JPH03183A - Method for removing cod by use of coal ash - Google Patents

Method for removing cod by use of coal ash

Info

Publication number
JPH03183A
JPH03183A JP13422789A JP13422789A JPH03183A JP H03183 A JPH03183 A JP H03183A JP 13422789 A JP13422789 A JP 13422789A JP 13422789 A JP13422789 A JP 13422789A JP H03183 A JPH03183 A JP H03183A
Authority
JP
Japan
Prior art keywords
coal ash
cod
tank
waste water
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13422789A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hayashi
林 由和
Toshio Kono
敏夫 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP13422789A priority Critical patent/JPH03183A/en
Publication of JPH03183A publication Critical patent/JPH03183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To treat waste water contg. COD at a low cost without using an expensive adsorbent, etc., by bringing the waste water into contact with coal ash. CONSTITUTION:The waste water contg. COD discharged from the stack gas desulfurizer of a thermal power plant, for example, is firstly stored in a storage tank 1, then passed successively through a fluorine treating tank 2 and a heavy metal treating tank 3, treated and sent to a COD treating tank 4. Coal ash 7 is charged into the COD treating tank 4 from a coal ash storage place 5 through a coal ash supply passage 6, and the coal ash and the waste water are agitated by supplied air and mixed. After COD is adsorbed on the coal ash, then air supply is stopped to settle the inside of the tank, hence coal ash is deposited, and the supernatant liq. with the pH regulated is discharged. The deposited coal ash is sent to a recovered coal ash storage place 12 via a recovery passage and then disposed. A large amt. of coal ash is generated from a thermal power plant utilizing coal, and the coal ash is advantageously utilized in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、COD (化学的酸素要求量)を含む排水
から、石炭灰を利用してCODを除去する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing COD (chemical oxygen demand) from wastewater containing COD using coal ash.

(従来の技術) 火力発電所の排煙脱硫装置から排出される排水の如き産
業排水中に含まれるCODは、水質汚染の原因となるた
め除去する必要がある。
(Prior Art) COD contained in industrial wastewater, such as wastewater discharged from a flue gas desulfurization device of a thermal power plant, causes water pollution and needs to be removed.

従来、排水中のCODを除去する方法として、硫酸加熱
分解法と、COD吸着剤処理法とが一般に広(行われて
いた。この従来方法のうち前者の硫酸加熱分解法は、排
水に硫酸を添加することによりCODを分解して無害成
分に転換するものであり、後者のCOD吸着剤処理法は
、排水を高分子樹脂からなるCOD吸着剤に接触させる
ことにより、COD成分が吸着剤に吸着されて除去され
るものであった。
Conventionally, the sulfuric acid thermal decomposition method and the COD adsorbent treatment method have been widely used as methods for removing COD from wastewater. Among these conventional methods, the former sulfuric acid thermal decomposition method involves adding sulfuric acid to the wastewater. This method decomposes COD and converts it into harmless components.The latter COD adsorbent treatment method involves bringing wastewater into contact with a COD adsorbent made of polymer resin, so that COD components are adsorbed onto the adsorbent. was to be removed.

(発明が解決しようとする問題点) 上記した従来の2つの方法は硫酸またはCOD吸着剤を
使用するためコストが高くつく点に問題があり、排水量
が多くなり、かつCOD値が高くなると処理費がますま
す増大して経営を圧迫することとなり、安価に処理する
方法が課題とされていた。
(Problems to be Solved by the Invention) The two conventional methods described above have a problem in that they are expensive because they use sulfuric acid or COD adsorbents. As the amount of wastewater continues to increase, putting pressure on management, finding a way to dispose of it at a low cost has become an issue.

この発明は、上記した従来の問題点を解消して、安価な
経費で処理できる石炭灰を利用したCOD除去方法を提
供することを目的とするものである。
It is an object of the present invention to solve the above-mentioned conventional problems and to provide a COD removal method using coal ash that can be treated at low cost.

(問題点を解決するための手段) 上記の目的を達するためのこの発明は、CODを含んで
いる排水を、石炭灰に接触させることにより石炭灰がC
OD成分を取り込み除去する、石炭灰を利用したCOD
除去方法である。
(Means for Solving the Problems) This invention to achieve the above object is to bring COD-containing wastewater into contact with coal ash so that the coal ash becomes carbonated.
COD using coal ash to capture and remove OD components
This is a removal method.

(作用) 挟雑物を含む液体が固体と接触すると、液体中の挾雑物
が分子間の相互作用により固体表面に捕捉される吸着作
用が働くもので、この吸着作用を利用するのが前記した
従来の吸着剤処理法であり、本発明の石炭灰はこの吸着
剤の役割を果たすものである。
(Function) When a liquid containing impurities comes into contact with a solid, an adsorption effect occurs in which the impurities in the liquid are captured on the solid surface due to interactions between molecules. This is a conventional adsorbent treatment method, and the coal ash of the present invention plays the role of this adsorbent.

すなわち、石炭灰は多数の粒子からなり、この粒子には
表面に無数の穴があって、排水中のCODは石炭灰粒子
の表面に捕捉され無数の穴の中にも入って吸着除去され
るものである。
In other words, coal ash consists of many particles, each of which has countless holes on its surface, and the COD in the wastewater is captured on the surface of the coal ash particles and absorbed into the holes, where it is adsorbed and removed. It is something.

(実施例) 以下この発明の実施例を、図面にもとづいて詳細説明す
る。
(Example) Examples of the present invention will be described in detail below based on the drawings.

第1図は排水処理装置のフローを示す概要図で、例えば
火力発電所の排煙脱硫装置から排出されるCODを含む
排水は先ず貯槽(1)に貯えられ、ポンプによりフッ素
処理槽(2)、重金属処理槽(3)に順に送られてフッ
素処理及び重金属処理が行われた後、本発明に係るCO
D処理槽(4)に送られる。
Figure 1 is a schematic diagram showing the flow of a wastewater treatment system. For example, wastewater containing COD discharged from a flue gas desulfurization equipment at a thermal power plant is first stored in a storage tank (1), and then pumped to a fluorine treatment tank (2). , the CO according to the present invention is sequentially sent to the heavy metal treatment tank (3) and subjected to fluorine treatment and heavy metal treatment.
It is sent to D treatment tank (4).

このCOD処理槽(4)には石炭灰貯蔵場(5)から石
炭灰供給路(6)を経て石炭灰(7)が入れてあり、さ
らにエアー供給路(8)からエアーを送り込んで排水と
石炭灰とを撹拌混合して、排水を石炭灰に充分に接触さ
せる。
Coal ash (7) is put into this COD treatment tank (4) from the coal ash storage area (5) via a coal ash supply path (6), and air is also sent in from the air supply path (8) to remove waste water. Stir and mix with coal ash to bring the wastewater into sufficient contact with the coal ash.

石炭灰(7)は顕微鏡で拡大して見ると第3図に示す如
く石炭灰粒子(7a)の表面に多数の穴や凹凸があって
、深穴(7b)は第4図の拡大断面図の如く内部で他の
穴と複雑に連通しているものであり、この穴や凹凸に排
水中のCOD成分(9)を第4図に示す状態に吸着させ
た後エアーの供給を停止してCOD処理槽(4)内を沈
静化させて石炭灰(5)を沈でんさせ、その上澄液をポ
ンプにより次のpH調整槽0■に送り、pHを調整した
後放流するものである。
When the coal ash (7) is magnified with a microscope, there are many holes and unevenness on the surface of the coal ash particles (7a) as shown in Figure 3, and the deep holes (7b) are similar to the enlarged cross-sectional view in Figure 4. The COD component (9) in the wastewater is adsorbed to the holes and irregularities in the state shown in Figure 4, and then the air supply is stopped. The inside of the COD treatment tank (4) is calmed down to settle the coal ash (5), and the supernatant liquid is sent to the next pH adjustment tank 0■ by a pump, and after adjusting the pH, it is discharged.

そして、COD成分(9)を吸着して沈でんしている石
炭灰(7)は、石炭灰回収路(11)を経て回収石炭灰
貯蔵場02)に回収され、船またはトラックに積んで、
石炭灰処分地または産業廃棄物処分場に運ぶものである
The coal ash (7), which has adsorbed the COD component (9) and settled, is collected via the coal ash recovery route (11) to the recovered coal ash storage area 02), and loaded onto a ship or truck.
It is transported to a coal ash disposal site or an industrial waste disposal site.

次のCOD処理またはCOD処理中の不足する石炭灰の
補給に石炭灰供給路(6)から石炭灰(7)が供給され
る。
Coal ash (7) is supplied from the coal ash supply path (6) to replenish the insufficient coal ash during the next COD treatment or COD treatment.

03)は汚泥回収路で、フッ素処理槽(2)及び重金属
処理槽(3)に沈でんしている汚泥を回収して汚泥貯槽
04)に貯え、脱水機05)により脱水してトラックに
積み産業廃棄物処分場に運ばれる。
03) is the sludge collection road, where the sludge that has settled in the fluorine treatment tank (2) and heavy metal treatment tank (3) is collected, stored in the sludge storage tank 04), dehydrated by the dehydrator 05), and loaded onto trucks for industrial use. Transported to waste disposal site.

第2図は第1図の排水処理装置のCOD処理槽(4)に
代えて使用する本発明の別の実施例であるC○D処理容
器の縦断面図であって、容器本体12[Dは金属の内面
にゴムライニング(20a)を施したもので、密閉型と
し、内部の下端近くにストレーナ(21)を、空間を遮
って設け、このストレーナ(21)は石炭灰(7)は通
さず水のみが通過できるプラスチックからなるろ材を多
数の穴を持つストレーナ支持板(21a)に支持させた
ものである。
FIG. 2 is a longitudinal cross-sectional view of a C○D treatment container, which is another embodiment of the present invention, used in place of the COD treatment tank (4) of the wastewater treatment equipment shown in FIG. is a metal with a rubber lining (20a) on its inner surface, and is a closed type, with a strainer (21) installed near the lower end of the interior to block the space, and this strainer (21) does not allow coal ash (7) to pass through. A filter medium made of plastic through which only water can pass is supported by a strainer support plate (21a) having many holes.

この容器本体02[Dの上端に排水入口(22)、下端
に排水出口(23)を設けるとともに、側方の上部に石
炭灰供給路(6)を、同じくストレーナ(21)の上側
に近い位置に石炭灰回収路03)が連結されており、内
部のストレーナ(21)の上部に石炭灰(7)が、石炭
灰供給路(6)の近くまで内部空室の大部分を占めて詰
められている。
A drainage inlet (22) is provided at the upper end of this container body 02 [D, and a drainage outlet (23) is provided at the lower end, and a coal ash supply channel (6) is provided at the upper side of the container at a position close to the upper side of the strainer (21). A coal ash recovery path 03) is connected to the internal strainer (21), and coal ash (7) is packed into the upper part of the internal strainer (21), occupying most of the internal space up to the vicinity of the coal ash supply path (6). ing.

この状態で排水入口(22)から、フッ素処理及び重金
属処理済の排液が流入すると、石炭灰(7)に浸透して
流下する間に、排水中のCOD成分(9)を第4図の状
態に石炭灰粒子(7a)が吸着して、浄化された排水が
排水出口(23)から流出して、次の第1図に示すpH
処理槽00)に送られる。
In this state, when fluorine-treated and heavy metal-treated wastewater flows in from the wastewater inlet (22), it penetrates into the coal ash (7) and flows down, removing the COD components (9) in the wastewater as shown in Figure 4. The coal ash particles (7a) are adsorbed to the water, and the purified wastewater flows out from the wastewater outlet (23), resulting in the pH shown in Figure 1 below.
It is sent to processing tank 00).

このCOD処理中に定期的または随時、石炭灰回収路(
IQからCOD成分(9)を吸着した石炭灰(7)を回
収し、石炭灰供給路(6)から新しい石炭灰(7)が供
給されるものである。
During this COD treatment, the coal ash recovery path (
Coal ash (7) that has adsorbed the COD component (9) is recovered from the IQ, and new coal ash (7) is supplied from the coal ash supply path (6).

次に中国電力株式会社下関発電所において行った石炭灰
によるCOD低減試験結果を示す。
Next, we will show the results of a COD reduction test using coal ash conducted at the Chugoku Electric Power Co., Inc.'s Shimonoseki Power Plant.

試験1 第1図に示すCOD処理槽(4)を利用して石炭灰と排
水との混合比を1=3〜3:1として試験した結果を付
表1に示す。
Test 1 Table 1 shows the results of a test using the COD treatment tank (4) shown in FIG. 1 at a mixing ratio of coal ash and wastewater of 1=3 to 3:1.

この付表1によると石炭灰(7)は排水中のCODを効
率よく吸着していることが判明した。そして石炭灰(7
)と排水との比は石炭灰の量が多い程COD低減効果が
高いが、その差は僅少であり、実質的見地から1:1が
適当と判断される。
According to Appendix Table 1, it was found that coal ash (7) efficiently adsorbed COD in wastewater. and coal ash (7
) and wastewater, the larger the amount of coal ash, the higher the COD reduction effect, but the difference is small, and from a practical standpoint, 1:1 is judged to be appropriate.

試!S!2 第1図に示すCOD処理槽(4)を利用して、排水の種
類別によるCOD低減の経日変化試験を、石炭灰と排水
との混合比1:1として試験した結果を付表2に示す。
Try! S! 2 Using the COD treatment tank (4) shown in Figure 1, we conducted a test of COD reduction by type of wastewater over time, using a mixture ratio of coal ash and wastewater of 1:1. The results are shown in Appendix 2. show.

この付表2によると排水の種類が変わっても石炭灰によ
るCOD低減効果があることが確認された。そして経口
変化では1日でCOD成分が大きく低減し、5日程度で
低減効果が飽和状態となることが確認された。
According to Appendix Table 2, it was confirmed that coal ash has a COD reduction effect even if the type of wastewater changes. It was confirmed that the COD component was significantly reduced in one day with oral changes, and that the reduction effect reached saturation in about five days.

(発明の効果) 以上説明した、この発明に係る石炭灰を利用したCOD
除去方法によれば、従来のCOD吸着剤に代えて廃棄物
として処分される石炭灰を利用することでCOD吸着剤
費がゼロとなるもので、特に石炭を利用する火力発電所
等では大量の石炭灰が生じるためこれを処分しなければ
ならず、COD吸着剤として利用した後処分しても処分
費用は変わらず、従ってコスト安で有利なCOD処理を
行うことができるものである。
(Effect of the invention) COD using coal ash according to this invention as explained above
According to the removal method, by using coal ash, which is disposed of as waste, in place of conventional COD adsorbents, the cost of COD adsorbents becomes zero, especially in thermal power plants that use coal. Since coal ash is generated, it must be disposed of, and even if it is used as a COD adsorbent and then disposed of, the disposal cost remains the same, and therefore COD treatment can be carried out at low cost and advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例をフローで示した概要図、
第2図は第1図においてCOD処理槽に代わる別の実施
例であるCOD除去容器の縦断面、第3図は石炭灰を顕
微鏡で見た拡大図、第4図は石炭灰粒子が排水中のCO
Dを吸着した状態を示す拡大断面図である。 4・・COD処理槽   7・・石炭灰7a・・石炭灰
粒子    9・・COD成分20・・COD除去容器 第2図
FIG. 1 is a schematic diagram showing an embodiment of the present invention in a flowchart;
Figure 2 is a vertical cross section of a COD removal container which is another embodiment to replace the COD treatment tank in Figure 1, Figure 3 is an enlarged view of coal ash viewed under a microscope, and Figure 4 is a view of coal ash particles in drainage water. CO of
FIG. 3 is an enlarged cross-sectional view showing a state in which D is adsorbed. 4. COD treatment tank 7. Coal ash 7a. Coal ash particles 9. COD component 20. COD removal container Fig. 2

Claims (1)

【特許請求の範囲】[Claims]  CODを含んでいる排水を、石炭灰に接触させること
を特徴とする、石炭灰を利用したCOD除去方法。
A COD removal method using coal ash, which comprises bringing COD-containing wastewater into contact with coal ash.
JP13422789A 1989-05-26 1989-05-26 Method for removing cod by use of coal ash Pending JPH03183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13422789A JPH03183A (en) 1989-05-26 1989-05-26 Method for removing cod by use of coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13422789A JPH03183A (en) 1989-05-26 1989-05-26 Method for removing cod by use of coal ash

Publications (1)

Publication Number Publication Date
JPH03183A true JPH03183A (en) 1991-01-07

Family

ID=15123397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13422789A Pending JPH03183A (en) 1989-05-26 1989-05-26 Method for removing cod by use of coal ash

Country Status (1)

Country Link
JP (1) JPH03183A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734174A1 (en) * 1995-05-19 1996-11-22 Raymond Gleizes Coal combustion ash of fly-ash particle size
US6858330B2 (en) 2000-12-28 2005-02-22 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
CN105233793A (en) * 2015-10-19 2016-01-13 无锡清杨机械制造有限公司 Method for purifying waste water by utilizing crop straw ash

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091953A (en) * 1973-12-18 1975-07-23
JPS53127389A (en) * 1977-04-14 1978-11-07 Agency Of Ind Science & Technol Production of capturing agent for heavy metals-containing waste water
JPS57174134A (en) * 1981-04-17 1982-10-26 Hitoshi Hatano Pollution treating agent
JPS60150882A (en) * 1984-01-18 1985-08-08 Sumitomo Metal Ind Ltd Treatment of industrial waste water by dust
JPS6214985A (en) * 1985-07-15 1987-01-23 Mitsui Toatsu Chem Inc Method for removing phosphorus
JPS63224733A (en) * 1987-03-16 1988-09-19 Taguchi Kenkyusho:Kk Adsorbent and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5091953A (en) * 1973-12-18 1975-07-23
JPS53127389A (en) * 1977-04-14 1978-11-07 Agency Of Ind Science & Technol Production of capturing agent for heavy metals-containing waste water
JPS57174134A (en) * 1981-04-17 1982-10-26 Hitoshi Hatano Pollution treating agent
JPS60150882A (en) * 1984-01-18 1985-08-08 Sumitomo Metal Ind Ltd Treatment of industrial waste water by dust
JPS6214985A (en) * 1985-07-15 1987-01-23 Mitsui Toatsu Chem Inc Method for removing phosphorus
JPS63224733A (en) * 1987-03-16 1988-09-19 Taguchi Kenkyusho:Kk Adsorbent and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734174A1 (en) * 1995-05-19 1996-11-22 Raymond Gleizes Coal combustion ash of fly-ash particle size
US6858330B2 (en) 2000-12-28 2005-02-22 Hitachi, Ltd. Perpendicular magnetic recording media and magnetic storage apparatus using the same
CN105233793A (en) * 2015-10-19 2016-01-13 无锡清杨机械制造有限公司 Method for purifying waste water by utilizing crop straw ash

Similar Documents

Publication Publication Date Title
JPH04108518A (en) Water treatment equipment with tangent filteration loop
JP2992692B2 (en) Sewage purification method and apparatus
JPH03183A (en) Method for removing cod by use of coal ash
JP2004275884A (en) Waste water treating method, waste water treating apparatus and treating system
Directo et al. Pilot plant study of physical-chemical treatment
KR20000045135A (en) Apparatus and process for refining landfill gas and preprocessing leachate
JP2002192184A (en) Powdery activated carbon-adding membrane separation activated sludge method
JPS59105894A (en) Purification of water containing organic substance and apparatus therefor
JPS61242685A (en) Treatment of waste water
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JPH0128864Y2 (en)
CN109796105A (en) A kind of highly difficult organic wastewater treatment process
JPH0249799B2 (en)
JPH0824570A (en) Desulfurizing device for anaerobic biological reaction gas
JP2606248Y2 (en) Sewage treatment equipment
KR100671949B1 (en) Carwashing-wastewater treatment device with immobilized microorganisms
JPH02203996A (en) Method for treating city water and the like
JP3497718B2 (en) Contaminated air purification device
JPH0423597B2 (en)
JP2511106B2 (en) Water treatment equipment
JPH03123687A (en) Biological contact filter apparatus
KR20230125059A (en) Method for water treatment by adsorption on activated carbon combined with addition of ozone and equipment for carrying out the method
JP2759779B2 (en) Wastewater treatment method and apparatus using carbon-based adsorbent
JPH11319809A (en) Treatment of dioxin-containing liquid
JPH07124576A (en) Treatment process for exhaust gas desulfurizing drainage