JPH03184212A - Cable conductor for automobile - Google Patents

Cable conductor for automobile

Info

Publication number
JPH03184212A
JPH03184212A JP1325700A JP32570089A JPH03184212A JP H03184212 A JPH03184212 A JP H03184212A JP 1325700 A JP1325700 A JP 1325700A JP 32570089 A JP32570089 A JP 32570089A JP H03184212 A JPH03184212 A JP H03184212A
Authority
JP
Japan
Prior art keywords
conductor
copper
wire
elementary
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1325700A
Other languages
Japanese (ja)
Inventor
Kazunao Kudo
和直 工藤
Fukuma Sakamoto
坂本 福馬
Kazunori Tsuji
辻 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP1325700A priority Critical patent/JPH03184212A/en
Priority to US07/626,293 priority patent/US5118906A/en
Priority to EP90124112A priority patent/EP0432777A1/en
Priority to KR1019900020625A priority patent/KR950005853B1/en
Publication of JPH03184212A publication Critical patent/JPH03184212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To make a cable conductor lightweighted by satisfying specified conditions of tensile strength of elemental conductor before twisting, total cross section surface area after twisting, and breaking load of the conductor and preparing the cable conductor as a composite conductor consisting of a copper or copper alloy surface layer and a core part of a specified composite elemental conductor. CONSTITUTION:Composite elemental conductors 2 having tensile strength (t) 60-140kg and conductivity at least 25% IACS and composited of a copper or copper alloy surface layer 4 and a core part 3 of an Fe-based alloy containing Ni, Cr, etc., are twisted each other. Consequently, breaking load T of the conductor 1 caused by tensile force and holding force in terminal housings and bending strength of an electric cable are improved as compared with a conventional one due to using the Fe-based alloy as the core of the element conductor, and thus the cross section surface area can be decreased after the elemental conductors are twisted so as to make the cable lightweighted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、軽量化を計った自動車用電線導体に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a lightweight electric wire conductor for automobiles.

〔従来の技術〕[Conventional technology]

自動車内の配線用電線導体としては、主にJISC31
02に規定されているような軟銅線又はこれに錫メツキ
などを施した綿を撚り合わせたものが用いられ、これに
塩化ビニール、架橋ビニール、或いは架橋ポリエチレン
などの絶縁体を被覆して電線としていた。
JISC31 is mainly used as a wire conductor for wiring in automobiles.
Annealed copper wire as specified in 02 or a strand of tin-plated cotton is used, and this is coated with an insulator such as vinyl chloride, cross-linked vinyl, or cross-linked polyethylene, and used as an electric wire. there was.

しかしながら、自動車の高性能化に伴う各種制御回路の
増加により自動車内の配線箇所が多くなり、そのために
信頼性を維持しながら軽量化を計る要求が益々高まって
来た今日では、上述した如き従来の電線導体は敬遠され
る傾向にある。
However, as the performance of automobiles increases, the number of various control circuits increases, resulting in an increase in the number of wiring locations within the automobile.Therefore, there is an increasing demand for weight reduction while maintaining reliability. Electric wire conductors tend to be avoided.

配線の多くを占める制御回路用の電線は、信号電流を流
すので許容電流がIA以下が大半であるが、従来の電線
導体は機械的強度の確保のために電気的な必要径より太
いものを用いざるを得す、重重増加を招くからである。
Electric wires for control circuits, which account for most of the wiring, carry signal currents, so most of them have an allowable current of less than IA, but conventional wire conductors have a diameter that is thicker than the electrically required diameter to ensure mechanical strength. This is because it is unavoidable to use it, and it causes an increase in weight.

そこで、この種の電線を軽量化する試みとして、導体の
アルミニウム(合金を含む、以下同じ)化が一部で検討
された。また、0.3〜0.9%5nIJj4合金線や
4〜8%Sn入りリン青銅などを用いた導体も開発され
て一部で利用されている(特公昭60〜30043、同
61−29133)。
Therefore, in an attempt to reduce the weight of this type of electric wire, some studies have considered using aluminum (including alloys, the same hereinafter) for the conductor. In addition, conductors using 0.3 to 0.9% 5nIJJ4 alloy wire and phosphor bronze containing 4 to 8% Sn have been developed and used in some cases (Japanese Patent Publications No. 60-30043, No. 61-29133). .

〔発明が解決しようとする問題点] アル旦ニウムは強度的に弱く、充分な電線強度を得るに
は外径を太くするとか、素導体の撚線本数を増やすとか
の対策が不可欠であるため、絶縁体の使用量、配線スペ
ースが増加し、コスト上昇を招くほか、充分な軽量化効
果も期待できない。
[Problems to be solved by the invention] Aluminum is weak in strength, and in order to obtain sufficient wire strength, it is essential to take measures such as increasing the outer diameter or increasing the number of twisted wires in the elementary conductor. , the amount of insulator used and the wiring space increase, leading to an increase in cost, and a sufficient weight reduction effect cannot be expected.

また、自動車の配線では端子を多く使用するが、このよ
うな端子部での電気腐食の問題やはんだ付性の悪化など
種々の難点を有している。
In addition, many terminals are used in automobile wiring, but these terminals have various problems such as electrical corrosion and poor solderability.

一方、上述の公報に示される電線導体はSnの添加によ
り銅線の強度アップが計られ、その分撚線後の電線断面
積りを小さくすることが可能になッテはいるが、その断
面積りは0.15〜0.3tpaazまでが限界であり
、現在要求されている0、05〜0.15al+++”
まで下げるとまだまだ強度不足であったり、強度があっ
ても導電率が20%IACS未満のために電気抵抗が大
きくなると云う課題が残されていた。
On the other hand, in the wire conductor shown in the above-mentioned publication, the strength of the copper wire is increased by adding Sn, which makes it possible to reduce the cross-sectional area of the wire after twisting. The limit is 0.15 to 0.3 tpaaz, and the currently required 0.05 to 0.15 al+++
If the strength was lowered to 20%, the strength would still be insufficient, and even if strength was present, the electrical conductivity would be less than 20% IACS, resulting in a high electrical resistance.

本発明は、これ等の課題を解決し、信頼性を確保した上
で更なる軽量化を計った自動車用電線導体を提供するこ
とを目的としている。
An object of the present invention is to solve these problems and provide an electric wire conductor for an automobile that is further lightweight while ensuring reliability.

〔課題を解決するための手段] 本発明が提案する自動車用電線導体は、抗張力tが60
〜140kg、導電率が25%IACS以上で表層は銅
又は銅合金、芯金部はNj、、Cr、Si、Mn等を含
むFe基合金よりなる複合構造の素導体を撚り合わせて
撚線後の導体総断面積りが0.05〜0.30m” 、
導体破断荷重Tが6kg以上となるようにしたものであ
る。
[Means for Solving the Problems] The automotive wire conductor proposed by the present invention has a tensile strength t of 60
~140 kg, conductivity of 25% IACS or higher, surface layer made of copper or copper alloy, core metal part made of Fe-based alloy containing Nj, Cr, Si, Mn, etc. Composite structure element conductor is twisted together. The total cross-sectional area of the conductor is 0.05 to 0.30 m”,
The conductor breaking load T is 6 kg or more.

第1図はその一例の断面を示したもので、例示の電線導
体1は、直径dの素導体2を7本撚り合わせて構成され
ている。図中3は素導体の芯金となるFe基合金線、4
は3の外周に被覆した無酸素銅である。
FIG. 1 shows a cross section of one example, and the illustrated electric wire conductor 1 is constructed by twisting seven element conductors 2 each having a diameter d. In the figure, 3 is an Fe-based alloy wire that becomes the core metal of the elementary conductor, and 4
is oxygen-free copper coated on the outer periphery of 3.

素導体2の撚本数は、電線導体のしなやかさを保つため
には同一断面積であっても多いに越したことはないが、
この場合、細い素導体を準備し、かつ撚線時に多数本の
素導体を撚線機にセットしなければならず、そのことに
困難が伴うので2〜37本、より好ましくは7〜19本
が推奨される。
In order to maintain the flexibility of the electric wire conductor, it is better to have more twists in the elementary conductor 2 even if the cross-sectional area is the same.
In this case, it is necessary to prepare thin bare conductors and set a large number of bare conductors in the wire twisting machine during twisting, which is difficult, so 2 to 37 conductors, more preferably 7 to 19 is recommended.

芯金部に用いるFe以外の金属元素は上述したもの以外
にCo、Mo、Nbなどが挙げられる。
Metal elements other than Fe used in the metal core include Co, Mo, Nb, etc. in addition to those mentioned above.

芯金は上述の元素も含めてこれ等の中から選ばれた一種
以上を合わせて20〜80重量%含み、残部が鉄から成
るものが好ましい。
It is preferable that the core metal contains 20 to 80% by weight of one or more selected from these elements including the above-mentioned elements, with the balance being iron.

また、使用する素導体は芯金の外周に無酸素銅や銅合金
を重量比で25〜80%被覆したものが望ましい。
Further, the elementary conductor used is preferably one in which the outer periphery of the core metal is coated with 25 to 80% by weight of oxygen-free copper or copper alloy.

素導体の導電率の上限も80%に止めるのがよい。The upper limit of the conductivity of the elementary conductor is also preferably 80%.

〔作用〕[Effect]

素導体として、銅(合金も含む)被覆を有する複合体を
用いると、必要な導電率(25%IACS以上)やはん
だ付着性は被覆銅によって得ることができる。
When a composite with a copper (including alloy) coating is used as the elementary conductor, the necessary electrical conductivity (25% IACS or higher) and solder adhesion can be obtained by the copper coating.

また、導体の引張りによる破断荷重T、端子ハウジング
での保持力、電線屈曲値は、Fe基の合金線を素導体の
芯金として用いているため、従来以上に高まり、そのた
め、撚線後の導体断面積を小さくして軽量化を計ること
ができる。
In addition, the breaking load T due to conductor tension, the holding force in the terminal housing, and the wire bending value are higher than before because Fe-based alloy wire is used as the core of the bare conductor, and therefore, the Weight reduction can be achieved by reducing the cross-sectional area of the conductor.

ここで、この発明において、素導体の抗張力りを60〜
140 kg/+s+e”に限定したのは、60kg/
11111”以下では6本撚り電線の場合、総断面積D
= 0.1+mm”時の導体破断荷重が6kg以下とな
り、電線が破断したり、満足な端子保持力が得られなか
ったりするからである。逆に、t=140kg/開2以
上は、望ましいことではあるが使用する合金線が極めて
特殊なものとなり価格面で問題が生じる。従って、端子
の保持力も併せて考えた抗張力tのより望ましい値は一
般的な材料を利用できる80〜120 kg/mm”で
ある。
Here, in this invention, the tensile strength of the elementary conductor is 60~
140 kg/+s+e” is limited to 60 kg/
11111” or less, total cross-sectional area D for 6-stranded wire
= 0.1+mm" conductor breaking load is less than 6 kg, which may cause the wire to break or fail to provide a satisfactory terminal holding force. On the contrary, it is desirable that t = 140 kg/open 2 or more. However, the alloy wire used is extremely special, which poses a problem in terms of price.Therefore, a more desirable value for the tensile strength t, which also takes into account the holding force of the terminal, is 80 to 120 kg/mm, which allows use of common materials. ” is.

また、素導体の導電率を25%IACS以上としたのは
、素導体の表層を無酸素銅や銅合金で形威した場合の導
体の電気抵抗値から許容電流を計算した結果による。許
容電流IAを最低条件とすれば、導電率は25%以上、
出来れば30〜40%IACS以上が最適である。なお
、その導電率の上限は、複合体を用いて必要な抗張力を
維持しようとすると80%IACSが限界であり、これ
以上では抗張力が犠牲になる。
Furthermore, the reason why the conductivity of the elementary conductor is set to 25% IACS or more is based on the result of calculating the allowable current from the electrical resistance value of the conductor when the surface layer of the elementary conductor is made of oxygen-free copper or copper alloy. If the allowable current IA is the minimum condition, the conductivity is 25% or more,
If possible, an IACS of 30 to 40% or more is optimal. Note that the upper limit of the electrical conductivity is 80% IACS when trying to maintain the necessary tensile strength using a composite, and if it exceeds this, the tensile strength will be sacrificed.

次に、撚線後の導体の総断面積りを0.05〜0.30
閣2としたのは、0.30+w”以上では従来品でも必
要強度を得ることができるが、軽量化の目的を達成でき
ない。一方、D=0.05園z以下では、Tが5kg以
下、710.08φ構造では張力による変形が生し易い
からである。このDのより望ましい値は0.07〜0.
20園2である。
Next, the total cross-sectional area of the conductor after twisting is 0.05 to 0.30.
The reason why we chose Kaku 2 is that if the conventional product is over 0.30+w", the required strength can be obtained, but the purpose of weight reduction cannot be achieved. On the other hand, when D=0.05 or less, T is less than 5kg, This is because the 710.08φ structure is prone to deformation due to tension.A more desirable value of D is 0.07 to 0.
20 gardens 2.

従来の軟銅線は、機械的性質より総断面積D=0.3I
IIlzが限界、また、Sn入り銅(0,3〜0.9S
n)でも通常D=0.2ms”が限界であるが、本発明
によれば、D=0.1m”程度でも従来の0.3III
III2品と同等の強度が得られ、電線の軽量化(例え
ば0.1m”で0.3m”の60%減)が可能となこの
ほか、芯余部のFe基合金の成分のうち、Ni、Co、
、Cr、Si、Mn、Mo、Nbの1種以上の添加量に
ついて20〜80重量%が好ましいとしたのは、必要な
抗張力を確保してコスト上昇を極力抑えるためである。
Conventional annealed copper wire has a total cross-sectional area D = 0.3I due to its mechanical properties.
IIlz is the limit, and copper containing Sn (0.3 to 0.9S
Normally, D = 0.2 ms" is the limit for n), but according to the present invention, even if D = 0.1 m", it is faster than the conventional 0.3 III
It has the same strength as the III2 product, and it is possible to reduce the weight of the wire (for example, 0.1 m" is 60% less than 0.3 m").In addition, among the components of the Fe-based alloy in the extra core part, Ni, Co,
, Cr, Si, Mn, Mo, and Nb are preferably added in an amount of 20 to 80% by weight in order to ensure the necessary tensile strength and to suppress cost increases as much as possible.

即ち、一般にFe基材料は、Ni、Crなどの元素を添
加すると抗張力が高まる。その抗張力は、例えばNi、
Coを20%以上添加するだけでほぼ70〜80 kg
/−m”になり、また、S t、Mn。
That is, in general, the tensile strength of Fe-based materials increases when elements such as Ni and Cr are added. The tensile strength is, for example, Ni,
Approximately 70 to 80 kg can be produced by adding 20% or more of Co.
/-m”, and S t, Mn.

Crなどを含めて添加量を20%以上にすれば抗張力は
ほぼ100〜140kg/am”となる。ところが、添
加量を増やしたからと言って抗張力の増強効果が比例的
に高まる訳ではない、そこで、これ等の高価な添加元素
を無駄に使用しない範囲として20〜80%を選んだ。
If the amount added including Cr etc. is 20% or more, the tensile strength will be approximately 100 to 140 kg/am. However, increasing the amount added does not mean that the tensile strength enhancement effect will increase proportionally. , 20 to 80% was selected as a range that would not use these expensive additive elements in vain.

なお、本願で芯金に用いる合金で一般に知られたものと
しては、例えば、36〜50%Ni1約1%のSi%M
n、残部鉄から戒るFe−Ni合金や、15〜25%C
r、3〜10%Ni、約1%のSi、Mn、残部鉄から
威るステンレス鋼、或いはこれ等にMo、Nbなどを加
えて強度アップした高抗張力インバー、高抗張カステン
レス鋼などがある。
In addition, generally known alloys used for the core metal in this application include, for example, 36 to 50%Ni1 about 1%Si%M
n, Fe-Ni alloys with a balance of iron and 15-25% C
r, 3 to 10% Ni, about 1% Si, Mn, and the balance is stainless steel, or high tensile strength Invar, high tensile strength stainless steel, etc. that are strengthened by adding Mo, Nb, etc. be.

〔実施例〕 第3図の表に示す試料N11l〜5の素導体用芯金材料
として、36%Ni、1.2%MO%1.O%Mn、0
.3%Si、残部Feから威るインバー、42%Ni、
1.0%Mn、0.2%Si、残部Feから戒るFe−
Ni合金及び、18%C「−8%Ni1残部Feから戒
るステンレスの3種類の8ms+φのロッドを用意した
。また、被覆鋼管として外径16mmφ、内径12mφ
の無酸素銅(JIS 3510)管(以下はOFC管と
云う)を用意した。
[Example] 36%Ni, 1.2%MO%1. O%Mn, 0
.. 3% Si, Invar with balance Fe, 42% Ni,
1.0%Mn, 0.2%Si, balance Fe-
We prepared three types of 8ms+φ rods made of Ni alloy and 18%C, -8%Ni1 and balance Fe.We also prepared coated steel pipes with an outer diameter of 16mmφ and an inner diameter of 12mφ.
An oxygen-free copper (JIS 3510) pipe (hereinafter referred to as an OFC pipe) was prepared.

次に、これ等の材料から複合素導体を得るために、上記
各合金ロッドの表面を乾式研磨(ショットプラス研磨)
しながら上記OFC管に挿入し、これを嵌合ダイスで絞
って10閣φ程度にした。
Next, in order to obtain composite conductors from these materials, the surfaces of each of the above alloy rods are dry polished (shot plus polishing).
While doing so, it was inserted into the above OFC pipe and squeezed with a fitting die to a diameter of about 10 mm.

これにより、導電率が試料阻1〜3は約40%、Na4
は約65%、弘5は約60%である銅複合体となった。
As a result, the conductivity of samples 1 to 3 was approximately 40%, and Na4
It became a copper complex of about 65% and Ko 5 about 60%.

そこで、これ等の材料を伸線軟化を繰り返して0.5s
mφにした。最終軟化は600〜900″Cで約1時間
処理し、その後これを直径dが0.127 tmφにな
るように伸線を行った。このようにして得られた素導体
の抗張力tと導電率は第3図の表に示す通りである。
Therefore, these materials were repeatedly drawn and softened for 0.5 seconds.
I made it mφ. The final softening process was carried out at 600 to 900"C for about 1 hour, and then the wire was drawn so that the diameter d became 0.127 tmφ.The tensile strength t and electrical conductivity of the elementary conductor thus obtained were is as shown in the table in Figure 3.

この後、各素導体を7木兄撚線して総断面積D=0.0
8〜0.1m”の電線導体となし、さらに、これに0.
2閣厚の塩化ビニール被覆を施して自動車用電線にした
After this, each elementary conductor is twisted into 7 wood wires and the total cross-sectional area D = 0.0
8 to 0.1 m" wire conductor, and furthermore, 0.1 m" to this.
It was coated with a two-layer thick vinyl chloride coating and made into automotive electrical wire.

これ等の電線の緒特性を、従来品及び比較品の特性と共
に第3図の表に示す。
The characteristics of these electric wires are shown in the table of FIG. 3 along with the characteristics of conventional products and comparative products.

端子ハウジング保持力は、自動車用電線では端子への接
続部の信頼性のために重要な特性であり、その特性は導
体を端子に圧着後導体を軸方向に引張試験機にて引張り
、圧着部から電線が抜ける(もしくは破断する)時の荷
重を測定した。この保持力は多くの場合7kg以上、で
きれば10kg以上であることが望まれる。
The terminal housing retention force is an important characteristic for the reliability of the connection to the terminal in automotive electric wires, and this characteristic is determined by crimping the conductor to the terminal and then pulling the conductor in the axial direction using a tensile tester. The load at which the wire was pulled out (or broken) was measured. It is desired that this holding force be 7 kg or more in most cases, preferably 10 kg or more.

また、引張破断荷重も導体のしなやかさを失わない範囲
で概略10kg以上であるのが望ましく、大きいほどよ
い。
Further, it is desirable that the tensile breaking load is approximately 10 kg or more without losing the flexibility of the conductor, and the larger the better.

また、電線の耐屈曲性は、特に端子部近傍でのくり返し
屈曲に対して導体が破断しないことが望まれ、その測定
は、被覆された電線5を、第2図に示す治具6にはさん
で、片端に500gの荷重Wをかけた状態で左右に90
°宛交互に屈曲させ、破断するまでの回数を90′往復
を1回として示した。
Regarding the bending resistance of the electric wire, it is desirable that the conductor does not break when repeatedly bent, especially near the terminal portion, and this measurement is performed by placing the coated electric wire 5 in a jig 6 shown in FIG. 90° to the left and right with a load W of 500g applied to one end.
The number of times it takes to bend alternately at 90 degrees and break is shown as one round trip of 90'.

はんだ付性は、試片をホワイトロジンフラックスに浸漬
した後、230°Cの共晶はんだ中に2秒間浸漬した後
、全浸漬表面積に対する溶融はんだにぬれた面積比を調
べ、90%以上のものを良好、90%未満のものを不良
とした。
Solderability was determined by immersing the specimen in white rosin flux and then immersing it in eutectic solder at 230°C for 2 seconds, and then examining the ratio of the area wetted by molten solder to the total immersed surface area. A score of less than 90% was graded as poor.

表中のデータから判るように、本発明品と従来品につい
て電線の軽量化効果を比較すると、総断面積D=0.3
mm”導体(試料N(L7)で電線重量は5.0g/m
であったものが、D=0.1mm”  (試料N[L 
l 〜5 )で1.4〜1.5g /mとなり、約3.
5g/m、はぼ70%の軽量化が可能であった。この場
合の強度は従来品と比較して遜色がない。
As can be seen from the data in the table, when comparing the weight reduction effect of the electric wire between the inventive product and the conventional product, the total cross-sectional area D = 0.3
mm” conductor (sample N (L7), wire weight is 5.0 g/m
D=0.1mm” (sample N[L
l~5) is 1.4~1.5g/m, which is about 3.
It was possible to reduce the weight by 5g/m, or about 70%. The strength in this case is comparable to that of conventional products.

〔効果〕〔effect〕

以上述べたように、この発明によれば、端子ハウジング
の保持力、引張破断荷重、耐屈曲性等の機械的特性、電
気的特性、及びはんだ付性を充分に満足させて電線導体
の大巾な軽量化を計ることが可能であり、配線箇所の増
加による車重及び配線スペース増加の抑制、絶縁体の使
用量削減によるコストダウン等に貢献できると云う効果
がある。
As described above, according to the present invention, the holding force of the terminal housing, tensile breaking load, mechanical properties such as bending resistance, electrical properties, and solderability can be fully satisfied, and the large width of the wire conductor can be improved. This has the effect of contributing to suppressing increases in vehicle weight and wiring space due to an increase in the number of wiring locations, and reducing costs by reducing the amount of insulators used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は屈曲
試験の態様を説明する図、第3図は緒特性を比較した表
である。 1・・・・・・電線導体、  2・・・・・・素導体、
3・・・・・・鋼線、    4・・・・・・無酸素銅
、5・・・・・・被覆された電線、 6・・・・・・治具、    W・・・・・・荷重。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a view explaining the mode of a bending test, and FIG. 3 is a table comparing the bending characteristics. 1...Wire conductor, 2...Elementary conductor,
3... Steel wire, 4... Oxygen-free copper, 5... Covered electric wire, 6... Jig, W... load.

Claims (3)

【特許請求の範囲】[Claims] (1)撚線前の素導体の抗張力をt(kg/mm^2)
、撚線後の導体の総断面積をD(mm^2)、導体破断
荷重をT(kg)としたとき、60<t<140、素導
体の導電率25%IACS以上、0.05<D<0.3
0、T>6の条件を満足し、かつ、上記素導体は表層が
銅又は銅合金、芯金部がFe基のNi、Cr合金よりな
る複合素導体であることを特徴とする自動車用電線導体
(1) The tensile strength of the bare conductor before twisting is t (kg/mm^2)
, when the total cross-sectional area of the conductor after stranding is D (mm^2) and the conductor breaking load is T (kg), 60<t<140, conductivity of bare conductor is 25%IACS or more, 0.05<D<0.3
0, T>6, and the elementary conductor is a composite elementary conductor whose surface layer is made of copper or copper alloy and whose core metal part is made of Fe-based Ni and Cr alloy. conductor.
(2)上記素導体として、重量比でNi、Co、Cr、
Si、Mn、Mo、Nbから選ばれたものの一種以上を
合わせて20〜80%含み残部は鉄から成る合金芯金の
外周に無酸素銅又は銅合金を重量比で25〜80%被覆
したものを用いる請求項(1)記載の自動車用電線導体
(2) As the elementary conductor, Ni, Co, Cr, in weight ratio,
The outer periphery of an alloy core metal containing a total of 20 to 80% of one or more selected from Si, Mn, Mo, and Nb and the remainder being iron is coated with 25 to 80% by weight of oxygen-free copper or copper alloy. The electric wire conductor for an automobile according to claim (1).
(3)上記素導体は導電率の上限が80%IACSであ
る請求項(1)又は(2)記載の自動車用電線導体。
(3) The electric wire conductor for an automobile according to claim (1) or (2), wherein the elementary conductor has an upper limit of electrical conductivity of 80% IACS.
JP1325700A 1989-12-14 1989-12-14 Cable conductor for automobile Pending JPH03184212A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1325700A JPH03184212A (en) 1989-12-14 1989-12-14 Cable conductor for automobile
US07/626,293 US5118906A (en) 1989-12-14 1990-12-12 Wire conductors for automobiles
EP90124112A EP0432777A1 (en) 1989-12-14 1990-12-13 Wire conductors for automobiles
KR1019900020625A KR950005853B1 (en) 1989-12-14 1990-12-14 Conductive wire for auto-mobil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325700A JPH03184212A (en) 1989-12-14 1989-12-14 Cable conductor for automobile

Publications (1)

Publication Number Publication Date
JPH03184212A true JPH03184212A (en) 1991-08-12

Family

ID=18179734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325700A Pending JPH03184212A (en) 1989-12-14 1989-12-14 Cable conductor for automobile

Country Status (1)

Country Link
JP (1) JPH03184212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157919A (en) * 2000-11-21 2002-05-31 Hitachi Metals Ltd Composite metal core wire, manufacturing method for it, and insulated wire using composite metal core wire
US6649843B2 (en) * 1999-12-15 2003-11-18 Hitachi Cable, Ltd. Composite conductor, production method thereof and cable using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649843B2 (en) * 1999-12-15 2003-11-18 Hitachi Cable, Ltd. Composite conductor, production method thereof and cable using the same
JP2002157919A (en) * 2000-11-21 2002-05-31 Hitachi Metals Ltd Composite metal core wire, manufacturing method for it, and insulated wire using composite metal core wire

Similar Documents

Publication Publication Date Title
KR102005669B1 (en) Metallic/carbon nanotube composite wire
JP2004134212A (en) Aluminum cable for automobile wire harnesses
EP0457186B1 (en) Wire conductor for harness
JP2006339040A (en) Composite electric cable
EP0465978A1 (en) Wire conductors for automobiles
JP4557887B2 (en) Covered wire and automotive wire harness
CN109791815B (en) Wire strand for wire harness and wire harness
JPH04230905A (en) Copper-clad aluminum composite wire and manufacture thereof
KR950005853B1 (en) Conductive wire for auto-mobil
JP4413591B2 (en) Aluminum conductive wire for automobile wire harness and aluminum electric wire for automobile wire harness
JP4330005B2 (en) Aluminum conductive wire
US10875478B2 (en) Wire harness
JPH03184212A (en) Cable conductor for automobile
JPH0374008A (en) Aerial transmission line
JPH03184210A (en) Cable conductor for automobile
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
RU167949U1 (en) ON-BOARD AVIATION ELECTRIC WIRES
JP2019133869A (en) Twisted wire for wire harness and wire harness
JPS6323015B2 (en)
JPH03184211A (en) Cable conductor for automobile
RU204344U1 (en) ONBOARD AIRCRAFT ELECTRIC WIRE
JPS6030043B2 (en) Automotive wire conductor
JP4667770B2 (en) Aluminum conductive wire for automobile wiring and electric wire for automobile wiring
JPH06290639A (en) High strength high conductance flexibility complex wire
JP3275506B2 (en) Automotive wire and method of manufacturing the same