH11107794A (en) Fuel supply and ignition control device for internal combustion engine
JP2000248980A (en) Engine start control device
JPS62170754A (en) Ignition timing control device for internal combustion engine
JPH06117299A (en) Starting time fuel injection control device for internal combustion engine
JPH0684749B2 (en) Ignition timing control method for multi-cylinder internal combustion engine
JP3019577B2 (en) Starting fuel control method for a multi-cylinder internal combustion engine
JPH10306741A (en) Start time fuel injection control device for internal combustion engine
JP2000027686A (en) Fuel injection control device for engine