JPH0318411B2 - - Google Patents

Info

Publication number
JPH0318411B2
JPH0318411B2 JP61228627A JP22862786A JPH0318411B2 JP H0318411 B2 JPH0318411 B2 JP H0318411B2 JP 61228627 A JP61228627 A JP 61228627A JP 22862786 A JP22862786 A JP 22862786A JP H0318411 B2 JPH0318411 B2 JP H0318411B2
Authority
JP
Japan
Prior art keywords
distribution
section
circuit breaker
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61228627A
Other languages
Japanese (ja)
Other versions
JPS6387126A (en
Inventor
Saburo Togami
Masaharu Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togami Electric Mfg Co Ltd
Original Assignee
Togami Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togami Electric Mfg Co Ltd filed Critical Togami Electric Mfg Co Ltd
Priority to JP61228627A priority Critical patent/JPS6387126A/en
Priority to KR1019870001970A priority patent/KR910000085B1/en
Publication of JPS6387126A publication Critical patent/JPS6387126A/en
Publication of JPH0318411B2 publication Critical patent/JPH0318411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、配電系統における事故発生時に配電
用遮断器及び区分開閉器の電流値により無停電又
は最短時間で事故区間を検出、切離す配電系統に
おける制御方式に関する。 〔従来の技術〕 配電系統において、事故が発生した場合に、試
送電により事故区間を検出して切離し、健全区間
に対して配電を短時間で再開する方式が従来より
採用されている。 第1図はその方式による配電系統のブロツク図
であり、変電所SSの遮断器1−1,1−2,1
−3,1−4,1−5、区分用常閉開閉器2−
1,2−2,2−3,2−4,2−5,2−6,
2−7,2−8,3−1,4−1,5−1,5−
2、区分用常開開閉器2−9,2−10,2−1
1,前記遮断器1−1によつて送電されている配
電線路a,b,c,d,e,f,g,h,i、変
電所監視装置7,8、配電線制御装置9及び区分
開閉器の遠方制御装置6,6−1,6−2,……
により構成されている配電線路である。 従来においては、たとえば特公昭57−43021号
公報に記載された制御方法では、配電線路dに事
故が発生すると過電流により変電所SSの遮断器
1−1をトリツプさせ、遮断器1−1の再閉路を
待つて電源側より順次、区分開閉器2−1,2−
2を投入し、次に区分開閉器2−3により事故区
間を投入した時、再度遮断器1−1がトリツプす
ることによつて、事故区間dの判定を行うという
ものである。 〔発明が解決しようとする問題点〕 この従来の方法の場合は、再度遮断器1−1の
再投入を待つて、事故区間の電源側の区間a,
b,c,iには配電線1−1より送電し、負荷側
の区間e,f,g,hには配電線1−4,1−5
より逆送融通を行う必要があつた。前記の方法で
は、事故区間d以外の区間a,b,c,e,f,
g,h,iについても長時間の停電を伴うために
電力安定供給に支障を及ぼしている。 近年の社会生活の高度化等によつて、電力供給
は量の確保から供給信頼度等、質の向上への要要
求が強くなつている。このため、できるだけ停電
を伴うことを避け、停電時間も最短にすることが
望まれている。また、電力会社の送電方式の違い
(特に3相4線式)によつては、事故の種類によ
り事故が発生しても変電所の遮断器がトリツプし
ないため、事故区間の検出を行うことができなか
つた。 本発明は、このような社会的要求に鑑みてなさ
れたものであり、無停電又は事故発生から最短時
間で送電を再開することを目的とする。 〔問題点を解決するための手段〕 この目的を達成するため、本発明の配電系統に
おける事故区間の検出切離し方式は、配電用変電
所母線、配電用遮断器、変電所監視装置、区分開
閉器及びそれら相互を接続する電線からなる配電
系統の区分開閉器操作装置において、各区分開閉
器に対応して設けた遠方監視制御装置等から、前
記配電用変電所母線の電流、配電用遮断器、区分
開閉器の状態と電流とを制御装置に常時入力して
おき、これら入力情報から各配電線用遮断器に接
続されいる区分開閉器の開閉状態、電流値と区分
開閉器の開閉状態によつて定まる配電用遮断器よ
り各需要家に到る送電経路と電流値とを前記の制
御装置の記憶装置に常時記憶しておき、配電線路
に事故が発生した時、配電用遮断器に流流れる電
流の変化により事故発生を検出し、予め記憶され
ている区分開閉器の開閉状態と送電経路に基づ
き、その時の事故配電線に属する区分開閉器に流
れている電流値の変化により事故区間を検出し、
事故区間を通して送電している区間には遮断器の
負荷曲線を使用して逆送融通計算を行い、他配電
線より給電するように負荷の移動を行い、最後に
事故区間を切離すことを特徴とする。 〔作用〕 本発明においては、配電線の制御装置は変電所
の各遮断器について、定期的に電流を読み込み、
平日と日曜祭日の負荷曲線(第2図参照)を作成
し、1週間に1度更新を行う。また、配電線の監
視のために制御装置は定時、例えば30分又は1時
間毎に各遮断器と区分開閉器のオン・オフ状態と
電流値を読み込み、第1表のように電源側より近
い順に送電区間と区間電流Ikを検出し、制御装置
の記憶装に記憶しておく。
[Industrial Field of Application] The present invention relates to a control method in a power distribution system that detects and disconnects the fault section without interruption or in the shortest possible time based on the current values of the distribution circuit breaker and the sectional switch when a fault occurs in the power distribution system. [Prior Art] Conventionally, when an accident occurs in a power distribution system, a method has been adopted in which the faulty section is detected and disconnected through trial power transmission, and power distribution is resumed to the healthy section in a short time. Figure 1 is a block diagram of the power distribution system using this method, with circuit breakers 1-1, 1-2, and 1 at substation SS.
-3, 1-4, 1-5, normally closed switch for classification 2-
1, 2-2, 2-3, 2-4, 2-5, 2-6,
2-7, 2-8, 3-1, 4-1, 5-1, 5-
2. Normally open switch for classification 2-9, 2-10, 2-1
1, distribution lines a, b, c, d, e, f, g, h, i, substation monitoring devices 7, 8, distribution line control device 9, and divisions through which power is transmitted by the circuit breaker 1-1 Switch remote control device 6, 6-1, 6-2,...
This is a distribution line made up of. Conventionally, in the control method described in Japanese Patent Publication No. 57-43021, for example, when a fault occurs on the distribution line d, the circuit breaker 1-1 of the substation SS is tripped due to an overcurrent, and the circuit breaker 1-1 of the substation SS is tripped. Waiting for re-closing, section switches 2-1, 2- are opened sequentially from the power supply side.
2 is closed, and then the fault zone is closed by the section switch 2-3, the circuit breaker 1-1 trips again, thereby determining the fault zone d. [Problem to be solved by the invention] In the case of this conventional method, after waiting for the circuit breaker 1-1 to close again,
Power is transmitted from distribution line 1-1 to b, c, and i, and distribution line 1-4, 1-5 is transmitted to sections e, f, g, and h on the load side.
There was a need to provide more flexibility for reverse transfers. In the above method, sections a, b, c, e, f, other than accident section d,
G, h, and i also involve long-term power outages, which hinders stable power supply. As social life has become more sophisticated in recent years, there has been a strong demand for improvements in the quality of electricity supply, from securing quantity to supply reliability. For this reason, it is desirable to avoid power outages as much as possible and to minimize the duration of power outages. Additionally, depending on the power company's power transmission system (especially 3-phase 4-wire system), even if an accident occurs, the circuit breakers at the substation will not trip, making it difficult to detect the fault section. I couldn't do it. The present invention has been made in view of such social demands, and aims to resume power transmission in the shortest possible time after an uninterrupted power outage or an accident occurs. [Means for solving the problem] In order to achieve this objective, the fault section detection and disconnection method in the power distribution system of the present invention applies to distribution substation buses, distribution circuit breakers, substation monitoring devices, and sectional switches. In a sectional switch operating device for a distribution system consisting of electric wires that connect these mutually, the current of the distribution substation busbar, the distribution circuit breaker, The status and current of the sectional switch are constantly input to the control device, and from this input information, the open/close status of the sectional switch connected to each distribution line breaker is determined, depending on the current value and the open/close status of the sectional switch. The power transmission route and current value from the distribution circuit breaker to each customer are always stored in the storage device of the control device, and when an accident occurs on the distribution line, the current flows to the distribution circuit breaker. Detects the occurrence of an accident based on a change in current, and detects the fault area based on changes in the current value flowing through the sectional switch belonging to the faulty distribution line at that time, based on the pre-stored opening/closing status of the sectional switch and the power transmission route. death,
The feature is that the load curve of the circuit breaker is used to calculate the reverse transmission flexibility for the section where power is being transmitted through the faulty section, the load is moved so that power is supplied from other distribution lines, and finally the faulty section is disconnected. shall be. [Operation] In the present invention, the distribution line control device periodically reads the current of each circuit breaker in the substation,
Load curves for weekdays, Sundays and public holidays (see Figure 2) are created and updated once a week. In addition, in order to monitor the distribution line, the control device reads the on/off status and current value of each circuit breaker and sectional switch at regular intervals, for example every 30 minutes or every hour, and reads the on/off status and current value of each circuit breaker and sectional switch, as shown in Table 1. The power transmission section and the section current I k are detected in sequence and stored in the memory of the control device.

【表】 なお、区間電流Ikは(1)式により求める。 I(i)=I(i)IN−I(i)OUT ……(1) 但し、I(i):区間電流 I(i)IN:区間への流入電流 I(i)OUT:区間からの流出電流 制御装置は、変電所SSの各遮断器の電流を常
時、例えば数秒間隔毎に監視する。 配電線事故の判定は、(2)式の条件を満足した場
合のみとする。 A≧B×μ+α ……(2) 但し、A:今読んだ遮断器の電流 B:1分前の遮断器の電流 μ:負荷曲線を考慮した係数 α:事故予想電流 この(2)式の条件を満足した場合、制御装置は、
事故発生と判断し、その遮断器を事故フイーダと
する。制御装置は、事故フイーダの送電経路上に
属する投入している開閉器の電流を読み込み、(1)
式により第2表のように事故時の各区間電流Ij
検出する。
[Table] Note that the section current I k is calculated using equation (1). I(i)=I(i) IN −I(i) OUT ……(1) However, I(i): Section current I(i) IN : Inflow current into the section I(i) OUT : Outflow from the section Outflow current The control device monitors the current of each circuit breaker in the substation SS at all times, for example every few seconds. A distribution line fault is determined only when the condition of equation (2) is satisfied. A≧B×μ+α ……(2) However, A: current of the breaker just read B: current of the breaker 1 minute ago μ: coefficient considering the load curve α: expected fault current This equation (2) If the conditions are satisfied, the control device
It is determined that an accident has occurred and the circuit breaker is designated as the accident feeder. The control device reads the current of the switch that is on the power transmission path of the accident feeder, and (1)
Using the formula, each section current I j at the time of an accident is detected as shown in Table 2.

【表】 また、このとき、制御装置は(3)式により、区間
の予想区間電流Iyの検出を行う。 Iy(i)=B×
Ik(i)/ΣIk(i)×μ ……(3) 但し、Ik(i):前回の区間電流 ΣIk(i):事故フイーダに属する前回の区間
電流の合計 制御装置は、(1),(3)式で求めた事故時の区間電
流Ijと予想区間電流Iyより、(4)式に基づいて正常
か異常かの判断を行う。 Ij(i)≧Iy(i)+α ……(4) この(4)式の条件を満足する区間を異常区間、満
足しない区間を正常区間として第3表に登録す
る。前記の場合、制御装置は、第3表において異
常区間を事故区間dとする。
[Table] Also, at this time, the control device detects the expected section current I y of the section using equation (3). I y (i)=B×
I k (i) / ΣI k (i) × μ ... (3) However, I k (i): Previous section current ΣI k (i): Total of previous section current belonging to the accident feeder The control device is Based on the section current I j at the time of the accident and the expected section current I y obtained using equations (1) and (3), a judgment is made as to whether it is normal or abnormal based on equation (4). I j (i)≧I y (i) + α ... (4) The interval that satisfies the condition of this formula (4) is registered in Table 3 as an abnormal interval, and the interval that does not satisfy it as a normal interval. In the above case, the control device sets the abnormal section as accident section d in Table 3.

〔実施例〕〔Example〕

本発明の方式は、システムそのものは、前に述
べた第1図における遮断器1−1〜1−5、変電
所監視装置7,8、区分開閉器2−1〜2−1
1,3−1,4−1,5−1,5−2、遠隔制御
装置親局6、遠隔制御装置子局6−1〜6−1
4、配電線制御装置9より構成される。この場
合、配電線制御装置9は事故区間検出切離装置9
となる。各遠隔制御装置子局6−1〜6−14は
遠隔制御装置親局6と通信線(破線)により接続
されている(図面では一部省略する)。この事故
区間検出切離装置9によつて行われる制御方法が
従来の方式と異なり、以上の制御は、マイクロコ
ンピユータ又はミニコンピユータによつて実現す
ることができる。 〔発明の効果〕 以上に説明したように、本発明においては、各
区間の電流を監視し、その変動の大きさが予想値
よりも高くなつたときにその区を異常と検出して
区分開閉器により切離すようにしている。したが
つて、事故区間検出の際、必ずしも変電所遮断器
の遮断を必要とせず、無停電又は従来に比べて短
い時間で事故区間の検出及び切離しを行うことが
でき、良質の電力を提供することができる。
In the system of the present invention, the system itself includes circuit breakers 1-1 to 1-5, substation monitoring devices 7 and 8, and sectional switches 2-1 to 2-1 in FIG.
1, 3-1, 4-1, 5-1, 5-2, remote control device master station 6, remote control device slave stations 6-1 to 6-1
4. Consists of a distribution line control device 9. In this case, the distribution line control device 9 is the fault section detection disconnection device 9.
becomes. Each remote control device slave station 6-1 to 6-14 is connected to the remote control device master station 6 by a communication line (broken line) (partially omitted in the drawing). The control method performed by this accident section detection and separation device 9 is different from the conventional method, and the above control can be realized by a microcomputer or a minicomputer. [Effects of the Invention] As explained above, in the present invention, the current in each section is monitored, and when the magnitude of the fluctuation becomes higher than the expected value, that section is detected as abnormal and the section is opened/closed. I try to separate it depending on the container. Therefore, when detecting a faulty section, it is not necessarily necessary to shut off the substation circuit breaker, and the faulty section can be detected and disconnected without power outage or in a shorter time than before, providing high-quality power. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る送電系統のブロツク図、
第2図は負荷曲線を示す。 1−1,1−2,1−3,1−4,1−5:変
電所SSの遮断器、2−1〜2−8,3−1,4
−1,5−1,5−2:区分用常閉開閉器、2−
9,2−10,2−1:区分用常開開閉器、a,
b,c,d,e,f,g,h,i:配電線路、
6,6−1,6−2〜6−14:遠方制御装置、
7,8:変電所監視装置、9:故障区間検出切離
装置(配電線制御装置)、SS:変電所。
FIG. 1 is a block diagram of a power transmission system according to the present invention.
Figure 2 shows the load curve. 1-1, 1-2, 1-3, 1-4, 1-5: Substation SS circuit breaker, 2-1 to 2-8, 3-1, 4
-1, 5-1, 5-2: Normally closed switch for classification, 2-
9, 2-10, 2-1: Normally open switch for classification, a,
b, c, d, e, f, g, h, i: distribution line,
6, 6-1, 6-2 to 6-14: remote control device,
7, 8: Substation monitoring device, 9: Fault section detection and disconnection device (distribution line control device), SS: Substation.

Claims (1)

【特許請求の範囲】 1 配電用変電所母線、配電用遮断器、変電所監
視装置、区分開閉器及びそれら相互を接続する電
線からなる配電系統の区分開閉器操作装置におい
て、各区分開閉器に対応して設けた遠方監視制御
装置等から、前記配電用変電所母線の電流、配電
用遮断器、区分開閉器の状態と電流とを制御装置
に常時入力しておき、これら入力情報から各配電
線用遮断器に接続されている区分開閉器の開閉状
態、電流値と区分開閉器の開閉状態によつて定ま
る配電用遮断器より各需要家に到る送電経路と電
流値とを前記の制御装置の記憶装置に常時記憶し
ておき、配電線路に事故が発生した時、配電用遮
断器に流れる電流の変化により事故発生を検出
し、予め記憶されている区分開閉器の開閉状態と
送電経路に基づき、その時の事故配電線に属する
区分開閉器に流れている電流値の変化により事故
区間を検出し、事故区間を通して送電している区
間には遮断器の負荷曲線を使用して逆送融通計算
を行い、他配電線より給電するように負荷の移動
を行い、最後に事故区間を切離すことを特徴とす
る配電系統における事故区間の検出切離し方式。 2 配電用変電所母線、配電用遮断器、変電所監
視装置、区分開閉器及びそれら相互を接続する電
線からなる配電系統の区分開閉器操作装置におい
て、各区分開閉器に対応して設けた遠方監視制御
装置等から、前記配電用変電所母線の電流、配電
用遮断器、区分開閉器の状態と電流とを制御装置
に常時入力しておき、これら入力情報から各配電
線用遮断器に接続されている区分開閉器の開閉状
態、電流値と区分開閉器の開閉状態によつて定ま
る配電用遮断器より各需要家に到る送電経路と電
流値とを前記の制御装置の記憶装置に常時記憶し
ておき、配電線路に事故が発生した時、 (a) 配電用遮断器が遮断しなかつた場合は、配電
用遮断器に流れる電流の変化により事故発生を
検出し、予め記憶されている区分開閉器の開閉
状態と送電経路に基づき、その時の事故配電線
に属する区分開閉器に流れている電流値の変化
により事故区間を検出し、事故区間を通して送
電している区間には遮断器の負荷曲線を使用し
て逆送融通計算を行い、他配電線より給電する
ように負荷の移動を行い、最後に事故区間を切
離す。 (b) 配電用遮断器が遮断した場合は、配電用遮断
器の再投入を待つて電源側より順次区分開閉器
を投入していき、投入された開閉器に流れてい
る電流を事故時の区間電流として読み込み、予
め記憶されている区間電流値よりの変化により
事故区間を検出して切離しを行い、その後、事
故区間以後の健全停電区間には遮断器の負荷曲
線を使用して逆送融通計算を行い、他配電線よ
り給電する。 (c) 配電用遮断器が遮断し、配電用遮断器の再投
入後、順次区分開閉器を投入していき、事故区
間の区分開閉器投入により遮断器が再度遮断し
た場合は、その投入区間を事故区間とし、事故
区間の電源側の区間には配電用遮断器の再々投
入により送電し、負荷側の区間には逆送側配電
線より逆送融通を行う。 ことを特徴とする配電系統における事故区間の検
出切離し方式。
[Scope of Claims] 1. In a sectional switch operating device for a distribution system consisting of a distribution substation busbar, a distribution circuit breaker, a substation monitoring device, a sectional switch, and the electric wires that interconnect them, The current of the distribution substation busbar, the status and current of the distribution circuit breaker and sectional switch are constantly input to the control device from a correspondingly installed remote monitoring control device, etc., and each distribution The above-mentioned control of the power transmission route and current value from the distribution circuit breaker to each consumer determined by the opening/closing state and current value of the sectional switch connected to the line breaker and the opening/closing state of the sectional switch It is always stored in the device's memory device, and when an accident occurs on the distribution line, the occurrence of the accident is detected by the change in the current flowing through the distribution circuit breaker, and the opening/closing status of the sectional switch and the power transmission route are stored in advance. Based on this, the fault section is detected by the change in the current value flowing through the sectional switch belonging to the faulty distribution line at that time, and reverse transmission accommodation is implemented using the load curve of the circuit breaker for the section where power is being transmitted through the faulty section. A method for detecting and disconnecting fault sections in power distribution systems, which performs calculations, moves loads so that power is supplied from other distribution lines, and finally disconnects the fault section. 2. In the sectional switch operating device for distribution systems consisting of distribution substation busbars, distribution circuit breakers, substation monitoring equipment, sectional switches, and the wires that connect them, a remote controller installed corresponding to each sectional switch The current of the distribution substation busbar, the status and current of the distribution circuit breaker, and the sectional switch are constantly input to the control device from the monitoring control device, etc., and connections are made to the circuit breakers for each distribution line based on this input information. The current value and the power transmission route from the distribution circuit breaker to each consumer, which is determined by the open/close state of the sectional switch and the current value determined by the open/close state of the sectional switch, and the current value are always stored in the storage device of the control device. When an accident occurs on the distribution line, (a) If the distribution circuit breaker does not trip, the occurrence of the accident will be detected by the change in the current flowing through the distribution circuit breaker, and the system will be memorized in advance. Based on the opening/closing status of the sectional switch and the power transmission route, the fault section is detected based on the change in the current value flowing through the sectional switch belonging to the faulty distribution line at that time, and a circuit breaker is installed in the section where power is being transmitted through the faulty distribution line. Using the load curve, reverse transmission calculations are performed, the load is moved so that power is supplied from other distribution lines, and finally the faulty section is disconnected. (b) If the distribution circuit breaker trips, wait for the distribution circuit breaker to close again, then close the section switches one after another from the power supply side, and transfer the current flowing through the closed switches to the The faulty section is detected and disconnected based on the change from the pre-stored section current value, which is read as the section current, and then reverse transfer accommodation is performed using the circuit breaker load curve in the normal power outage section after the faulty section. Calculations are made and power is supplied from other distribution lines. (c) After the distribution circuit breaker is tripped and the distribution circuit breaker is closed again, the section switches are closed in sequence, and if the circuit breaker is tripped again by closing the section switch in the accident section, then the section is defined as the fault section, power is transmitted to the section on the power supply side of the fault section by repeatedly closing the distribution circuit breaker, and power is transferred back to the section on the load side from the distribution line on the reverse transmission side. A fault section detection and isolation method in a power distribution system is characterized by:
JP61228627A 1986-09-26 1986-09-26 System for detecting and cutting off failured section in distribution system Granted JPS6387126A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61228627A JPS6387126A (en) 1986-09-26 1986-09-26 System for detecting and cutting off failured section in distribution system
KR1019870001970A KR910000085B1 (en) 1986-09-26 1987-03-05 System for detecting and cutting off failured section in distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228627A JPS6387126A (en) 1986-09-26 1986-09-26 System for detecting and cutting off failured section in distribution system

Publications (2)

Publication Number Publication Date
JPS6387126A JPS6387126A (en) 1988-04-18
JPH0318411B2 true JPH0318411B2 (en) 1991-03-12

Family

ID=16879302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228627A Granted JPS6387126A (en) 1986-09-26 1986-09-26 System for detecting and cutting off failured section in distribution system

Country Status (2)

Country Link
JP (1) JPS6387126A (en)
KR (1) KR910000085B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340721A (en) * 1989-07-04 1991-02-21 Ngk Insulators Ltd Monitoring device for distribution line
JP3085431B2 (en) * 1993-03-01 2000-09-11 株式会社日立製作所 Distribution line control system and method
KR20010103442A (en) * 2000-05-10 2001-11-23 이종훈 Automatic Power Restoration System

Also Published As

Publication number Publication date
JPS6387126A (en) 1988-04-18
KR880004618A (en) 1988-06-07
KR910000085B1 (en) 1991-01-19

Similar Documents

Publication Publication Date Title
US7117105B2 (en) Method and apparatus for ground fault protection
US9673626B2 (en) Remote control and operation of LV distribution networks
US5940260A (en) Apparatus and method for distributing electrical power
US8102634B2 (en) Differential protection method, system and device
KR102145266B1 (en) System and method for monitoring power system
US20080179958A1 (en) Automatic Transfer Switch With Monitor Mode and Method Employing the Same
CN110707659A (en) Shore power cable overload protection system of marine shore power box
JPH0318411B2 (en)
US20220352747A1 (en) Changeover device, retrofit kit and method for supplying electrical power to a load
CN109586400A (en) A kind of direct current cabinet circuit
Usta Microgrid Protection and Automations
Allen Effects of wide-area control on the protection and operation of distribution networks
JP5822742B2 (en) Distribution line monitoring control system and distribution line monitoring control method
JPH04253000A (en) Nuclear power station, its power equipment within plant and power control panel within plant
US2300465A (en) Electrical distribution system
JPH0572172B2 (en)
JPH07274399A (en) Controlling method for power distribution system
CN114285022A (en) DC power supply circuit
JPH02262836A (en) Protective relay device for loop system
Otani et al. A gap analysis between logical nodes and functions of distribution automation systems
CN113708609A (en) AC/DC integrated power supply and control method
JP3167166B2 (en) Load selective cut-off device
JPH0437655B2 (en)
Norris The protection of alternating-current circuits and apparatus
JPH0421317A (en) Detecting and disconnecting method for predictive ground-fault section of high voltage power distribution line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees