JP5822742B2 - Distribution line monitoring control system and distribution line monitoring control method - Google Patents

Distribution line monitoring control system and distribution line monitoring control method Download PDF

Info

Publication number
JP5822742B2
JP5822742B2 JP2012016040A JP2012016040A JP5822742B2 JP 5822742 B2 JP5822742 B2 JP 5822742B2 JP 2012016040 A JP2012016040 A JP 2012016040A JP 2012016040 A JP2012016040 A JP 2012016040A JP 5822742 B2 JP5822742 B2 JP 5822742B2
Authority
JP
Japan
Prior art keywords
disconnection
distribution
disconnection detection
distribution line
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012016040A
Other languages
Japanese (ja)
Other versions
JP2013156103A (en
Inventor
中川 貴裕
貴裕 中川
島村 秀彦
秀彦 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012016040A priority Critical patent/JP5822742B2/en
Publication of JP2013156103A publication Critical patent/JP2013156103A/en
Application granted granted Critical
Publication of JP5822742B2 publication Critical patent/JP5822742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

本発明は、配電系統を構成する配電線路に異常が発生したことを検出し、異常発生区間を判定するのに適した配電線監視制御システムに関する。   The present invention relates to a distribution line monitoring control system suitable for detecting that an abnormality has occurred in a distribution line constituting a distribution system and determining an abnormality occurrence section.

配電系統は、高圧配電母線から一般需要家への電力供給のための複数の配電線を樹脂状に接続し設けられている。そして、各配電線の引き出し口にはそれぞれ配電線の各種電気量を取り込んで配電線事故を検出する保護リレーが設けられ、これらの保護リレーが配電線事故を検出した場合、配電線のフィーダ遮断器を遮断するようにしている。また各配電線は、区分開閉器により断路可能に接続されると共に、これらの配電線間は通常開状態にある連系用開閉器により連系可能に接続されている。   The distribution system is provided by connecting a plurality of distribution lines for supplying power from a high-voltage distribution bus to general consumers in a resinous manner. A protection relay is provided at the outlet of each distribution line to detect distribution line accidents by taking in various amounts of electricity from the distribution lines. When these protection relays detect distribution line accidents, the distribution line feeder is shut off. The device is shut off. Each distribution line is connected to be disconnected by a section switch, and the distribution lines are connected to each other by a connection switch that is normally open.

ここで配電系統において配電線の途中で断線が生じた場合には、断線によって発生する負荷電流の減少、対地静電容量の変化等が微小であるため、平常時の実負荷変化との識別が難しくなり、電源側上位での保護リレーによる電気量監視だけでは断線現象を検出することが困難となる。そのため、電力会社では一般需要家からの苦情通報等により断線事故を把握するのが実態であった。   Here, when a disconnection occurs in the distribution system in the distribution system, the decrease in load current generated by the disconnection, the change in ground capacitance, etc. are very small. It becomes difficult, and it becomes difficult to detect the disconnection phenomenon only by monitoring the amount of electricity by the protective relay on the power supply side. Therefore, the actual situation is that electric power companies grasp disconnection accidents by reporting complaints from general customers.

上記のような配電系統での断線事故が発生した場合に、速やかに事故発生箇所を検出するシステムとして、配電系統の開閉器遠方操作や系統状態監視を主体とした配電自動化システムが知られている。配電自動化システムは、制御所などに設置された親局と配電線の各区分開閉器に併設された子局を伝送手段で接続した構成となっており、伝送手段としては、高圧配電線路を伝送路として使用する電力線搬送方式やメタル線,光ファイバなどの専用伝送路を設けた有線方式、および無線方式などがあるが、現状での大部分は電力線搬送方式を適用した配電自動化システムである。   In the event of a disconnection accident in the power distribution system as described above, a power distribution automation system based on remote operation of the switch of the power distribution system and system status monitoring is known as a system that quickly detects the location of the accident. . The distribution automation system has a configuration in which a master station installed in a control center and a slave station attached to each switch of distribution lines are connected by transmission means, and the transmission means transmits high-voltage distribution lines. There are a power line carrier system used as a path, a wired system provided with a dedicated transmission line such as a metal line and an optical fiber, and a wireless system, but most of them are distribution automation systems to which the power line carrier system is applied at present.

このような配電自動化システムとして、例えば特開2004−53554号公報(特許文献1)には、配電線末端に位置する連系用区分開閉器に併設された断線検出装置を先ずポーリング監視することにより断線発生配電線を特定し、その後当該配電線に設置された断線検出装置をポーリング監視することにより短時間で断線区間を判定する方法が記載されている。   As such a distribution automation system, for example, in Japanese Patent Application Laid-Open No. 2004-53554 (Patent Document 1), by first performing a polling monitoring on a disconnection detection device provided in an interconnection switch located at the end of a distribution line. A method is described in which a disconnection occurrence distribution line is specified, and then a disconnection section is determined in a short time by performing polling monitoring of a disconnection detection device installed in the distribution line.

特開2004−53554号公報JP 2004-53554 A

上記のような配電系統の開閉器遠方操作や系統状態監視を主体とした配電自動化システムは、制御所などに設置された親局と配電線の各区分開閉器に併設された子局を伝送手段で接続した構成となっている。この伝送手段としては、高圧配電線路を伝送路として使用する電力線搬送方式やメタル線,光ファイバなどの専用伝送路を設けた有線方式、および無線方式などが用いられるが、現状では電力線搬送方式を適用したものが多い。   The distribution automation system mainly for remote operation of the distribution system and monitoring the system status as described above is a means to transmit the master station installed in the control station and the slave stations attached to each distribution switch of the distribution line. It is the structure connected by. As this transmission means, a power line carrier system using a high-voltage distribution line as a transmission line, a wired system provided with a dedicated transmission line such as a metal line or an optical fiber, and a wireless system are used. Many have been applied.

しかしながら、高圧配電線を伝送路として使用する電力線搬送方式を使用した配電自動化システムでは、断線箇所以降において伝送路としても障害が発生することになるため、特許文献1に記載の技術では断線箇所以降の断線検出装置の情報を収集することができず、断線区間の極小化が困難となるという課題がある。   However, in the distribution automation system using the power line conveyance system that uses the high-voltage distribution line as the transmission line, a failure also occurs as the transmission line after the disconnection point. Therefore, in the technique described in Patent Document 1, after the disconnection point However, there is a problem that it is difficult to minimize the disconnection section.

また、区分開閉器に併設される断線検出装置の多くはその制御電源を高圧配電線の代表相から供給される構成となっている。そのため、電源供給相の断線が発生すると断線検出装置の制御電源が喪失となり、伝送路として使用している高圧配電線相が断線となった場合と同様に、断線検出装置の情報を収集することができず断線区間の極小化が困難となるという課題がある。   In addition, most of the disconnection detection devices provided in the section switch are configured such that the control power is supplied from the representative phase of the high-voltage distribution line. Therefore, when the power supply phase is disconnected, the control power supply of the disconnection detector is lost, and the information on the disconnection detector is collected in the same way as when the phase of the high-voltage distribution line used as the transmission line is disconnected. There is a problem that it is difficult to minimize the disconnection section.

一方、前述の伝送路断線や制御電源喪失に対して、断線相を検出すると同時に残された健全相を伝送路として選択して情報伝送する方法及び、断線検出装置の制御電源を三相電源として1,2線断線では制御電源喪失とならいようにしたシステム構成が考えられる。しかし、この場合、各断線検出装置に伝送路の健全相選択回路や電源用変圧器の追加が必要になるため構成が複雑になってしまい、また、3線断線にはこのようなシステムでは対応できないという問題点がある。   On the other hand, in response to the above-mentioned transmission line disconnection or loss of control power, a method of transmitting information by selecting the remaining healthy phase as a transmission line at the same time as detecting a disconnection phase, and a control power source of the disconnection detection device as a three-phase power supply A system configuration can be considered in which the control power supply is not lost when the one or two wires are disconnected. However, in this case, it becomes necessary to add a healthy phase selection circuit and a power transformer to each disconnection detector, and the configuration becomes complicated. In addition, such a system can handle 3-wire disconnection. There is a problem that it is not possible.

本発明の目的は、配電系統での断線等の事故が発生した場合、簡易な構成で速やかに事故発生箇所を検出し、事故発生区間を健全な配電系統から切り離すことで、より多くの需要家を事故区間から分離することのできる配電線監視制御システムおよび配電線監視制御方法を提供することである。   The purpose of the present invention is to quickly detect the location of an accident with a simple configuration when an accident such as a disconnection in the power distribution system occurs, and to disconnect the accident occurrence section from a healthy power distribution system. Is to provide a distribution line monitoring and control system and a distribution line monitoring and control method that can be separated from an accident section.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、配電母線に複数の配電線を接続し、各配電線の複数の箇所に設ける第一の断線検出装置と、各配電線間を連系する連系用配電線に設ける第二の断線検出装置と、前記第一の断線検出装置および前記第二の断線検出装置をポーリングして断線の有無を監視し、前記第一の断線検出装置に併設される区分開閉器または前記第二の断線検出装置に併設される連系用開閉器へ制御指令を出力して断線箇所を健全な配電系統から切り離す監視制御装置と、を有する配電線断線検出システムにおいて、前記監視制御装置は、前記第二の断線検出装置をポーリングして配電線の断線を検出すると、当該配電線に設ける少なくとも1つの前記第一の断線検出装置へ連系用配電線から電力が供給されるよう前記連系用開閉器へ制御指令を出力し、当該配電線に複数設ける前記第一の断線検出装置を順にポーリングして断線箇所を判別することを特徴とする。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. To give an example, a first disconnection detecting device that connects a plurality of distribution lines to a distribution bus and is provided at a plurality of locations of each distribution line, The second disconnection detection device provided on the distribution distribution line interconnecting each distribution line, the first disconnection detection device and the second disconnection detection device are polled to monitor the presence or absence of the disconnection, A supervisory control device for outputting a control command to the divisional switch installed in the first disconnection detection device or the interconnection switch installed in the second disconnection detection device to disconnect the disconnection portion from a healthy distribution system; In the distribution line disconnection detection system, the monitoring control device polls the second disconnection detection device to detect a disconnection of the distribution line, and at least one of the first disconnection detection devices provided in the distribution line. Distribution line for interconnection Outputs a control command to the communication system switching device so that power is supplied, characterized in that in order to determine the polling to broken portion a plurality providing said first disconnection detecting device to the distribution line.

本発明によれば、配電系統での断線等の事故が発生した場合、簡易な構成で速やかに事故発生箇所を検出し、事故による需要家への影響をより低減できる配電線監視制御システムおよび配電線監視制御方法を提供できる。   According to the present invention, when an accident such as a disconnection in a distribution system occurs, a distribution line monitoring and control system and a distribution system that can quickly detect the location of the accident with a simple configuration and further reduce the impact of the accident on consumers. An electric wire monitoring and control method can be provided.

電力線搬送方式を用いた断線検出システムの構成図である。It is a block diagram of the disconnection detection system using a power line conveyance system. 電力線搬送方式の代表的な子局の構成図である。It is a block diagram of a typical slave station of a power line carrier system. 断線区間判定および断線区間切り離し主要フローを示す図である。It is a figure which shows a disconnection area determination and a disconnection area isolation | separation main flow.

以下、本発明の一実施形態を図面を用いて説明する。
図1は、本発明の一実施形態による断線検出システムを示す図である。配電用トランス4の二次側に位置する高圧配電母線5には、それぞれ配電線引き出し口のフィーダ遮断器FCB1〜FCBnを介して通常3〜7フィーダの配電線1〜nが接続され、各配電線1〜nの途中に断路可能な区分開閉器DM11〜DMn3と、各配電線1〜n間を接続する配電線に設けられてそれぞれ通常開状態の図示しない中間連系用区分開閉器と末端の連系用配電線に設け、通常開状態の連系用区分開閉器DM100〜DM(n−1)00が設けられ、全体として樹枝状の配電網が形成され、これによって一般需要家への電力供給が行われている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a disconnection detection system according to an embodiment of the present invention. The high-voltage distribution bus 5 located on the secondary side of the distribution transformer 4 is normally connected with the distribution lines 1 to n of 3 to 7 feeders via feeder circuit breakers FCB1 to FCBn at the distribution line outlets. Section switches DM11 to DMn3 that can be disconnected in the middle of the wires 1 to n, and the distribution switches that are connected to the distribution lines 1 to n and that are normally open, respectively, and that are not shown in the drawing. Are provided in the distribution line for interconnection, and are provided with normally-connected interconnection switches DM100 to DM (n-1) 00, and a dendritic distribution network is formed as a whole. Power is being supplied.

各区分開閉器DM11〜DMn3および連系用区分開閉器DM100〜DM(n−1)00には、配電自動化システムの子局と兼用した断線検出装置が併設されている。子局と兼用した断線検出装置FD11〜FDn3,FD100〜FD(n−1)00は、配電線を伝送路とした電力線搬送方式による情報伝送機能があり、伝送路として使用している配電線を介して配電母線5に接続された結合器8から配電変電所設置の中継装置7を経由して通信路9と接続された制御所または営業所設置の遠方監視制御を行う親局6と接続されている。   Each of the division switches DM11 to DMn3 and the connection division switches DM100 to DM (n-1) 00 are provided with a disconnection detection device that also serves as a slave station of the distribution automation system. The disconnection detectors FD11 to FDn3 and FD100 to FD (n-1) 00, which are also used as slave stations, have an information transmission function based on a power line conveyance method using a distribution line as a transmission line. From the coupler 8 connected to the distribution bus 5 via the relay station 7 installed in the distribution substation, it is connected to the control station connected to the communication path 9 or the master station 6 that performs remote monitoring control installed in the sales office. ing.

通常、変電所に設けられる図示しない保護リレー装置で変電所配電線1〜nの短絡,地絡事故を検出すると、フィーダ遮断器FCB1〜FCBnを動作させ、事故の検出された配電線を切り離して事故の波及を防いでいる。しかし、地絡等が発生しないような配電線の途中の断線が生じた場合には、断線によって発生する負荷電流の減少、対地静電容量の変化等が微小な場合があり、保護リレーによる電気量監視だけでは断線現象を検出することが困難な場合がある。そこで本実施例では、各区分開閉器DM11〜DMn3および連系用区分開閉器DM100〜DM(n−1)00に併設される断線検出装置をポーリングして断線箇所を特定する。   Normally, when a short circuit of the substation distribution lines 1 to n or a ground fault is detected by a protective relay device (not shown) provided in the substation, the feeder circuit breakers FCB1 to FCBn are operated to disconnect the distribution line where the accident is detected. Prevents the spread of accidents. However, if there is a break in the middle of the distribution line that does not cause a ground fault or the like, the load current generated by the break may decrease, the change in ground capacitance, etc. may be very small. It may be difficult to detect the disconnection phenomenon only by monitoring the amount. Therefore, in this embodiment, the disconnection detecting device provided in each of the division switches DM11 to DMn3 and the connection division switches DM100 to DM (n-1) 00 is polled to identify the disconnection location.

図2は、前述の配電自動化システムの子局と兼用した断線検出装置の一例を示す回路図である。この断線検出装置10は、R相,S相,T相から電気量を取り込み断線の有無を検出する断線検出処理101、親局6との情報の送受信を行う伝送処理102、電力線搬送方式による送受信回路103,104、および図示していない配電自動化システム子局として区分開閉器へ開閉指令を行う区分開閉器制御回路および各種電気量計測回路などから構成されている。   FIG. 2 is a circuit diagram showing an example of a disconnection detecting device also used as a slave station of the above-described distribution automation system. This disconnection detection apparatus 10 includes a disconnection detection process 101 that takes in an electric quantity from the R phase, S phase, and T phase to detect the presence / absence of a disconnection, a transmission process 102 that transmits / receives information to / from the master station 6, and a transmission / reception by a power line carrier system The circuits 103 and 104, a distribution automation system slave station (not shown), a segment switch control circuit that issues a switch command to the segment switch, various electric quantity measurement circuits, and the like.

区分開閉器11の設置箇所には、断線検出装置(子局)に電源を供給する電源TR111,112、電力線搬送方式に必要な結合器113,114、配電線各相電圧を検出するためのPD115,116が既存の構成要素として配置されている。これら電源TR,結合器,PDは通常図示の通り区分開閉器11の両側に配置される。   At the installation location of the section switch 11, power supplies TR 111 and 112 that supply power to the disconnection detector (slave station), couplers 113 and 114 that are necessary for the power line carrier system, and PD 115 for detecting each phase voltage of the distribution line. , 116 are arranged as existing components. These power supplies TR, couplers, and PDs are usually arranged on both sides of the section switch 11 as shown.

図2の例では、断線検出装置の制御電源は配電線R−T相間に接続された電源TR111,112から供給され通常は予め設定されたどちらか一方の電源を選択使用しており、使用中の電源が無くなると自動的に他方に切り替わる回路を有している。電力線搬送方式による送受信は配電線S相に接続された結合器113,114を介して行われ通常は電源側の回路が選択使用されている。   In the example of FIG. 2, the control power source of the disconnection detection device is supplied from the power sources TR 111 and 112 connected between the distribution lines R and T, and usually one of the preset power sources is selectively used. Has a circuit that automatically switches to the other when the power source is lost. Transmission / reception by the power line carrier system is performed through the couplers 113 and 114 connected to the S phase of the distribution line, and usually a circuit on the power source side is selectively used.

断線検出処理101は、区分開閉器11の両端に配置されたインピーダンス分圧方式の各相電圧検出器PD115,116の各相電圧を入力として、各相電圧をベクトル合成した零相電圧または逆相電圧を算出し、1線または2線断線時の過電圧を検出、3線断線時の各相無電圧を検出するようにしている。   In the disconnection detection processing 101, the phase voltages of the phase voltage detectors PD115 and 116 of the impedance voltage dividing system arranged at both ends of the section switch 11 are input, and the zero phase voltage or the reverse phase obtained by vector synthesis of the phase voltages. The voltage is calculated, an overvoltage at the time of disconnection of one or two wires is detected, and a no-voltage at each phase at the time of disconnection of the three wires is detected.

このような断線検出処理は、本例のように既に配電自動化子局に取り込まれている各相電気量をもとに検出処理のみ追加すれば、新たな断線検出装置の追加なしに兼用することが可能である。断線検出のための電気量は、区分開閉器が閉の状態では両端の電気量は同じになるためどちらか一方の電気量検出のみで断線検出が可能である。区分開閉器が開の状態では各端の電気量からそれぞれ異配電線の情報として断線検出情報を扱うことができる。本例の各相電圧を入力とする方式の他に各相電流を入力とした検出方式、各相電圧入力においても零相電圧、逆相電圧以外の検出方式を用いても断線検出処理を実現できるが、断線検出方式で確度の高い検出方式は、断線箇所より負荷側で計測される電気量を用いた検出方式であるため、ここでは、断線箇所の負荷側で断線検出することを仮定して以降の説明を行う。また、伝送処理102は、通常の配電自動化システムで実施される送受信情報に断線検出情報を加えて送信する処理を行う。   Such disconnection detection processing can be used without adding a new disconnection detection device if only detection processing is added based on the amount of electricity in each phase that has already been taken into the distribution automation slave station as in this example. Is possible. Electrical quantity for disconnection detection section switches is possible disconnection detected only in one of the electric quantity detecting the electric quantity at both ends is the same in the closed state. When the section switch is in the open state, the disconnection detection information can be handled as information on the differently distributed wires from the amount of electricity at each end. In addition to the method that uses each phase voltage as an input in this example, the detection method that uses each phase current as an input, and even if each phase voltage input uses a detection method other than zero-phase voltage and reverse-phase voltage, disconnection detection processing is realized. However, since the detection method with high accuracy in the disconnection detection method is a detection method using the amount of electricity measured on the load side from the disconnection location, it is assumed here that disconnection detection is performed on the load side of the disconnection location. The following explanation will be given. In addition, the transmission process 102 performs a process of transmitting by adding disconnection detection information to transmission / reception information implemented in a normal power distribution automation system.

次に図3を用いて、上述した断線検出システムによる断線検出について説明する。前述のように現在の配電系統運用は、区分開閉器の状態監視、開閉制御を主目的とした配電自動化システムが採用されており、その多くが電力線搬送方式による伝送手段を用いたシステムとなっており、この配電自動化システムの情報伝送に断線検出情報を組み込むことで説明するが、配電自動化システムの構成は一般に広く知られているためここでの詳細説明は省略し、その一部の構成を図3に示したフローチャートで説明する。また、電力線搬送方式の配電自動化システムによる状態監視は、ポーリング方式と呼ばれる監視対象装置を1台毎に呼び出し通信する方式が用いられている。   Next, disconnection detection by the above-described disconnection detection system will be described with reference to FIG. As mentioned above, the current distribution system operation employs a distribution automation system mainly for the status monitoring and switching control of the division switch, and many of them are systems using transmission means by the power line carrier system. However, although it will be described by incorporating disconnection detection information into the information transmission of this distribution automation system, the configuration of the distribution automation system is generally widely known, so a detailed description thereof is omitted here, and a part of the configuration is illustrated. This will be described with reference to the flowchart shown in FIG. In addition, the state monitoring by the power line carrier distribution automation system uses a method called a polling method in which the monitoring target devices are called and communicated one by one.

今、図1に示した断線箇所13で断線事故が発生したとすると、断線箇所13以降での配電障害が生じ、断線相によっては、伝送路としても障害が生じたり、また、断線検出装置の電源喪失となる場合がある。   Now, assuming that a disconnection accident occurs at the disconnection point 13 shown in FIG. 1, a power distribution failure occurs after the disconnection point 13, and depending on the disconnection phase, a failure may occur as a transmission line. Power loss may occur.

例えば図2の接続構成では、断線箇所13での断線事故が例えばS相断線の場合、制御電源はあるが伝送路断となり、R相断線の場合は、伝送路は正常であるが制御電源喪失となり結果として断線が発生すると断線箇所13以降の断線検出装置は断線情報を上位の親局6へ伝送できなくなり無応答状態になるが、連系用区分開閉器に併設された断線検出装置は、常時開閉器が開状態で断線箇所13がある配電線2とは逆側の伝送路および制御電源が確保されているため、断線検出情報を親局6へ伝送することができる。   For example, in the connection configuration of FIG. 2, if the disconnection accident at the disconnection point 13 is, for example, the S-phase disconnection, the control power supply is present but the transmission path is disconnected, and if the R-phase disconnection, the transmission path is normal but the control power supply is lost. As a result, when a disconnection occurs, the disconnection detection device after the disconnection point 13 cannot transmit the disconnection information to the upper master station 6 and becomes a no-response state. However, the disconnection detection device attached to the connection division switch is Since the transmission path and the control power source on the side opposite to the distribution line 2 with the disconnection point 13 in the open state are always secured, the disconnection detection information can be transmitted to the master station 6.

このことに着目しながら図3のフローチャートの説明を進める。先ず、図3に示したステップS1で断線検出処理開始のタイミングになると配電線末端に位置する連系用区分開閉器DM100〜DM(n−1)00に併設した断線検出装置FD100〜FD(n−1)00のポーリングが開始される。本実施例では、数秒〜数十秒で断線検出装置FD100〜FD(n−1)00の1サイクルのポーリングが行われるものとする。次にステップS2で対象の断線検出装置1台毎に個別監視することで断線検出情報を収集し、ステップS3で断線検出情報の有無をチェックし、断線検出有の場合、ステップS4で断線発生配電線の特定処理を実施する。   The description of the flowchart of FIG. First, when the disconnection detection processing start timing is reached in step S1 shown in FIG. 3, the disconnection detectors FD100 to FD (n (n) attached to the connection division switches DM100 to DM (n-1) 00 located at the ends of the distribution lines. -1) 00 polling is started. In this embodiment, it is assumed that polling of the disconnection detection devices FD100 to FD (n-1) 00 is performed in one cycle in several seconds to several tens of seconds. Next, in step S2, disconnection detection information is collected by individually monitoring each target disconnection detection device. In step S3, the presence or absence of disconnection detection information is checked. Conduct wire specific processing.

本実施例の場合、断線検出装置FD100の配電線2側および断線検出装置FD200の配電線2側で断線検出有となり、他の連系用区分開閉器に併設された断線検出装置は断線検出無となるため、断線箇所は配電線2にあることが特定でき、ステップS5で断線発生の警報出力を発報する。   In the case of the present embodiment, disconnection detection is enabled on the distribution line 2 side of the disconnection detection device FD100 and on the distribution line 2 side of the disconnection detection device FD200, and the disconnection detection device provided along with the other segmentation switch is not detected. Therefore, it is possible to specify that the disconnection point is in the distribution line 2, and in step S5, an alarm output for disconnection is issued.

次に特定された配電線2に設置されている断線検出装置をステップS6で状態監視する。本実施例では、配電母線5側の断線検出装置から順に状態監視を行い、断線検出装置DM21は断線検出無との情報が取得できる。そして、電力線搬送に用いている相、および、断線検出装置の電源に用いている相ではない相が断線している場合には、断線検出装置DM22において、断線検出有との情報を取得でき、断線箇所13を特定できる。この場合には、断線箇所13を健全な配電線から切り離すよう区分開閉器DM21,DM22を開とし、区分開閉器DM22より以降については、他の配電線1または3から電力が供給されるように連系用区分開閉器DM100またはDM200を閉にすることで、事故区間を極小化できる。   Next, the disconnection detecting device installed in the specified distribution line 2 is monitored in step S6. In the present embodiment, state monitoring is performed in order from the disconnection detecting device on the distribution bus 5 side, and the disconnection detecting device DM21 can acquire information that no disconnection is detected. And when the phase used for power line conveyance and the phase that is not the phase used for the power source of the disconnection detection device are disconnected, the disconnection detection device DM22 can acquire information that the disconnection is detected, The disconnection location 13 can be specified. In this case, the section switches DM21 and DM22 are opened so that the disconnection point 13 is disconnected from the healthy distribution line, and power is supplied from the other distribution lines 1 or 3 after the section switch DM22. The accident section can be minimized by closing the connection division switch DM100 or DM200.

一方、電力線搬送に用いている相、または、断線検出装置の電源に用いている相が断線している場合には、断線検出装置DM22,DM23は無応答の情報が取得できることからステップS7で断線区間は区分開閉器21より負荷側で、かつ、区分開閉器DM23より電源側の区間であることを仮判定することができ、ステップS8で仮判定した断線区間を表示する。   On the other hand, if the phase used for power line conveyance or the phase used for the power source of the disconnection detection device is disconnected, the disconnection detection devices DM22 and DM23 can acquire no-response information, so that the disconnection occurs in step S7. The section can be provisionally determined to be a section on the load side from the section switch 21 and the power supply side from the section switch DM23, and the disconnection section provisionally determined in step S8 is displayed.

ステップS7での区間判定を仮判定としているのは、本来の断線箇所13がある区間は図1に示す通り区分開閉器DM21とDM22に挟まれた区間であるが、断線検出装置FD22,FD23が無応答となり断線検出情報を取得できないことを考慮する必要があるためである。断線仮判定区間は少なくともその区間内に断線箇所が存在することは確かなので、次のステップS9以降で断線区間の配電系統からの切り離しを行いながら断線区間極小化を実施する。   The section determination in step S7 is tentatively determined. The section with the original disconnection point 13 is a section sandwiched between the division switches DM21 and DM22 as shown in FIG. 1, but the disconnection detection devices FD22 and FD23 are This is because it is necessary to consider that no disconnection is detected and disconnection detection information cannot be acquired. Since it is certain that the disconnection provisional judgment section has at least a disconnection portion in the section, the disconnection section minimization is performed while disconnecting the disconnection section from the power distribution system in the next step S9 and subsequent steps.

先ずステップS9で伝送路確保と断線箇所以降の供給障害解消をするため、連系用区分開閉器DM200を遠方より入制御してDM200を開から閉とし、ステップS10で断線仮判定区間の電源側区分開閉器DM21を遠方より切制御してDM21を閉から開状態として断線箇所の方端を無電圧状態とする。   First, in step S9, in order to secure the transmission path and eliminate the supply failure after the disconnection point, the connection section switch DM200 is controlled to enter from far away to close the DM200 from open to close. The section switch DM21 is controlled to be turned off from a distance so that the DM21 is closed to an open state, and the end of the disconnection portion is set to a non-voltage state.

次にステップ11で配電線2の負荷側より順次断線検出装置をポーリング監視し、断線検出装置FD23,FD22の断線検出情報を取得するとFD23,FD22の電源側/負荷側は逆転しているため、ステップS12で両方とも断線検出無の情報からステップS13の処理に移り、区分開閉器DM22から連系用区分開閉器DM200方向には断線箇所が存在しないと判定でき、断線区間は区分開閉器DM21とDM22に挟まれた区間であると特定できる。   Next, in step 11, the disconnection detection device is sequentially polled from the load side of the distribution line 2, and when the disconnection detection information of the disconnection detection devices FD23 and FD22 is acquired, the power source side / load side of the FD23 and FD22 are reversed. In step S12, both of them move from the information of no disconnection detection to the processing of step S13, and it can be determined that there is no disconnection point in the direction from the section switch DM22 to the connection section switch DM200, and the disconnection section is separated from the section switch DM21. It can be specified that the section is sandwiched between DMs 22.

ステップS14で確定断線区間を表示し、ステップS16で区分開閉器DM22を遠方より切制御してDM22を開状態とし、断線箇所13の残った方端を無電圧にすることで事故区間を極小化できる。これによって、例えば区分開閉器DM22から区分開閉器DM23の間に接続される需要家にも連系用配電線を通じて電力を供給することができる。   In step S14, the confirmed disconnection section is displayed, and in step S16, the section switch DM22 is controlled to be turned off from a distance to open the DM22, and the remaining end of the disconnection point 13 is set to no voltage to minimize the accident section. it can. Thereby, for example, power can be supplied to the consumer connected between the section switch DM22 and the section switch DM23 through the distribution distribution line.

以上の実施例のように本発明によれば、配電系統での断線等の事故が発生した場合、簡易な構成で速やかに事故発生箇所を検出するとともに、事故による需要家への影響をより低減することができる。   As described above, according to the present invention, when an accident such as a disconnection in a power distribution system occurs, the location where the accident occurred can be detected quickly with a simple configuration, and the impact on the consumer due to the accident can be further reduced. can do.

また、本実施例では既存の構成要素を兼用して新たな設備投資せずに、短時間で断線区間を極小化するとともに配電系統から切り離し公衆安全の確保をすることができる。   Further, in this embodiment, existing components can be used together and new equipment investment can be made, and the disconnection section can be minimized in a short time and separated from the power distribution system to ensure public safety.

また、本実施例では連系用区分開閉器側からポーリングを行う際に、断線箇所13を特定してから区分開閉器DM22を閉から開としたが、連系用区分開閉器DM200を入制御した後すぐに、区分開閉器DM22,DM23を切り離して、ポーリング監視を行う際にDM23,DM22と順に開から閉としていき、断線箇所を判定することもできる。これにより、断線箇所13に電源が接続される時間をより短くできるため、より公衆安全を確保することができる。   Further, in this embodiment, when polling is performed from the connection section switch side, the section switch DM22 is opened from the closed state after the disconnection point 13 is specified, but the connection section switch DM200 is controlled to be turned on. Immediately after this, the section switches DM22 and DM23 are disconnected, and when performing polling monitoring, the DM23 and DM22 are sequentially closed from the open to the closed, and the disconnection location can be determined. Thereby, since the time which a power supply is connected to the disconnection location 13 can be shortened, public safety can be ensured more.

1〜3 配電線
4 配電用トランス
5 高圧配電母線
6 親局
7 中継装置
8 結合器
9 通信路
10,FD11〜FDn3 断線検出装置(子局)
11,DM11〜DMn3 区分開閉器
101 断線検出処理
102 伝送処理
103,104 送受信回路
111,112 電源TR
113,114 結合器
115,116 PD
FCB1〜FCBn フィーダ遮断器
DM100〜DM(n−1)00 連系用区分開閉器
1 to 3 Distribution lines 4 Distribution transformer 5 High voltage distribution bus 6 Master station 7 Relay device 8 Coupler 9 Communication path 10, FD11 to FDn3 Disconnection detection device (slave station)
11, DM11 to DMn3 Sectional switch 101 Disconnection detection processing 102 Transmission processing 103, 104 Transmission / reception circuits 111, 112 Power supply TR
113, 114 Coupler 115, 116 PD
FCB1 to FCBn Feeder circuit breaker DM100 to DM (n-1) 00 Interconnection switch

Claims (5)

配電母線に複数の配電線を接続し、各配電線の複数の箇所に設ける第一の断線検出装置と、
各配電線間を連系する連系用配電線に設ける第二の断線検出装置と、
前記第一の断線検出装置および前記第二の断線検出装置をポーリングして断線の有無を監視し、前記第一の断線検出装置に併設される区分開閉器または前記第二の断線検出装置に併設される連系用開閉器へ制御指令を出力して断線箇所を健全な配電系統から切り離す監視制御装置と、を有する配電線断線検出システムにおいて、
前記監視制御装置は、前記第二の断線検出装置のポーリングにより配電線の断線を検出すると、断線が検出された配電線に複数設ける前記第一の断線検出装置を順に状態監視して、状態監視したいずれかの前記第一の断線検出装置から応答が無かった場合に、当該配電線に設ける少なくとも1つの前記第一の断線検出装置へ連系用配電線から電力が供給されるよう前記連系用開閉器へ制御指令を出力することを特徴とする配電線断線検出システム。
A plurality of distribution lines connected to the distribution bus, and a first disconnection detector provided at a plurality of locations of each distribution line;
A second disconnection detection device provided on the distribution distribution line connecting the distribution lines;
The first disconnection detection device and the second disconnection detection device are polled to monitor the presence or absence of disconnection, and are attached to the section switch provided in the first disconnection detection device or the second disconnection detection device. In a distribution line disconnection detection system having a monitoring control device that outputs a control command to the interconnection switch to be disconnected from a healthy distribution system,
When the monitoring control device detects disconnection of the distribution line by polling of the second disconnection detection device, the monitoring control device sequentially monitors the state of the first disconnection detection devices provided on the distribution line where the disconnection is detected, and monitors the state. When there is no response from any of the first disconnection detection devices, the interconnection is configured such that power is supplied from the interconnection distribution line to at least one first disconnection detection device provided in the distribution line. Distribution line disconnection detection system, characterized in that a control command is output to a switch for a power supply .
請求項において、
前記監視制御装置は、状態監視に対する応答が無い前記断線検出装置以降の配電線を切り離すように当該配電線に設けられるいずれかの前記区分開閉器へ制御指令を出力することを特徴とする配電線断線検出システム。
In claim 1 ,
The monitoring control device outputs a control command to any one of the division switches provided in the distribution line so as to cut off the distribution line after the disconnection detection device that does not respond to state monitoring. Disconnection detection system.
請求項1において、
前記監視制御装置は、前記第一の断線検出装置および前記第二の断線検出装置と電力線搬送通信を用いて通信を行うことを特徴とする配電線断線検出システム。
In claim 1,
The distribution control system according to claim 1, wherein the monitoring control device communicates with the first disconnection detection device and the second disconnection detection device using power line carrier communication.
請求項1において、
前記監視制御装置は、前記第二の断線検出装置のポーリングにより配電線の断線を検出すると、断線が検出された配電線に複数設ける前記第一の断線検出装置のうち、配電母線側に設ける前記第一の断線検出装置から順に状態監視を行い、いずれかの前記第一の断線検出装置から応答が無かった場合に、当該応答が無い前記第一の断線検出装置が設置される配電線の箇所を配電母線から切り離すように当該第一の断線検出装置より配電母線側の前記区分開閉器へ制御指令を出力し、
断線が検出された配電線に設ける少なくとも1つの前記第一の断線検出装置へ連系用配電線から電力が供給されるよう前記連系用開閉器へ制御指令を出力し、
断線が検出された配電線に複数設ける前記第一の断線検出装置のうち、前記連系用開閉器側に設ける前記第一の断線検出装置から順に状態監視して断線箇所を判別し、
当該断線箇所を連系用配電線から切り離すように当該断線箇所より連系用配電線側の前記区分開閉器へ制御指令を出力することを特徴とする配電線断線検出システム。
In claim 1,
When the monitoring and control device detects disconnection of the distribution line by polling of the second disconnection detection device, the monitoring control device is provided on the distribution bus side among the first disconnection detection devices provided on the distribution line in which disconnection is detected. The state of the distribution line where the first disconnection detection device without the response is installed when the state is monitored in order from the first disconnection detection device and there is no response from any of the first disconnection detection devices Output the control command to the section switch on the distribution bus side from the first disconnection detection device so as to be disconnected from the distribution bus,
Outputting a control command to the interconnection switch so that power is supplied from the interconnection distribution line to at least one first disconnection detection device provided in the distribution line in which the disconnection is detected;
Among the first disconnection detection devices provided on the distribution line in which disconnection is detected, the state is monitored in order from the first disconnection detection device provided on the connection switch side to determine the disconnection location,
A distribution line disconnection detection system that outputs a control command from the disconnection point to the section switch on the connection distribution line side so as to disconnect the disconnection point from the distribution line.
配電母線に複数の配電線を接続し、各配電線間を連系する連系用配電線に設ける断線検出装置をポーリングし、
いずれかの配電線の断線を検出すると、当該配電線の複数箇所に設ける断線検出装置を順に状態監視して、状態監視したいずれかの前記断線検出装置から応答が無かった場合に、当該配電線に設ける少なくとも1つの断線検出装置へ電力が供給されるように連系用配電線に備える連系用開閉器へ制御指令を出力することを特徴とする配電線断線検出方法。
Connect a plurality of distribution lines to the distribution bus, and poll the disconnection detection device provided in the distribution distribution line that connects the distribution lines.
When disconnection of any of the distribution lines is detected, the disconnection detection devices provided at a plurality of locations of the distribution line are sequentially monitored, and if there is no response from any of the disconnection detection devices that have been monitored, the distribution line at least one distribution line break detection method and outputs a control command to the tie-switching device provided in the communication system for distribution lines as power to breakage detecting device is supplied to provide the.
JP2012016040A 2012-01-30 2012-01-30 Distribution line monitoring control system and distribution line monitoring control method Active JP5822742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016040A JP5822742B2 (en) 2012-01-30 2012-01-30 Distribution line monitoring control system and distribution line monitoring control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016040A JP5822742B2 (en) 2012-01-30 2012-01-30 Distribution line monitoring control system and distribution line monitoring control method

Publications (2)

Publication Number Publication Date
JP2013156103A JP2013156103A (en) 2013-08-15
JP5822742B2 true JP5822742B2 (en) 2015-11-24

Family

ID=49051438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016040A Active JP5822742B2 (en) 2012-01-30 2012-01-30 Distribution line monitoring control system and distribution line monitoring control method

Country Status (1)

Country Link
JP (1) JP5822742B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316823B (en) * 2014-11-11 2017-05-31 国家电网公司 A kind of method and device of defects detection
JP6786700B2 (en) 2017-02-24 2020-11-18 ソニーモバイルコミュニケーションズ株式会社 Information processing equipment, information processing methods and information processing systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088750B2 (en) * 1986-03-31 1996-01-29 株式会社日立製作所 Distribution line remote monitoring control system
JPH01298922A (en) * 1988-05-27 1989-12-01 Mitsubishi Electric Corp Power distribution system monitoring system
US8180481B2 (en) * 2008-08-06 2012-05-15 Consolidated Edison Company Of New York, Inc. Autoloop system and method of operation

Also Published As

Publication number Publication date
JP2013156103A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
US9941739B2 (en) Process bus associated protective control system, merging unit, and calculation device
US6940702B2 (en) Electrical protection system
US7117105B2 (en) Method and apparatus for ground fault protection
US8102634B2 (en) Differential protection method, system and device
CN105655879B (en) The voltage arrangement of 110 kilovolts of system busbar combining unit duplicate system retrofits of intelligent substation double bus scheme mode
JP6231711B1 (en) Method and apparatus for fault removal in a power network having an annular feed loop
CN112117735B (en) Arc protection system and control method thereof
WO2018131797A1 (en) Real-time detection/recovery system of power line failure in power distribution system and construction method therefor
JP5518926B2 (en) Distribution automation system
JP5822742B2 (en) Distribution line monitoring control system and distribution line monitoring control method
CN104871389A (en) Standby power supply system and methods for isolating a local power distribution network from a superordinate power supply network
EP3214713B1 (en) Improvements in or relating to electrical power systems
CA2492429A1 (en) Electrical network protection system
WO2012136241A1 (en) Fault handling during circuit breaker maintenance in a double-breaker busbar switchyard
Roberts et al. Trip and restore distribution circuits at transmission speeds
KR101884120B1 (en) Duplex communication module possible fast switching and protection relay system using the same
CN105977927B (en) Arc light protection system and method with selective tripping function
GB2521143A (en) An improved ring main unit
CN109617030A (en) A kind of subway exchange ring network power supply dynamically adapting over-current protection method and system
KR102616906B1 (en) System for Controlling the Distribution System by Detecting Phase Loss
CN105140881B (en) Differential protecting method, system and equipment
Chiu et al. Rough balance busbar protection and breaker failure protection for the HK electric's distribution network
JP2503961B2 (en) Loop line protection device
KR20220150777A (en) Distributed power source alone operation previntion method and device reflecting distribution system topology
KR20240039755A (en) A method for implementing digitalization of the internal power supply facility of a digital substation and a System for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R151 Written notification of patent or utility model registration

Ref document number: 5822742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151