JPH03180462A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH03180462A
JPH03180462A JP32018889A JP32018889A JPH03180462A JP H03180462 A JPH03180462 A JP H03180462A JP 32018889 A JP32018889 A JP 32018889A JP 32018889 A JP32018889 A JP 32018889A JP H03180462 A JPH03180462 A JP H03180462A
Authority
JP
Japan
Prior art keywords
film
thin film
substrate
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32018889A
Other languages
Japanese (ja)
Other versions
JPH0726193B2 (en
Inventor
Shoichi Ichikawa
市川 彰一
Tatsuhiko Shimizu
達彦 清水
Tetsuo Nagami
哲夫 永見
Yoko Yonekura
米倉 陽子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1320188A priority Critical patent/JPH0726193B2/en
Publication of JPH03180462A publication Critical patent/JPH03180462A/en
Publication of JPH0726193B2 publication Critical patent/JPH0726193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the occurrence of cloudiness and to form a thin film in high yield by forming numerous fine scratches on the surface of a substrate by the use of fine solid grains and then forming a thin film on the above substrate surface by means of PVD, etc. CONSTITUTION:A suspension of tine solid grains (composed of CeO2, etc., and having about 0.1-1mu grain size) is infiltrated into an abrasive cloth, with which the surface of a substrate (glass, etc.) is rubbed to form numerous tine scratches on the surface of the substrate. Subsequently, a thin film is formed on the surface of the above substrate by means of PVD (ion plating, etc.) or CVD (reduction, etc.). By this method, the thin film having fine and uniform crystals can be formed on the substrate surface, and the cloudiness of the thin film can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜の形成方法に関する。さらに詳しくは、白
濁の発生を防止した薄膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of forming a thin film. More specifically, the present invention relates to a method of forming a thin film that prevents clouding.

[従来の技術] 真空蒸着、電子ビーム蒸着、イオンブレーティング、ス
パッタリングなどの薄膜の形成方法によって、絶縁保護
膜や透明導電膜などとして機能する金属や酸化物などか
らなる薄膜を基板上に形成すると、形成された薄膜の表
面に白い濁りを認めることがある。これが白濁と呼ばれ
ている現象で、これによって薄膜の見映えや特性が著し
く低下することがある。
[Prior Art] A thin film made of a metal or oxide that functions as an insulating protective film or a transparent conductive film is formed on a substrate by a thin film forming method such as vacuum evaporation, electron beam evaporation, ion blating, or sputtering. , white turbidity may be observed on the surface of the formed thin film. This is a phenomenon called clouding, and it can significantly deteriorate the appearance and properties of the thin film.

この白濁を防止するには、白濁が生じにくい極めて成膜
速度の遅い成膜条件を適宜設定し、白濁の発生を防止し
ているのが現状である。このため、白濁の発生防止を優
先させた成膜条件を設定した場合、薄膜の生産性を犠牲
にしなければならない。
In order to prevent this clouding, the current practice is to appropriately set film formation conditions that are extremely slow in forming a film, so that the formation of a film is difficult to occur. For this reason, when film forming conditions are set that give priority to prevention of cloudiness, productivity of the thin film must be sacrificed.

また逆に、薄膜の生産性を優先させた成膜条件を設定し
た場合、ある程度の白濁の発生を避けることができない
。したがって、成膜工程における歩留りが悪化してしま
うという問題がある。
Conversely, if film formation conditions are set that prioritize thin film productivity, some degree of clouding cannot be avoided. Therefore, there is a problem that the yield in the film forming process deteriorates.

本発明は上記した問題を解決するためになされたもので
あり、白濁の発生を防止し、かつ、成膜工程において歩
留りの悪化が生じない薄膜の形成方法を提供することを
目的とするものである。
The present invention has been made to solve the above-mentioned problems, and aims to provide a method for forming a thin film that prevents the occurrence of cloudiness and does not cause deterioration of yield in the film forming process. be.

[課題を解決するための手段] 本発明の薄膜の形成方法は、薄膜を形成しようとする基
板の表面に固体微粒子を接触させて該基板の表面に無数
の細かい傷をつける第1工程と、傷がつけられた基板の
表面にPVDあるいはCVDで薄膜を形成する第2工程
と、からなることを特徴とする薄膜の形成方法である。
[Means for Solving the Problems] The method for forming a thin film of the present invention includes a first step of bringing solid fine particles into contact with the surface of a substrate on which a thin film is to be formed to create numerous fine scratches on the surface of the substrate; This method of forming a thin film is characterized by comprising a second step of forming a thin film on the scratched surface of the substrate by PVD or CVD.

本発明の第1工程は、薄膜を形成しようとする基板の表
面に固体微粒子を接触させて、基板の表面に無数の細か
い傷をつける工程である。このようにして基板の表面に
形成された無数の細かい傷が、薄膜を構成する材料が第
2工程において結晶化する際の成長点となるものである
。この無数の縄かい傷を成長点として、薄膜を構成する
材料がぶつかり合いながら結晶化し、これによって結晶
が均一に小さく成長する。すなわち、白濁の一要因とな
る結晶の粗大化を、結晶を均一に小さく成長さぜること
によって防止するものである。
The first step of the present invention is to bring solid fine particles into contact with the surface of a substrate on which a thin film is to be formed, thereby creating numerous fine scratches on the surface of the substrate. The countless fine scratches thus formed on the surface of the substrate serve as growth points when the material constituting the thin film crystallizes in the second step. Using these countless rope scratches as growth points, the materials that make up the thin film collide and crystallize, causing the crystals to grow uniformly and small. That is, coarsening of the crystals, which is one of the causes of cloudiness, is prevented by uniformly growing the crystals to a small size.

第1工程において使用する固体微粒子として、ダイヤモ
ンド、コランダム、エメリー、ザクロ石、フリント、粘
土、炭化ケイ素、炭化ホウ素、酸化クロム、酸化鉄、二
酸化セリウムなどを使用することができる。このような
固体微粒子の粒径は、1μm以下の小粒径であることが
好ましい。しかしながら、実用上は0.1μm以上がよ
い。なお、粒径が1μmを大幅に越えると、結晶が均一
に小さく成長できないほど大きな傷をつけることになり
、結晶が粗大化するので好ましくない。
As the solid fine particles used in the first step, diamond, corundum, emery, garnet, flint, clay, silicon carbide, boron carbide, chromium oxide, iron oxide, cerium dioxide, etc. can be used. The particle size of such solid fine particles is preferably 1 μm or less. However, for practical purposes, the thickness is preferably 0.1 μm or more. It should be noted that if the particle size greatly exceeds 1 μm, it is not preferable because the crystals will be damaged so large that they cannot grow uniformly and the crystals will become coarse.

基板の表面に無数の細かい傷をつける方法として、この
ような固体微粒子を水などに懸濁させた後、基板を懸濁
液を滲込ませた研摩布との間で相対運動させて固体微粒
子に接触させる湿式法や、このような固体微粒子を水な
どに懸濁させずに、サンドブラストなどの方法によって
、基板に固体微粒子を衝突させる乾式法などを採用する
ことができる。
As a method of making countless fine scratches on the surface of a substrate, such fine solid particles are suspended in water, etc., and then the substrate is moved relative to an abrasive cloth soaked with the suspension to remove the fine solid particles. A wet method in which the solid particles are brought into contact with the substrate, or a dry method in which the solid particles are bombarded with the substrate by a method such as sandblasting without suspending the solid particles in water or the like can be employed.

第2工程は、第1工程において無敗の細かい傷がつけら
れた基板の表面にPVDあるいはCVDで薄膜を形成す
る工程である。薄膜を形成する方法として、PVDある
いはCVDなどの方法を採用することができる。
The second step is a step in which a thin film is formed by PVD or CVD on the surface of the substrate, which has been made fine scratches without damage in the first step. A method such as PVD or CVD can be used as a method for forming the thin film.

PVDとは薄膜の物理的気相成長法のことであり、薄膜
の成長に化学反応が含まれないか、薄膜の成長にとって
それが本質的でない気相成長法をいう。PVDには、真
空蒸着、電子ビーム蒸着、イオンブレーティング、スパ
ッタリングなどが含まれる。
PVD is a physical vapor deposition method of thin films, and refers to a vapor phase deposition method in which chemical reactions are not involved or essential to the growth of the thin film. PVD includes vacuum deposition, electron beam deposition, ion blasting, sputtering, and the like.

CVDとは化学反応を利用して薄膜を形成する気相成長
法のことである。CvDには、還元法、不均等化反応法
、化学輸送反応法などが含まれる。
CVD is a vapor phase growth method that uses chemical reactions to form thin films. CvD includes reduction methods, disproportionation reaction methods, chemical transport reaction methods, and the like.

9この第2工程における薄膜の形成を二段階で行っても
よい。すなわち、この第2工程を、薄膜を構成する材料
の結晶が粗大化しない条件で初期成膜層を形成する第1
成膜工程と、通常の条件で本成膜層を形成する第2成膜
工程からなるように構成してもよい。
9. The formation of the thin film in this second step may be performed in two stages. That is, this second step is similar to the first step in which the initially formed layer is formed under conditions that the crystals of the material constituting the thin film do not become coarse.
It may be configured to include a film forming step and a second film forming step in which the main film forming layer is formed under normal conditions.

このように第2工程を構成した場合、無数の細かい傷を
つけて結晶を均一に小さく成長させるようにした基板の
表面上に、結晶が粗大化しない条件で初期成膜層を形成
した後、通常の条件で本成膜層を形成するので、白濁の
発生をより一層防止することができ、かつ、生産性を低
下させることもない。なお、初期成膜層の膜厚は、薄膜
を構成する材料によっても異なるものであるが、一般に
10〜1100nであって薄膜の全膜厚の1/10以下
とすることが好ましい。このような範囲に初期成膜層の
膜厚を設定することによって、白濁の防止効果、薄膜全
体としての要求特性、および生産性のすべてが最適化さ
れる。さらになお、初期成膜層の膜厚を上記の範囲とし
、その範囲内で初期成膜層の成膜条件を徐々に変更し水
成膜層の成膜条件へと移行するようにして、連続した複
数の層からなる初期成膜層を形成してもよい。
When the second step is configured in this way, after forming an initial film layer on the surface of the substrate, which has been made with countless fine scratches so that the crystals can grow uniformly and small, under conditions that do not cause the crystals to become coarse, Since the main film-forming layer is formed under normal conditions, it is possible to further prevent the occurrence of clouding, and there is no reduction in productivity. Although the thickness of the initially formed layer varies depending on the material forming the thin film, it is generally 10 to 1100 nm and preferably 1/10 or less of the total thickness of the thin film. By setting the thickness of the initially formed layer within such a range, the effect of preventing clouding, the required characteristics of the thin film as a whole, and productivity are all optimized. Furthermore, the film thickness of the initial film-forming layer is set to the above range, and the film-forming conditions of the initial film-forming layer are gradually changed within that range, and the film-forming conditions of the water-forming layer are gradually changed to the film-forming conditions of the water-forming layer. The initial film formation layer may be formed from a plurality of layers.

初期成膜層を形成する第1成膜工程における結晶が粗大
化しない条件とは、たとえばイオンブレーティングを薄
膜の形成法として採用した場合、酸素圧力、成膜速度、
高周波励起出力などの制御項目を、それぞれ、2.5X
10−2Pa、0.5nm/秒、150Wなる通常の1
/2から3/4なる小さい値に制御して薄膜を形成する
ことである。
For example, when ion blating is used as a thin film formation method, conditions such as oxygen pressure, film formation rate,
Each control item such as high frequency excitation output is 2.5X
10-2Pa, 0.5nm/sec, 150W normal 1
The purpose is to form a thin film by controlling the value to a small value of /2 to 3/4.

[発明の作用および効果] 本発明の第1工程において、薄膜を形成しようとする基
板の表面に固体微粒子を接触させて、基板の表面に無数
の細かい傷がつけられる。そして本発明の第2工程にお
いて、この無数の細かい傷が薄膜を構成する材料が結晶
化する際の成長点となり、より多くの結晶ができる。す
なわち、単位面積当りの結晶の数が多い。このため、結
晶が大きく成長する前に、結晶は互いに隣接する結晶と
ぶつかり合いながら成長する。このため、大きな結晶は
できず、結晶が均一に小さく成長する。このように本発
明の薄膜の形成方法は、結晶の粗大化を防止しながら結
晶を均一に小さく成長させることによって、形成された
薄膜中に白濁が発生するのを防止するものである。
[Operations and Effects of the Invention] In the first step of the present invention, solid fine particles are brought into contact with the surface of the substrate on which a thin film is to be formed, and countless fine scratches are made on the surface of the substrate. In the second step of the present invention, these countless fine scratches become growth points when the material constituting the thin film crystallizes, and more crystals are formed. That is, the number of crystals per unit area is large. Therefore, before the crystals grow large, they grow while colliding with adjacent crystals. Therefore, large crystals are not formed, and the crystals grow uniformly and small. As described above, the method for forming a thin film of the present invention prevents clouding in the formed thin film by uniformly growing small crystals while preventing the crystals from becoming coarse.

上記したように本発明の薄膜の形成方法は、白濁の発生
防止をすることによって薄膜の特性を犠牲にしたりする
ことがない、また、成膜条件を変更しても白濁の発生防
止が影響を受けることがないので、成膜工程における歩
留りが悪化してしまうことがない。
As described above, the thin film forming method of the present invention prevents the occurrence of white turbidity without sacrificing the properties of the thin film, and even if the film formation conditions are changed, preventing the occurrence of white turbidity has no effect. Therefore, the yield in the film forming process does not deteriorate.

[実施例] 以下、本−発明の薄膜の形成方法の実施例につき、図面
を参照しながら説明する。
[Example] Hereinafter, an example of the thin film forming method of the present invention will be described with reference to the drawings.

(第1実施例〉 (第1工程) 粒径が0.1μm〜1μmなる二酸化セリウム(Ce0
2)微粒子2000を、純水1Q1.:混合し懸濁液と
した。
(First Example) (First Step) Cerium dioxide (Ce0
2) 2000 particles were added to 1Q1. : Mixed to form a suspension.

次に、この二酸化セリウム微粒子の懸濁液を滲込ませた
研摩布でガラス基板を擦って、二酸化セリウム微粒子を
ガラス基板に接触させた。このようにして、ガラス基板
の表面に無数の細かい傷をつけた。
Next, the glass substrate was rubbed with an abrasive cloth impregnated with the suspension of the cerium dioxide fine particles to bring the cerium dioxide fine particles into contact with the glass substrate. In this way, countless fine scratches were made on the surface of the glass substrate.

(第2工程) 上記のようにして無数の細かい傷をつけたガラス基板の
表面に、以下のようにしてイオンブレーティングにて透
明導電膜として機能するITO膜を形成した。なお、本
実施例においては、ITO膜中の白濁の発生を防止する
とともに生産性を高めるため、この第2工程を二段階で
行った。すなわち、本実施例の第2工程は、インジウム
・スズ酸化物膜(以下ITO膜という。)を構成する材
料の結晶が粗大化しない条件で初期成膜層を形成する第
1成膜工程と、通常の条件で本成膜層を形成する第2成
膜工程からなるように構成した。
(Second Step) An ITO film functioning as a transparent conductive film was formed on the surface of the glass substrate, which had numerous fine scratches as described above, by ion blasting as described below. In this example, the second step was performed in two stages in order to prevent clouding in the ITO film and to increase productivity. That is, the second step of this example is a first film forming step in which an initial film layer is formed under conditions that the crystals of the material constituting the indium tin oxide film (hereinafter referred to as ITO film) do not become coarse; The second film forming step was configured to form the main film forming layer under normal conditions.

実際に本実施例の第2工程を実行する前に、まず、可視
光11透過率が70%以上、シート抵抗値が5Ω/口で
あって、ヘーズ値(曇価)が0.2%以下なる要求値を
満足するITO膜を形成するための成膜条件を、以下の
ような予備実験を行って設定した。
Before actually performing the second step of this example, first, the visible light 11 transmittance is 70% or more, the sheet resistance value is 5Ω/mouth, and the haze value is 0.2% or less. The following preliminary experiments were conducted to set film forming conditions for forming an ITO film that satisfies the required values.

酸素圧力を種々変更しながら、5重量%の酸化スズ(S
nO2)を添加した酸化インジウム(In20x)ベレ
ットを蒸発源としてイオンブレーティングを行った。こ
のようにして得られたITOIIの可視光線透過率、シ
ート抵抗値およびへ一ズ値を測定した結果を、第1図、
第2図および第3図に示す。なお、このITO膜の形成
は、基板温度が300℃、成膜速度がlnm/秒、高周
波励起出力が200Wなる通常の条件で行い、300n
mの膜厚のITO膜を形成した。
While varying the oxygen pressure, 5% by weight of tin oxide (S
Ion blating was performed using an indium oxide (In20x) pellet added with nO2 as an evaporation source. The results of measuring the visible light transmittance, sheet resistance, and helix value of the ITOII thus obtained are shown in Figure 1.
Shown in FIGS. 2 and 3. The ITO film was formed under the usual conditions of a substrate temperature of 300°C, a film formation rate of lnm/sec, and a high frequency excitation output of 200W.
An ITO film with a thickness of m was formed.

第1図および第2図から、可視光線透過率70%以上、
シート抵抗値5Ω/口以下なる要求値を満足するITO
膜を形成するためには、酸素圧力2 を4x10〜6x10−2Paに設定すればよいことが
わかった。また、第3図から、ヘーズ値0゜2%以下な
る要求値を満足するITOIIを形成するためには、酸
素圧力を4X10”2Pa以下に設定しなければならな
いことがわかった。
From Figures 1 and 2, visible light transmittance is 70% or more,
ITO that satisfies the required sheet resistance value of 5Ω/unit or less
It has been found that in order to form a film, the oxygen pressure 2 may be set to 4x10 to 6x10-2 Pa. Further, from FIG. 3, it was found that in order to form ITOII that satisfies the required haze value of 0°2% or less, the oxygen pressure must be set to 4×10”2 Pa or less.

このように、可視光線透過率およびシート抵抗値に関す
る要求値を満足させる成膜条件と、へ−ズ値に関する要
求値を満足させる成膜条件、すなわち白濁を防止する成
膜条件とは、必ずしも一致しないものである。低い酸素
圧力で、高い可視光線透過率および低いシート抵抗値を
有するITO膜を形成するには、成膜速度および高周波
励起出力を下げてやればよい。しかしながら、このよう
な成膜条件では、生産性が低下してしまう。
In this way, the film forming conditions that satisfy the required values for visible light transmittance and sheet resistance value are not necessarily the same as the film forming conditions that satisfy the required value for haze value, that is, the film forming conditions that prevent clouding. It's something you don't do. In order to form an ITO film having high visible light transmittance and low sheet resistance at low oxygen pressure, the film formation rate and high frequency excitation output may be lowered. However, under such film-forming conditions, productivity decreases.

このため、本実施例においては、上記したように第2工
程を、ITO膜を構成する材料の結晶が粗大化しない条
件で初期成膜層を形成する第1成膜工程、通常の条件で
水成膜層を形成する第、2成膜工程の二段階で行って、
生産性の低下を防止した。
For this reason, in this example, as described above, the second step is the first film forming step in which the initial film layer is formed under conditions that do not coarsen the crystals of the material constituting the ITO film, and the It is carried out in two steps: the first and second film formation steps to form a film formation layer,
Prevented productivity from decreasing.

上記のような予備実験の結果から、本実施例の第2工程
の第1成膜工程の成膜条件として、基板温度を300℃
に、酸素圧力を2.5X10’Paに、成膜速度をQ、
5nm/秒に、高周波励起出力を150Wに、それぞれ
設定して、第4図に示す初期成膜層12を無数の細かい
傷をつけたガラス基板2の表面に形成した。なお、初期
成膜層12の形成は、その膜厚を1〜5Qnmの範囲で
種々変更して行った。
From the results of the preliminary experiment described above, the substrate temperature was set at 300°C as the film forming condition for the first film forming step of the second step of this example.
, the oxygen pressure was set to 2.5X10'Pa, the film formation rate was set to Q,
The initial film formation layer 12 shown in FIG. 4 was formed on the surface of the glass substrate 2 with numerous fine scratches, with the high frequency excitation output set at 5 nm/sec and 150 W, respectively. Note that the initial film formation layer 12 was formed by varying its film thickness within a range of 1 to 5 Q nm.

次に、本実施例の第2工程の第2成膜工程の成膜条件と
して、基板温度を300℃に、酸素圧力を5.0x10
−2Paに、成膜速度を1.□nm/秒に、高周波励起
出力を200Wに、それぞれ設定して、第4図に示す本
成膜層11を初期成膜層12の表面に形成した。このよ
うにして、本成膜層11と初期成膜層12からなるIT
O膜1を無数の細かい傷をつけたガラス基板2の表面に
形成した。なお、水成膜層11の形成は、その膜厚と初
期成膜層12の膜厚の和(すなわちITO膜1の膜厚)
が300nmとなるように、本成膜層11の膜厚を種々
変更して行った。
Next, as the film forming conditions for the second film forming step of the second step of this example, the substrate temperature was set to 300°C, and the oxygen pressure was set to 5.0×10
-2Pa and the film formation rate was set to 1. The main film formation layer 11 shown in FIG. 4 was formed on the surface of the initial film formation layer 12 by setting the high frequency excitation power to □nm/sec and 200W. In this way, the IT consisting of the main deposited layer 11 and the initial deposited layer 12
An O film 1 was formed on the surface of a glass substrate 2 with numerous fine scratches. Note that the formation of the water deposited layer 11 is determined by the sum of its film thickness and the film thickness of the initial deposited layer 12 (i.e., the thickness of the ITO film 1).
The film thickness of the main film-forming layer 11 was variously changed so that the film thickness was 300 nm.

第5図から明らかなように、このようにして得られた本
実施例のITOIIWlのうち初期成膜層12の膜厚が
20〜3Qnmの範囲にあるものが、透明導電膜として
機能するITO膜に要求される0、2%以下なるヘーズ
値を満足し、かつ生産性の低下を招かないことがわかる
。膜厚が3Qnmを越える初期成膜層12を形成しても
ヘーズ値に著しい向上が認められない、また、このよう
な膜厚の初期成膜層12を形成することは生産性が低下
するので好ましくない。
As is clear from FIG. 5, among the ITOIIWl of this example obtained in this way, the one whose film thickness of the initial film forming layer 12 is in the range of 20 to 3 Qnm is an ITO film that functions as a transparent conductive film. It can be seen that the haze value of 0.2% or less required for this is satisfied and does not cause a decrease in productivity. Even if the initial deposition layer 12 with a thickness exceeding 3 Qnm is formed, no significant improvement in the haze value is observed, and forming the initial deposition layer 12 with such a thickness will reduce productivity. Undesirable.

第7図に、酸化セリウムの懸濁液を使用して無数の細か
い傷をつけたガラス基板2の表面に、初期成膜層12の
膜厚を25nm、本成膜@11の膜厚を275 nmと
してITO膜1を形成した試料の表面の結晶の構造を走
査型電子顕微鏡で撮影した写真を示す。第7図から明ら
かなように、この試料のITO膜1の結晶は均一に小さ
く形成されて、結晶の粗大化が防止されており、これに
よってITO膜1の白濁が防止されていることがわかる
。なお、この試料の可視光線透過率は75%、シート抵
抗値は4Ω/口であり、このITO膜1は透明導電膜と
して良好に機能するものであった。
In FIG. 7, a film thickness of the initial film formation layer 12 is 25 nm, and a film thickness of the main film formation @11 is 275 nm, on the surface of a glass substrate 2 on which numerous fine scratches have been made using a suspension of cerium oxide. A photograph taken with a scanning electron microscope of the crystal structure on the surface of the sample on which the ITO film 1 was formed is shown. As is clear from FIG. 7, the crystals of the ITO film 1 of this sample are uniformly formed to be small, and coarsening of the crystals is prevented, thereby preventing the ITO film 1 from becoming cloudy. . Note that this sample had a visible light transmittance of 75% and a sheet resistance value of 4 Ω/hole, indicating that this ITO film 1 functioned well as a transparent conductive film.

第8図に、酸化セリウムの懸濁液によって傷をつけなか
ったガラス基板2の表面に、本成膜層11のみからなる
ITO膜1を膜厚300nmに形成した試料の表面の結
晶の構造を走査型電子顕微鏡で随影した写真を示す。第
8図から明らかなように、この試料のITO膜1の結晶
は粗大化しており、ITOgllは白濁していることが
わかる。
Figure 8 shows the crystal structure on the surface of a sample in which an ITO film 1 consisting of only the main film formation layer 11 was formed to a thickness of 300 nm on the surface of a glass substrate 2 that was not scratched by the cerium oxide suspension. A photograph taken with a scanning electron microscope is shown. As is clear from FIG. 8, the crystals of the ITO film 1 of this sample are coarsened, and the ITOgll is cloudy.

したがって、このITO膜1は透明導電膜として良好に
機能するものではなかった。
Therefore, this ITO film 1 did not function well as a transparent conductive film.

(第2実施例〉 (第1工程〉 粒径が0.1μm、1μm、10μm、100μmなる
四種の二酸化セリウム(Ce02 )微粒子の各々20
0Qを、純水IQによく混合しt!濁液とした。
(Second Example) (First Step) 200 ml of each of four types of cerium dioxide (Ce02) fine particles with particle sizes of 0.1 μm, 1 μm, 10 μm, and 100 μm
Mix 0Q well with pure water IQ and t! It was made into a cloudy liquid.

次に、この四種の二酸化セリウム微粒子の懸濁液を滲込
ませた研摩布でガラス基板を擦って、二酸化セリウム微
粒子をガラス基板に接触させた。
Next, the glass substrate was rubbed with an abrasive cloth impregnated with a suspension of these four types of cerium dioxide fine particles to bring the cerium dioxide fine particles into contact with the glass substrate.

このようにして、ガラス基板の表面に無数の細かい傷を
つけた。
In this way, countless fine scratches were made on the surface of the glass substrate.

(第2工程) 以下、上記で詳述した本発明の第1実施例の第2工程と
同様にITO膜1を形成し、そのITOWAlのヘーズ
値を測定した。第6図に本実施例の4種のITO膜のヘ
ーズ値の測定結果を示す。なお、本実施例においては、
初期成膜層12と本成膜M11の膜厚は、それぞれ−律
に25nm、275nmに形成した。
(Second Step) Thereafter, an ITO film 1 was formed in the same manner as in the second step of the first embodiment of the present invention detailed above, and the haze value of the ITOWAl was measured. FIG. 6 shows the measurement results of haze values of four types of ITO films of this example. In addition, in this example,
The film thicknesses of the initial film formation layer 12 and the main film formation M11 were generally 25 nm and 275 nm, respectively.

第6図から明らかなように、白濁の発生防止効果が認め
られたものは、粒径が0.1〜1μmなる二酸化セリウ
ム微粒子の懸濁液を用いてガラス基板の表面に無数の傷
をつけた後、イオンブレーティングにてITO膜1を形
成した試料の場合である。一方、粒径が10μmなる二
酸化セリウム微粒子の懸濁液を用いてガラス基板の表面
に無数の傷をつけると、ガラス基板の表面には目視で確
認できる程度の大きさの傷が認められた。すなわち、I
TO膜1を構成する材料の結晶の核の大きざに合致する
ような細かな傷をガラス基板の表面につけることができ
なかった。この結果、このようなガラス基板の表面にI
TO膜1を形成した試料は、約0.4%なる高いヘーズ
値を示し、透明導電膜として良好に機能するものではな
かった。
As is clear from Figure 6, the effect of preventing the occurrence of white turbidity was observed by making numerous scratches on the surface of the glass substrate using a suspension of cerium dioxide fine particles with a particle size of 0.1 to 1 μm. This is the case of a sample in which an ITO film 1 was formed by ion blating after the test. On the other hand, when numerous scratches were made on the surface of a glass substrate using a suspension of cerium dioxide fine particles having a particle size of 10 μm, scratches large enough to be visually confirmed were observed on the surface of the glass substrate. That is, I
It was not possible to make fine scratches on the surface of the glass substrate that matched the size of the crystal nuclei of the material constituting the TO film 1. As a result, I on the surface of such a glass substrate.
The sample on which TO film 1 was formed showed a high haze value of about 0.4%, and did not function well as a transparent conductive film.

したがって、粒径が1μmを大幅に越える粒径を有する
二酸化セリウム微粒子を用いて処理した場合には、白濁
の発生防止効果はないものと思われる。また、粒径が0
.1μm未満の二酸化セリウム微粒子については入手不
可能なため実験することができなかったが、あまり小径
の二酸化セリウム微粒子の懸濁液を用いて処理した場合
は、ガラス基板の表面に傷をつけなかった場合と同程度
の1.2%から0.2%を上回る範囲の高いヘーズ値を
示すITO膜1が形成された試料しか得ることができな
いものと思われる。
Therefore, when the treatment is performed using cerium dioxide fine particles having a particle size significantly exceeding 1 μm, it seems that there is no effect of preventing the occurrence of cloudiness. Also, the particle size is 0
.. Although it was not possible to experiment with cerium dioxide particles with a diameter of less than 1 μm because they were not available, when a suspension of cerium dioxide particles with a diameter of less than 1 μm was used, the surface of the glass substrate was not scratched. It seems that only samples in which an ITO film 1 is formed exhibiting a high haze value in the range of 1.2% to more than 0.2%, which is similar to that in the case, can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、イオンブレーティング時の酸素圧力と得られ
たITO膜の可視光線透過率の関係曲線である。第2図
は、イオンブレーティング時の酸素圧力と(qられたI
TO膜のシート抵抗値の関係曲線である。第3図は、イ
オンブレーティング時の酸素圧力と得られたITO膜の
ヘーズ値の関係曲線である。第4図は、本発明の実施例
にて得られたITO膜の模式断面図である。第5図は、
本発明の実施例にて得られた種々の膜厚の初期成膜層と
ITO膜のヘーズ値の関係曲線である。第6図は、種々
の粒径の二酸化セリウム微粒子とこれらの二酸化セリウ
ム微粒子を用いて傷をつけたガラス基板の表面に形成し
たITO膜のヘーズ値の関係を示す折線グラフである。 第7図は、本発明の実施例にて得られたITO膜の表面
の結晶の構造の写真(倍率3万倍)である。第8図は、
従来の薄膜の形成方法にて得られたITO膜の表面の結
晶の構造の写真(倍率3万倍〉である。 1・・・ITO膜、2・・・ガラス基板11・・・本成
膜層、 12・・・初期成膜層
FIG. 1 is a relationship curve between the oxygen pressure during ion blating and the visible light transmittance of the obtained ITO film. Figure 2 shows the oxygen pressure during ion blating and (qqI)
It is a relationship curve of sheet resistance value of TO film. FIG. 3 is a relationship curve between the oxygen pressure during ion blating and the haze value of the obtained ITO film. FIG. 4 is a schematic cross-sectional view of an ITO film obtained in an example of the present invention. Figure 5 shows
3 is a relationship curve between the haze value of the initial film formation layer and the ITO film with various film thicknesses obtained in Examples of the present invention. FIG. 6 is a line graph showing the relationship between cerium dioxide fine particles of various particle sizes and the haze value of an ITO film formed on the surface of a glass substrate scratched using these cerium dioxide fine particles. FIG. 7 is a photograph (30,000 times magnification) of the crystal structure on the surface of an ITO film obtained in an example of the present invention. Figure 8 shows
Photograph of the crystal structure on the surface of an ITO film obtained by a conventional thin film formation method (magnification: 30,000 times). 1...ITO film, 2...Glass substrate 11...Main film formation Layer, 12... initial deposition layer

Claims (1)

【特許請求の範囲】[Claims] (1)薄膜を形成しようとする基板の表面に固体微粒子
を接触させて該基板の表面に無数の細かい傷をつける第
1工程と、 傷がつけられた基板の表面にPVDあるいはCVDで薄
膜を形成する第2工程と、からなることを特徴とする薄
膜の形成方法。
(1) The first step is to bring solid particles into contact with the surface of the substrate on which a thin film is to be formed, thereby creating numerous fine scratches on the surface of the substrate, and forming a thin film on the scratched surface of the substrate using PVD or CVD. A method for forming a thin film, comprising: a second step of forming a thin film.
JP1320188A 1989-12-08 1989-12-08 Method for forming thin film that prevents white turbidity Expired - Fee Related JPH0726193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320188A JPH0726193B2 (en) 1989-12-08 1989-12-08 Method for forming thin film that prevents white turbidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320188A JPH0726193B2 (en) 1989-12-08 1989-12-08 Method for forming thin film that prevents white turbidity

Publications (2)

Publication Number Publication Date
JPH03180462A true JPH03180462A (en) 1991-08-06
JPH0726193B2 JPH0726193B2 (en) 1995-03-22

Family

ID=18118687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320188A Expired - Fee Related JPH0726193B2 (en) 1989-12-08 1989-12-08 Method for forming thin film that prevents white turbidity

Country Status (1)

Country Link
JP (1) JPH0726193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048411A1 (en) * 2001-12-03 2003-06-12 Nippon Sheet Glass Company, Limited Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689232B2 (en) * 1995-06-14 1997-12-10 ハイグルー工業株式会社 Glue container for shoji

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787357A (en) * 1980-11-18 1982-05-31 Sharp Kk Metal evaporated film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787357A (en) * 1980-11-18 1982-05-31 Sharp Kk Metal evaporated film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048411A1 (en) * 2001-12-03 2003-06-12 Nippon Sheet Glass Company, Limited Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
US8093490B2 (en) 2001-12-03 2012-01-10 Nippon Sheet Glass Company, Limited Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate

Also Published As

Publication number Publication date
JPH0726193B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
KR101073415B1 (en) Method for producing silicon oxide film and method for producing optical multilayer film
CN101111783B (en) Substrate with antireflection coating
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
US20030043464A1 (en) Optical coatings and associated methods
Berg et al. Surface texturing by sputter etching
JP2000204467A (en) Sputtering target and its production
JPH11256320A (en) Zno base sintered compact
JPH06290641A (en) Noncrystal transparent conductive membrane
Jaeger et al. The effect of exposure to air on silver and gold films deposited in ultra-high vacuum
WO2000068456A1 (en) Sputtering target and production method therefor
JPH03180462A (en) Formation of thin film
JPH11171539A (en) Zno-base sintered compact and its production
JPH07243036A (en) Ito sputtering target
Hayashi et al. Surface plasmon resonances in gas-evaporated Ag small particles: Effects of aggregation
JP3632781B2 (en) Oxide sintered body
JP3782355B2 (en) ITO sputtering target
JP3506782B2 (en) Manufacturing method of optical thin film
JPH0726371A (en) Sputtering target and low refractivity film
Jona Reactions of silicon with surfaces of close‐packed metals. III. Silicon on beryllium
BELYAEV et al. 34.2: Invited Paper: ZnO based transparent conductive oxides for to‐date flat panel displays
JPH0624826A (en) High density ito sintered compact and its production
JP2929109B2 (en) Optical thin film and method for manufacturing the same
Middleton The epitaxial growth of HCP cobalt evaporated onto LiF substrates
Amara et al. Investigations on AZO/Al/AZO Multilayer Structure Grown at Room Temperature

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees