JPH03180435A - Manufacture of y2o3 stabilized zro2 short fiber reinforced al matrix composite - Google Patents

Manufacture of y2o3 stabilized zro2 short fiber reinforced al matrix composite

Info

Publication number
JPH03180435A
JPH03180435A JP31957189A JP31957189A JPH03180435A JP H03180435 A JPH03180435 A JP H03180435A JP 31957189 A JP31957189 A JP 31957189A JP 31957189 A JP31957189 A JP 31957189A JP H03180435 A JPH03180435 A JP H03180435A
Authority
JP
Japan
Prior art keywords
alloy
short fibers
composite
intermetallic compound
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31957189A
Other languages
Japanese (ja)
Inventor
Akio Nakano
昭夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31957189A priority Critical patent/JPH03180435A/en
Publication of JPH03180435A publication Critical patent/JPH03180435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the composite with high strength and high elasticity by mixing Y2O3 stabilized ZrO2 short fibers in a molten metal of an Al base alloy, injecting the above into a die while pressure is applied, executing secondary pressurizing and controlling the reaction rate. CONSTITUTION:Y2O3 stabilized ZrO2 short fibers subjected to interface soln. treatment are previously mixed in a molten metal of an Al base alloy contg., by weight, 0.1 to 6% Mn, 0.2 to 4% Cr, 0.2 to 4% Si, 0 to 2% Ni and 0 to 2% V. They are injected into a die while pressure is applied and are integrally compounded. Furthermore, secondary pressurizing is executed to form acicular intermetallic compounds, which are uniformly dispersed and allowed to coexistent into an Al solid soln. matrix. Moreover, under pressure casting, an Al matrix peritectic alloy is brought into reaction with the intermetallic compounds to execute the compounding of the peritectic matrix alloy intermetallic compounds/the Y2O3 stabilized ZrO2 short fibers. In this way, the composite can be manufactured by a die casting method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、複合材料の新分野として注目されている繊
維強化金属複合材料(FRM)の製造方法に関し、特に
強化繊維としてセラミックス繊維を用いこのセラミック
ス繊維と金属間化合物による■基地複合材料をダイカス
ト法にて作製する製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing fiber-reinforced metal composite materials (FRM), which is attracting attention as a new field of composite materials. This invention relates to a manufacturing method for producing a base composite material made of ceramic fibers and intermetallic compounds by die-casting.

〈従来の技術及びその問題点〉 一般に、此種の繊維強化金属複合材料(FRM)の複合
化技術として注意を特に払う点は金属内に複合混在させ
る強化繊維の特性を損なわずに金属と複合化することに
ある。しかし一般的には製造過程において繊維材と金属
例えばAll基地合金溶湯とは高温で接するため、反応
による繊維材の劣化が者しく、複合則で予測した高強度
、高弾性率を得るのが難しいために製造方法には規正が
ある。
<Conventional technology and its problems> In general, the point to pay special attention to when using this type of composite technology for fiber-reinforced metal composite materials (FRM) is to combine the metal and composite materials without impairing the properties of the reinforcing fibers mixed in the metal. It is about becoming. However, in general, during the manufacturing process, fiber materials and metals such as molten All-based alloys come into contact at high temperatures, so the fiber materials are likely to deteriorate due to the reaction, making it difficult to obtain the high strength and high elastic modulus predicted by the composite rule. Therefore, there are regulations regarding the manufacturing method.

一般的な製造方法として強化繊維を事前にプリフオーム
化して予熱し、あらかじめ予熱された金型内に設置した
後、その金型内にAl基地合金溶湯を圧入し、その圧力
保持のまま凝固、複合化して繊維材と■基地合金との反
応時間を極小として繊維強化AfL基複合材料を作製す
る高圧凝固鋳造法が知られている。
As a general manufacturing method, reinforcing fibers are preformed and preheated, placed in a preheated mold, and then molten Al base alloy is press-fitted into the mold, solidified and composited while maintaining the pressure. A high-pressure solidification casting method is known in which a fiber-reinforced AfL-based composite material is produced by minimizing the reaction time between the fiber material and the base alloy.

しかし乍ら、この様な従来法にあっては製造過程におけ
る繊維材の劣化を最小限に押さえた複合化、換言すれば
高圧を掛けて繊維材と金属とが高温で接する時間を数秒
とし、それによって高温での反応を最小限に抑制した複
合化は可能であるが、金属内に複合混在された繊維材は
金属との一体化複合が望めず、結果的に繊維材と金属と
の間には微少のアモルファス層の発生等により滑り現象
(作用)が起り易くなって金属に高強度、高弾性率を付
与することはできないものであった。
However, in such conventional methods, the deterioration of the fibrous material during the manufacturing process is kept to a minimum by compositing, in other words, the time during which the fibrous material and metal are in contact at high temperature by applying high pressure is limited to several seconds. As a result, it is possible to create composites that minimize reactions at high temperatures, but fiber materials mixed in metal cannot be expected to form an integrated composite with metal, and as a result, the bond between fiber materials and metal In this case, a slipping phenomenon (effect) is likely to occur due to the formation of a minute amorphous layer, and it has been impossible to impart high strength and high elastic modulus to the metal.

また、従来法はダイカスト法の様に多種多様形状の繊維
強化金属複合材料、即ち製品を成形する自由度は全くな
かった。
In addition, conventional methods do not have the flexibility to mold fiber-reinforced metal composite materials, ie, products, in a wide variety of shapes, unlike the die-casting method.

〈発明が解決しようとする課題〉 本考案はこの様な従来事情に鑑みてなされたものであり
、その解決しようとする技術的課題は、強化繊維と金属
との一体化複合を実現し、高強度。
<Problem to be solved by the invention> The present invention has been made in view of the above-mentioned conventional circumstances, and the technical problem to be solved is to realize an integrated composite of reinforcing fibers and metal, and to achieve high performance. Strength.

高弾性の繊維強化金属複合材料の作製を可能とし且つそ
の高強度、高弾性率を更に高めることができ、しかもク
ズイカスト法による作製を可能としたY2 03安定化
zrO□短繊維強化^l基複合材料の製造方法を提供す
ることにある。
Y203-stabilized zrO□ short fiber reinforced ^l-based composite that enables the production of highly elastic fiber-reinforced metal composite materials, further increases its high strength and high elastic modulus, and also enables production by kudzu cast method. The purpose of the present invention is to provide a method for manufacturing the material.

〈技術的課題を達成するための手段〉 上記課題を達成するために本発明が講じる技術的手段は
、重量比で0.1〜6vj%旧、0.2〜4W【%Cr
、  0.2〜4W1%Siを含有又は前記各元素に更
にO〜2vt%Ni及び0〜2Wt%■を含有するAl
基地合金溶湯中に、界面溶体化処理を施したY2O3安
定化z+O□短繊維を予め混在させ、そのA、を基地合
金溶湯を金型内に加圧注入した後、合金包晶点変態温度
に合わせて金型内溶湯に二次加圧を掛け反応速度を制御
し、二次加圧力により、結晶粒界面に凝集するMn及び
Crを、At−Mu、 AJL−Crの金属間化合物と
して、核状金属間化合物及びこの核状金属間化合物を基
点として二次加圧方向に成長する針状金属間化合物を生
成させ^A固溶体基地に均一に分散共存させ、且つその
加圧鋳造のもとでAJ1基地包晶合金と金属間化合物と
を反応させて組基地合金/ Y2 03安定化2rO□
短繊維の複合、包晶脆基地合金金属間/ Y2 0i安
定化z【02短繊維の複合を行ない、金属間化合物及び
Y2O。
<Means for achieving the technical object> The technical means taken by the present invention to achieve the above object are as follows: 0.1 to 6 vj% Old, 0.2 to 4 W [% Cr
, Al containing 0.2~4W1%Si or further containing O~2vt%Ni and 0~2Wt%■ in each of the above elements
Y2O3 stabilized z+O□ short fibers that have been subjected to interfacial solution treatment are mixed in the base alloy molten metal in advance, and after injecting the base alloy molten metal into the mold under pressure, the mixture is heated to the alloy peritectic point transformation temperature. At the same time, secondary pressure is applied to the molten metal in the mold to control the reaction rate, and by the secondary pressure, Mn and Cr that aggregate at the grain interface are converted into intermetallic compounds of At-Mu and AJL-Cr and are A needle-like intermetallic compound and a needle-like intermetallic compound that grows in the direction of secondary pressure using this nuclear intermetallic compound as a base are generated, uniformly dispersed and coexisting in the A solid solution base, and under the pressure casting. AJ1 base peritectic alloy and intermetallic compound are reacted to form base alloy/Y2 03 stabilized 2rO□
Composite of short fibers, peritectic brittle matrix alloy intermetallic/Y2 Oi stabilizationz 02 Composite of short fibers, intermetallic compounds and Y2O.

・lro 2短繊維による相乗複合を計り、強固なる複
合を得るにある。
・LRO: A synergistic composite using two short fibers is used to obtain a strong composite.

〈実施例〉 本発明の実施の一例を以下説明すると、本実施例のY2
O3安定化2rO□短繊維強化^(基複合材料はkl基
地に重量比で0.l〜6wj%Mn、  0.2〜4w
t%Cr、  0.2〜4 vt%Siを添加又はO,
1〜6 v1%h、  0.2〜4r1%Cr、  0
.2〜4vt%Si、  0〜2W(%Ni及びO〜2
 W1%Vを添加したu−Mn−Cr−3l系のA女基
地合金、  Y2  (h安定化zrO,短繊維との複
合をすることを基本とするものである。
<Example> An example of implementing the present invention will be described below.
O3 stabilization 2rO□ short fiber reinforcement^ (base composite material is 0.1~6wj%Mn, 0.2~4w in weight ratio to kl base)
t%Cr, 0.2-4 vt%Si added or O,
1-6 v1%h, 0.2-4r1%Cr, 0
.. 2-4vt%Si, 0-2W(%Ni and O-2
It is basically a u-Mn-Cr-3l based A female base alloy with W1% V added, Y2 (h stabilized ZrO, composite with short fibers).

hL基地合金は重量比で0.1〜6vt%Mnの添加に
よってP1温度域になると包晶反応が起き、その包晶点
変態温度に合わせて二次加圧を掛けるとMnAfLb 
、 CrAjhの金属間化合物が初晶として晶出される
。このMnAl。、 Ct^Q7金属間化合物は核状金
属間化合物と針状金属間化合物とに生成され、特に針状
金属間化合物は第1図に示す結晶組織図から明らかな様
に核状金属間化合物を基点として二次加圧方向に成長す
るものである。この場合、針状金属間化合物の平均成長
長さは0.301/l〜G、 4a+/i程度になる。
When the hL base alloy reaches the P1 temperature range due to the addition of 0.1 to 6 vt% Mn by weight, a peritectic reaction occurs, and when secondary pressure is applied to the peritectic point transformation temperature, MnAfLb
, CrAjh intermetallic compounds are crystallized as primary crystals. This MnAl. , Ct^Q7 intermetallic compounds are generated from nuclear intermetallic compounds and acicular intermetallic compounds, and in particular, acicular intermetallic compounds form nuclear intermetallic compounds, as is clear from the crystal structure diagram shown in Figure 1. It grows in the direction of secondary pressure as a base point. In this case, the average growth length of the acicular intermetallic compound is about 0.301/l to G, 4a+/i.

そして、このAL−MIl−Cr−3l系合金溶渦中に
、界面溶体化処理を施したY2O,安定化ho□短繊維
を予め混在させて金型内にて一体化複合させる。
Then, in this AL-MIl-Cr-3l alloy melt, Y2O subjected to interfacial solution treatment and stabilized ho□ short fibers are mixed in advance and integrated and composited in a mold.

上記Y2O.安定化zrO□短繊維は、Y2O。The above Y2O. Stabilized zrO□ short fibers are Y2O.

を若干量2〜8%含むXrO□とし、密度4.83gf
/an’、引張強さ210kgf/mm’ 、弾性係数
35100kgl/w’ 、固有物性値の変化のない使
用温度2650℃(AJL、  O,、Sic 、 S
i、Lに比べて引張強さ1/10程度) 、 AI−M
u−Cr−3l系合金溶湯に対して安定、高温でのAf
L、 Mn、 Cr、 Siとの反応極小量等の特徴を
有する。
XrO□ containing a slight amount of 2 to 8%, density 4.83gf
/an', tensile strength 210 kgf/mm', elastic modulus 35100 kgl/w', operating temperature 2650°C with no change in intrinsic physical properties (AJL, O,, Sic, S
i, tensile strength about 1/10 compared to L), AI-M
Stable for u-Cr-3l alloy molten metal, Af at high temperature
It has characteristics such as minimum amount of reaction with L, Mn, Cr, and Si.

AQ−旧−Ct−3i系合金との反応層としてAjt−
Ct、系の薄膜aooaAをスパッタ蒸着する界面溶化
処理を施し、Y2O,安定化2tO,短繊維にN+を3
00 KeV注入温度300Kにて、イオン注入し、繊
維断面径10μに対して7ooX〜1000人程度のN
゛改善層を生成しする。イオン注入によるY2O。
Ajt- as a reaction layer with AQ-old-Ct-3i alloy
Interfacial solution treatment was performed by sputter-depositing a thin film of Ct, aooaA, Y2O, stabilization 2tO, and short fibers with 3N+.
Ion implantation was performed at a 00 KeV implantation temperature of 300K, and N of about 7oo
``Create an improvement layer. Y2O by ion implantation.

安定化!rO□短繊維と0□−Cr、系薄膜との付着力
を著しく向上させて一体化を図ると共に、Ajl−Mn
−Ct−9i系合金との液相混合として一体化複合せし
めた複合合金とする。
Stabilization! In addition to significantly improving the adhesion between rO□ short fibers and O□-Cr-based thin films to achieve integration, Ajl-Mn
- A composite alloy is obtained by integrally combining it with a Ct-9i alloy as a liquid phase mixture.

次に、本実施例のY2O3安定化2rO□短繊維強化U
基複合材料の製造方法(以下、本工法と称す)を下記の
製造条件に基づいて説明する。
Next, Y2O3 stabilized 2rO□ short fiber reinforced U of this example
The method for manufacturing the base composite material (hereinafter referred to as the present method) will be explained based on the following manufacturing conditions.

0.溶湯の注入温度ニア50〜800℃b、金型温度 
  =250〜500℃C9二次加圧力  :50履p
a〜250mptまず、本工法はAJL−Mn−Ct−
3i系合金とy、  o、安定化XrO□短繊維との配
合比を重量比で8〜5vt%、残部Al−Mn−Ct−
Si系合金に設定する。
0. Molten metal injection temperature near 50-800℃b, mold temperature
=250~500℃C9 Secondary pressure: 50 shoes p
a~250mpt First, this construction method is AJL-Mn-Ct-
The blending ratio of the 3i-based alloy and the y, o, and stabilized XrO
Set to Si-based alloy.

そして、41−Mn−Cr−3i系合金溶渦中にY2O
、安定化2r02短繊維を予め配合混在させてn−Mn
−Ct−3i系合金溶湯を金型内に加圧注入した後、全
型内合金包晶点変態温度に合わせて金型内溶湯に二次加
圧を掛けて反応速度(金属間化合物を晶出する反応圧力
1時間、温度など)を制御する。すると、第1図の結晶
組織図から明らかな様に核状金属間化合物と二次加圧方
向に成長する針状金属間化合物とが晶出生成されM固溶
体基地中に均一に分散共存し且つその加圧鋳造のもとで
基地包晶合金との溶体化処理をしたY2O3安定化zt
02短繊維が近傍に混在する核状金属間化合物を中心と
して反応し、紅基地合金/ Y2 0i安定化2tO□
短繊維の複合、包晶紅基合金金属間化合物/ Y2  
(h安定化1to□短繊維の複合との相乗複合強化をも
たらす結晶組織となる。
Then, Y2O was added to the molten 41-Mn-Cr-3i alloy.
, stabilized 2r02 short fibers are mixed in advance to form n-Mn
- After injecting the molten Ct-3i alloy into the mold under pressure, secondary pressure is applied to the molten metal in the mold in accordance with the peritectic point transformation temperature of the entire alloy in the mold to reduce the reaction rate (crystallization of intermetallic compounds). control the reaction pressure (1 hour, temperature, etc.). Then, as is clear from the crystal structure diagram in FIG. Y2O3 stabilized zt subjected to solution treatment with base peritectic alloy under pressure casting
02 short fibers react mainly in the nuclear intermetallic compound mixed nearby, and the red base alloy/Y2 0i stabilized 2tO□
Short fiber composite, peritectic red-base alloy intermetallic compound/Y2
(h Stabilized 1to□ forms a crystalline structure that brings about synergistic composite reinforcement with the composite of short fibers.

従って、本工法によって作製されたY2O3安定化2r
O□短繊維強化Al基複合材料によれば、界面溶体化処
理のイオン注入による繊維材と胱−M+−Cr−3i系
合金との反応層として該繊維材の表面を披露するAn、
−Cry系薄膜との一体化によってY2O3安定化ho
□短繊維は■基地合金中に一体化複合されて混在するこ
とから、従来の様な滑り現象を起す虞れがなく繊維材の
優れた特性をもってA9基地合金の高強度、高弾性を図
り、且っY2O3安定化XtO2短繊維とAll−Mu
−Ct−8i系合金における核状、針状金属間化合物と
の相乗複合効果によって更に優れた高強度、高弾性が得
られる。
Therefore, Y2O3 stabilized 2r produced by this method
O□ According to the short fiber reinforced Al-based composite material, An, which exposes the surface of the fiber material as a reaction layer between the fiber material and the bladder-M+-Cr-3i alloy by ion implantation during interfacial solution treatment,
- Y2O3 stabilization by integrating with Cry-based thin film
□ Short fibers are integrated and mixed in the base alloy, so there is no risk of slipping like in the past, and with the excellent properties of fiber materials, the A9 base alloy has high strength and high elasticity. And Y2O3 stabilized XtO2 short fibers and All-Mu
Further superior high strength and high elasticity can be obtained by the synergistic composite effect with the nuclear and acicular intermetallic compounds in the -Ct-8i alloy.

また、本工法によれば、 型注入方向に対して二次加圧方向を90°角に直交させ
ることにより、721 03安定化2tO,を注入方向
に、金属間化合物をこれに直交させる方向に生成せしめ
ることができ、複合材が今迄持っていた、一方向性のみ
についての機能性を直交二方向性とすることが可能とな
った。
In addition, according to this method, by making the secondary pressurization direction perpendicular to the mold injection direction at a 90° angle, the 721 03 stabilized 2tO is placed in the injection direction and the intermetallic compound is placed in the direction perpendicular to this. It has become possible to change the functionality of composite materials, which until now had only unidirectionality, to orthogonal bidirectionality.

また、Y2O,安定化2r(h短繊維を針状金属間化合
物と同等に合わせることにより、鋳造性の自由度を取る
ことが可能となることから、上記高複合機能のY2O,
安定化2tO□短繊維強化^1基複合材料をダイカスト
法にて作製(鋳造)することができる。
In addition, by combining Y2O, stabilized 2r (h short fibers to the same level as acicular intermetallic compounds, it becomes possible to have a degree of freedom in castability.
A stabilized 2tO□short fiber reinforced^1 composite material can be produced (cast) by a die-casting method.

〈発明の効果〉 本発明は叙上の如き構成であるから、下記の作用効果を
奏する。
<Effects of the Invention> Since the present invention has the configuration as described above, it exhibits the following effects.

■ 重量比で0.1〜6vt%Mn、  0.2〜4 
vt%Ct。
■ Weight ratio: 0.1-6vt%Mn, 0.2-4
vt%Ct.

0.2〜4wt%Siを含有又は前記各元素に更に0〜
2wt%旧及びO〜2WI%■を含有するAJ基地合金
溶渦中に、界面溶体化処理を施したY2O,安定化2r
O□短繊維を予め混在させ、そのAn基地合金溶湯を金
型内に加圧注入した後、合金包晶点変態温度に合わせて
金型内溶湯に二次加圧を掛け反応速度を制御して核状金
属間化合物及びこの核状金属間化合物を基点として二次
加圧方向に成長する針状金属間化合物を生成し■固溶体
基地に均一に分散共存させ、且つその加圧鋳造のもとで
■基地包晶合金と金属間化合物とを反応させてAfL基
地合金/ Y2 03安定化1to□短繊維の複合、包
晶At基地合金金属間化合物/ Y2 03安定化zr
O2短繊維の複合を行なうことを特徴とする製造方法で
あって、Al基地包晶合金との溶体化処理したY2O3
安定化2rO□短繊維が近傍に混在する核状金属間化合
物を中心として反応し、二次加圧方向に晶出成長する針
状金属間化合物と同様に均一に混在して相乗複合効果を
もたらす結晶組織、即ち高強度、高弾性のY2O,安定
化2rO□短繊維強化Af基複合材料を作製し得ること
が出来る。
Contains 0.2 to 4 wt% Si or further contains 0 to 4 wt% of each of the above elements.
Y2O subjected to interfacial solution treatment, stabilized 2r in AJ base alloy melt containing 2wt% old and O~2WI%■
After pre-mixing O□ short fibers and injecting the An-base alloy molten metal into the mold under pressure, secondary pressure is applied to the molten metal in the mold in accordance with the alloy peritectic transformation temperature to control the reaction rate. A nuclear intermetallic compound and an acicular intermetallic compound that grows in the secondary pressure direction using this nuclear intermetallic compound as a base are generated, and they are uniformly dispersed and coexisted in the solid solution base, and the source of the pressure casting. ■ React base peritectic alloy and intermetallic compound to create AfL base alloy/Y2 03 stabilized 1to□ short fiber composite, peritectic At base alloy intermetallic compound/Y2 03 stabilized zr
A manufacturing method characterized by compositing O2 short fibers, the method comprising the step of compositing O2 short fibers, the method comprising:
The stabilized 2rO□ short fibers react mainly with the nuclear intermetallic compounds mixed nearby, and are evenly mixed together like the acicular intermetallic compounds that crystallize and grow in the direction of secondary pressure, resulting in a synergistic composite effect. It is possible to produce a Y2O, stabilized 2rO□ short fiber reinforced Af-based composite material with a crystalline structure, ie, high strength and high elasticity.

■ 複合材注入方向、二次加圧方向を適度に取ることに
より、混入短繊維と、金属間化合物生成方向を位置決め
することが出来る。
(2) By appropriately adjusting the direction of injection of the composite material and the direction of secondary pressurization, it is possible to position the mixed short fibers and the direction of intermetallic compound formation.

■ y2O3安定化hO□短繊維を針状金属間化合物と
同等に合わせることにより、鋳造性の自由度を取ること
が可能となることから、上記作用効果の■のY2O,安
定化2rO□短繊維強化^l基複合材料をダイカスト法
にて作製することができ、有益且つ実用的効果が大なる
製造方法を提供することが出来た。
■ By combining the y2O3 stabilized hO□ short fibers to the same level as the acicular intermetallic compound, it becomes possible to have a degree of freedom in castability. A reinforced^l-based composite material could be produced by die-casting, and a manufacturing method with great useful and practical effects could be provided.

依って、所期の目的を達成し得た。Therefore, the intended purpose was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図面は本工法にて作製したY2O3安定化2rO□
短繊維強化At基複合材料の結晶組織図である。 特 許 出 願 人 中 野 昭 夫
The first drawing shows Y2O3 stabilized 2rO□ produced using this method.
FIG. 2 is a crystal structure diagram of a short fiber-reinforced At-based composite material. Patent applicant Akio Nakano

Claims (1)

【特許請求の範囲】[Claims] 重量比で0.1〜6wt%Ma、0.2〜4wt%Cr
、0.2〜4wt%Siを含有又は前記各元素に更に0
〜2wt%Ni及び0〜2Wt%Vを含有するAl基地
合金溶湯中に、界面溶体化処理を施したY_2O_3安
定化ZrO_2短繊維を予め混在させ、そのAl基地合
金溶湯を金型内に加圧注入した後、合金包晶点変態温度
に合わせて金型内溶湯に二次加圧を掛け反応速度を制御
して核状金属間化合物及びこの核状金属間化合物を基点
として二次加圧方向に成長する針状金属間化合物を生成
しAl固溶体基地に均一に分散共存させ、且つその加圧
鋳造のもとでAl基地包晶合金と金属間化合物とを反応
させてAl基地合金/Y_2O_3安定化ZrO_2短
繊維の複合、包晶Al基地合金金属間化合物/Y_2O
_3安定化ZrO_2短繊維の複合を行なうことを特徴
とするY_2O_3安定化ZrO_2短繊維強化Al基
複合材料の製造方法。
Weight ratio: 0.1 to 6 wt% Ma, 0.2 to 4 wt% Cr
, containing 0.2 to 4 wt% Si, or each of the above elements further contains 0.
Y_2O_3 stabilized ZrO_2 short fibers subjected to interfacial solution treatment are mixed in advance in an Al-based alloy molten metal containing ~2wt%Ni and 0-2wt%V, and the Al-based alloy molten metal is pressurized into a mold. After injection, secondary pressure is applied to the molten metal in the mold according to the alloy peritectic transformation temperature to control the reaction rate, and the reaction rate is controlled to form the nuclear intermetallic compound and the direction of secondary pressure from this nuclear intermetallic compound as a base point. The acicular intermetallic compound that grows is produced and is uniformly dispersed and coexisted in the Al solid solution base, and the Al base peritectic alloy and the intermetallic compound are reacted under pressure casting to form an Al base alloy/Y_2O_3 stable. Composite of ZrO_2 short fibers, peritectic Al-based alloy intermetallic compound/Y_2O
A method for producing a Y_2O_3 stabilized ZrO_2 short fiber-reinforced Al-based composite material, which comprises performing a composite of _3 stabilized ZrO_2 short fibers.
JP31957189A 1989-12-07 1989-12-07 Manufacture of y2o3 stabilized zro2 short fiber reinforced al matrix composite Pending JPH03180435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31957189A JPH03180435A (en) 1989-12-07 1989-12-07 Manufacture of y2o3 stabilized zro2 short fiber reinforced al matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31957189A JPH03180435A (en) 1989-12-07 1989-12-07 Manufacture of y2o3 stabilized zro2 short fiber reinforced al matrix composite

Publications (1)

Publication Number Publication Date
JPH03180435A true JPH03180435A (en) 1991-08-06

Family

ID=18111751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31957189A Pending JPH03180435A (en) 1989-12-07 1989-12-07 Manufacture of y2o3 stabilized zro2 short fiber reinforced al matrix composite

Country Status (1)

Country Link
JP (1) JPH03180435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564990B2 (en) 2008-12-18 2013-10-22 Abb Research Ltd Converter device and method for controlling a converter device
CN110423935A (en) * 2019-08-29 2019-11-08 东北大学 It is a kind of using rare earth oxide as the light metal composite material of reinforcement
CN111004946A (en) * 2019-12-30 2020-04-14 宁波杰达模具机械有限公司 Die-casting forming process of gearbox clutch shell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564990B2 (en) 2008-12-18 2013-10-22 Abb Research Ltd Converter device and method for controlling a converter device
CN110423935A (en) * 2019-08-29 2019-11-08 东北大学 It is a kind of using rare earth oxide as the light metal composite material of reinforcement
CN110423935B (en) * 2019-08-29 2021-05-18 东北大学 Light metal composite material taking rare earth oxide as reinforcement
CN111004946A (en) * 2019-12-30 2020-04-14 宁波杰达模具机械有限公司 Die-casting forming process of gearbox clutch shell

Similar Documents

Publication Publication Date Title
US4915905A (en) Process for rapid solidification of intermetallic-second phase composites
JP2001181767A (en) High strength aluminum alloy
US5015534A (en) Rapidly solidified intermetallic-second phase composites
US5296055A (en) Titanium aluminides and precision cast articles made therefrom
JP2000026944A (en) Amorphous alloy excellent in bending strength and impact strength, and its production
JPS613864A (en) Carbon fiber reinforced magnesium alloy
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
JPH03180435A (en) Manufacture of y2o3 stabilized zro2 short fiber reinforced al matrix composite
US5261940A (en) Beta titanium alloy metal matrix composites
JPH02197535A (en) Manufacture of intermetallic compound
US5468548A (en) Directionally solidified eutectic reinforcing fibers and fiber reinforced composites containing the fibers
JP4352472B2 (en) Magnesium matrix composite
US4193822A (en) High strength aluminium base alloys
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH05230717A (en) Coated ceramic fiber system
JPH0218374B2 (en)
JPH0230726A (en) Fiber-reinforced metallic composite material
JP3104244B2 (en) Particle-dispersed composite material and method for producing the same
KR100353156B1 (en) Aluminum-based single quasicrystalline alloys
JPH0586425A (en) Composition and preparation of metal matrix composite material
JP2824519B2 (en) Alumina-dispersed aluminum-titanium intermetallic compound composite material and method for producing the same
JP2992669B2 (en) Method for producing alumina-dispersed aluminum-titanium intermetallic compound composite containing specific impurities and titanium dioxide containing impurities
JP2792130B2 (en) Method for producing high silicon content aluminum alloy
JPS6146529B2 (en)
JPH032337A (en) Manufacture of aluminum alloy composite material