JPH03180424A - Method for controlling end point carbon concentration for vacuum refining - Google Patents

Method for controlling end point carbon concentration for vacuum refining

Info

Publication number
JPH03180424A
JPH03180424A JP31994889A JP31994889A JPH03180424A JP H03180424 A JPH03180424 A JP H03180424A JP 31994889 A JP31994889 A JP 31994889A JP 31994889 A JP31994889 A JP 31994889A JP H03180424 A JPH03180424 A JP H03180424A
Authority
JP
Japan
Prior art keywords
decarburization
carbon
end point
carbon concentration
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31994889A
Other languages
Japanese (ja)
Inventor
Shohei Korogi
興梠 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31994889A priority Critical patent/JPH03180424A/en
Publication of JPH03180424A publication Critical patent/JPH03180424A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the carbon concn. at the time when decarburization ends with high accuracy by determining the decarburization end point timing from the relation between the CO concn. and the decarburization time at the time of smelting a low- carbon steel by vacuum refining. CONSTITUTION:The correlations between the CO concn. and the decarburization time in exhaust gases are determined by each decarburization speed to determine the timing for the end point of the decarburization by simultaneously holding equations I, II, III, IV at the time of smelting the low-carbon steel of <=50ppm carbon concn. by vacuum refining. The end point carbon concn. corresponding to the fluctuation in the decarburization speed is controlled in accordance with this timing. In the equations I to IV, [C] denotes the carbon concn. (ppm) in steel; (t) denotes the decarburization time (min), Kc denotes a coefft. (1/min)) [C]0 denotes the initial carbon concn. in the steel; [C] denotes the decarburization quantity per minute; (x) denotes the amt. of the molten steel to be treated (ton); (CO) denotes the amt. of the CO generated (kg/hr); %CO denotes the CO concn. in the exhaust gases; Y denotes the amt. of the gas exclusive of the CO to be introduced into a vacuum system (kg/hr). The excessive decarburization treatment is averted in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空精錬により低炭素鋼を溶製する際の脱炭
終了時の炭素濃度を制御する方法に関し、特に炭素濃度
が50ppm以下である低炭素鋼を溶製する際に、脱炭
終了時の炭素濃度を精度良く制御し得る終点炭素濃度制
御方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for controlling the carbon concentration at the end of decarburization when melting low carbon steel by vacuum refining, and in particular to a method for controlling the carbon concentration at the end of decarburization when the carbon concentration is 50 ppm or less. The present invention relates to an end point carbon concentration control method that can accurately control the carbon concentration at the end of decarburization when producing a certain low carbon steel.

〔従来の技術〕[Conventional technology]

−iに、炭素濃度が50ppm以下であるような極低炭
素鋼を溶製する際には、まず大気雰囲気精錬炉にて粗脱
炭処理を実施した後、RH,DH,LFV、 VOD等
の真空精錬炉にて所定の炭素濃度まで脱炭する。
-i, when producing ultra-low carbon steel with a carbon concentration of 50 ppm or less, first perform a rough decarburization treatment in an atmospheric refining furnace, and then process RH, DH, LFV, VOD, etc. Decarburize to a specified carbon concentration in a vacuum smelting furnace.

各真空精錬炉においては、以下に示すような手法を用い
て真空精錬における脱炭処理の高速化を図っている。R
)Iでは環流用Arガスの増加または浸漬管径の増大に
より溶鋼の環流量を増加する。DIでは吸引サイクルを
高速化する。またLFV、 VODでは、底吹攪拌ガス
の増加により溶鋼流動を改善する。
In each vacuum smelting furnace, the following methods are used to speed up the decarburization process in vacuum smelting. R
) In I, the reflux flow rate of molten steel is increased by increasing the reflux Ar gas or increasing the immersion pipe diameter. DI speeds up the suction cycle. In addition, in LFV and VOD, the flow of molten steel is improved by increasing the amount of bottom-blown stirring gas.

このようにして、真空精錬において高速な脱炭処理を施
した場合にあっても、脱炭処理の終了時点(脱炭終点タ
イミング)を正確に判定できないときには、過剰な脱炭
処理が必要となり、合理化の促進には妨げである。また
、炭素濃度を精度良く制御することによって製品の深絞
り性または強度等を精密に制御しようとする場合には、
単に脱炭能力を向上させるだけでは不十分であり、脱炭
の高精度の制御が必要である。
In this way, even if high-speed decarburization processing is performed in vacuum refining, if the end point of decarburization processing (decarburization end point timing) cannot be accurately determined, excessive decarburization processing will be necessary. This is a hindrance to promoting rationalization. In addition, when trying to precisely control the deep drawability or strength of the product by precisely controlling the carbon concentration,
It is not enough to simply improve decarburization ability; highly accurate control of decarburization is required.

このような事情により、真空精錬における溶鋼の炭素濃
度を制御する方法として、様々な制御方法が提案されて
いる。以下、代表的な制御方法について簡単に説明する
Under these circumstances, various control methods have been proposed as methods for controlling the carbon concentration of molten steel in vacuum refining. A typical control method will be briefly explained below.

特開平1−222018号に開示されている方法(以下
先行法1という)は、真空脱ガス槽中のCOガス濃度と
溶鋼中の炭素量との相関関係に基づいて溶鋼中の炭素量
を推定しなから脱炭反応を制御する方法である。また特
開昭62−263916号に開示されている方法(以下
先行法2という)は、真空酸素脱炭期及び真空脱ガス期
の溶鋼炭素含有量を操業条件の関数として定量化し、こ
の定量化した関係を用いて真空酸素脱炭及び真空脱ガス
の適正な終了時点を決定することにより、真空精錬炉に
おける溶鋼炭素含有量を正確に制御する。また特開昭6
1−195913号に開示されている方法(以下先行法
3という)は、真空精錬炉の真空酸素脱炭期及び真空脱
炭期の夫々の期間での溶鋼炭素含有量を操業条件の関数
として予め定量化しておき、この定量化した関係を用い
て真空酸素脱炭及び真空脱炭の適正な終了時点を決定す
る。また特開昭59−185720号に開示されている
方法(以下先行法4という)は、真空脱ガス装置の稼働
中の排気ダクトにおける排気ガスの情報に基づいて、溶
鋼中の炭素量を動的に予測するものであり、真空処理開
始前の溶鋼中の炭素量から排気ガス中に移行した積算炭
素量を差引いである時間における溶鋼中の炭素量を算出
する。また特開昭49−61013号に開示されている
方法(以下先行法5という)は、標準ステンレス鋼の製
造に関し、吹錬途中の真空度及び排気ガス成分の測定値
と全体の脱炭酸素効率との相関関係を予め求めておき、
この相関関係に基づいて終点炭素含有量を推定する。ま
た特開昭49−61014号に開示されている方法(以
下先行法6という)は、極低炭ステンレス鋼の製造に関
し、脱炭についての酸素の供給速度が律速となる高炭素
領域と炭素の拡散速度が律速となる低炭素領域との境界
における炭素濃度を臨界炭素濃度と定義し、この臨界炭
素濃度を吹錬前の溶鋼条件あるいは排気ガス中のCO□
濃度と真空容器内の圧力とから経験的に求め、それ以降
の脱炭速度は炭素の拡散律速であると仮定して作成した
式から酸素吹込み時間を計算する。
The method disclosed in JP-A-1-222018 (hereinafter referred to as prior method 1) estimates the amount of carbon in molten steel based on the correlation between the CO gas concentration in the vacuum degassing tank and the amount of carbon in molten steel. This is a method to control the decarburization reaction. Furthermore, the method disclosed in JP-A No. 62-263916 (hereinafter referred to as prior method 2) quantifies the molten steel carbon content during the vacuum oxygen decarburization period and the vacuum degassing period as a function of operating conditions. The molten steel carbon content in the vacuum smelting furnace is accurately controlled by determining the appropriate end point of vacuum oxygen decarburization and vacuum degassing using the relationship. Also, JP-A-6
1-195913 (hereinafter referred to as prior method 3), the molten steel carbon content in each period of the vacuum oxygen decarburization period and the vacuum decarburization period of the vacuum smelting furnace is determined in advance as a function of operating conditions. This is quantified, and the appropriate end point of vacuum oxygen decarburization and vacuum decarburization is determined using this quantified relationship. Furthermore, the method disclosed in JP-A-59-185720 (hereinafter referred to as prior method 4) dynamically calculates the amount of carbon in molten steel based on information on exhaust gas in the exhaust duct during operation of the vacuum degassing equipment. The amount of carbon in the molten steel at a certain time is calculated by subtracting the cumulative amount of carbon transferred into the exhaust gas from the amount of carbon in the molten steel before the start of vacuum treatment. In addition, the method disclosed in JP-A No. 49-61013 (hereinafter referred to as prior method 5) is related to the production of standard stainless steel, and is based on the measured values of the degree of vacuum and exhaust gas components during blowing, and the overall decarburization oxygen efficiency. Find the correlation in advance with
The end point carbon content is estimated based on this correlation. Furthermore, the method disclosed in JP-A No. 49-61014 (hereinafter referred to as "prior method 6") is related to the production of ultra-low carbon stainless steel. The carbon concentration at the boundary with the low carbon region where the diffusion rate is rate-determining is defined as the critical carbon concentration, and this critical carbon concentration is determined by the molten steel conditions before blowing or the CO□ in the exhaust gas.
The oxygen injection time is calculated empirically from the concentration and the pressure inside the vacuum container, and from a formula created assuming that the subsequent decarburization rate is rate-limited by carbon diffusion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したような各方法にあっては、次に述べるような問
題点がある。
Each of the methods described above has the following problems.

先行法1では、操業条件が変わればCOガス濃度と溶鋼
中の炭素量との相関関係も変化するので、実際の操業上
にあっては有効ではない。先行法2゜3では、真空精錬
中におけるCOガス濃度1時間等の変化する条件を制御
条件に盛込まないスタティック(静的)制御であり、実
操業における脱炭反応のバラツキを考慮していないので
、満足な終点制御を行えない。また先行法4では、ダイ
ナ兆ツク(動的)制御であって終点炭素値の制御を比較
的高精度に行えるが、積分型にて溶鋼中の炭素量を求め
るので、計測誤差の累積が不可避であり正確さに欠けて
いる。先行法5では、酸素を吹かさないような工程にあ
っては実現不可能であり、しかもステンレス鋼に限定さ
れている。先行法6では、実際の精錬にあっては酸素供
給律速の状態から突然に炭素の拡散律速の状態へ移行す
るわけではなく、実際の操業では有効でない。
Prior method 1 is not effective in actual operation because the correlation between the CO gas concentration and the amount of carbon in molten steel changes if the operating conditions change. The previous method 2゜3 is a static control that does not incorporate changing conditions such as the CO gas concentration per hour during vacuum refining into the control conditions, and does not take into account the variations in the decarburization reaction in actual operation. Therefore, satisfactory end point control cannot be performed. In addition, in the preceding method 4, the end point carbon value can be controlled with relatively high accuracy due to dynamic control, but since the amount of carbon in molten steel is determined using an integral type, the accumulation of measurement errors is unavoidable. and lacks accuracy. Prior method 5 cannot be realized in processes where oxygen is not blown, and is limited to stainless steel. In the prior method 6, in actual refining, there is no sudden transition from the rate-limiting state of oxygen supply to the rate-limiting state of carbon diffusion, and it is not effective in actual operations.

以上のように、従来の制御方法については種々の問題点
があり、実操業時において満足な結果が得られるように
脱炭終了時の炭素濃度を制御する方法は未だに提案され
ていない。
As described above, there are various problems with conventional control methods, and no method has yet been proposed for controlling the carbon concentration at the end of decarburization so as to obtain satisfactory results during actual operation.

本発明はかかる事情に鑑みてなされたものであり、炭素
濃度が50ppm以下である低炭素鋼を真空精錬により
溶製した際の脱炭終了時の炭素濃度を高精度に制御する
ことができ、過剰な脱炭を避けることができて合理化の
促進が可能である真空精錬における終点炭素濃度制御方
法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to control with high precision the carbon concentration at the end of decarburization when low carbon steel with a carbon concentration of 50 ppm or less is melted by vacuum refining. An object of the present invention is to provide a method for controlling end point carbon concentration in vacuum refining, which can avoid excessive decarburization and promote rationalization.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る真空精錬における終点炭素濃度制御方法は
、炭素濃度が50ppm以下である低炭素鋼を真空精錬
にて溶製する際に、脱炭終了時の炭素濃度を制御する方
法であって、下記4式を連立させて、係数Kcが変動し
た際の到達する炭素濃度毎のCO′a度(XCO)と時
間tとの関係を算出し、この算出した関係に基づいて脱
炭終点タイミングを決定し、この決定したタイミングに
より終点炭素濃度を制御することを特徴とする。
The end point carbon concentration control method in vacuum refining according to the present invention is a method for controlling the carbon concentration at the end of decarburization when melting low carbon steel with a carbon concentration of 50 ppm or less by vacuum refining, By combining the following four equations, calculate the relationship between the degree of CO'a (XCO) and time t for each carbon concentration reached when the coefficient Kc fluctuates, and determine the decarburization end point timing based on this calculated relationship. The end point carbon concentration is controlled based on the determined timing.

[C]  −[CF6 exp(−KcHt )但し、 [C]  :m中の炭素濃度(ppm) 。[C] - [CF6 exp (-KcHt) However, [C]: Carbon concentration in m (ppm).

t:脱炭時間(分)、Kc :係数(1/分)[C]。t: decarburization time (min), Kc: coefficient (1/min) [C].

:鋼中の初期炭素濃度(ppm) 。: Initial carbon concentration in steel (ppm).

Δ[C]:1弁当たりの脱炭量(ppm/分)。Δ[C]: Decarburization amount per valve (ppm/min).

X:処理溶鋼量(トン)。X: Amount of molten steel processed (tons).

(Co) : 鋼中のC0発生量(kg/時)。(Co): Amount of CO generated in steel (kg/hour).

(Co、が発生する場合は等モル数のCOに換算して補
正〉。
(If Co is generated, convert it to the equivalent number of moles of CO and correct it.)

(XCO)  :排気ガス中のCO濃度(%)。(XCO): CO concentration (%) in exhaust gas.

(Co□はCOに換算して補正) Y:鋼中に真空系に導入されるCO基以外ガス量(kg
 /時) 〔作用〕 本発明の終点炭素濃度制御方法にあっては、炭素濃度が
50ppm以下である低炭素鋼において、次反応と仮定
した脱炭反応の基礎式とCOの物質収支式とを連立させ
て、脱炭速度別に排気ガス中のCO濃度と脱炭時間との
関係を求め、脱炭速度の変動に対応した、この両者の関
係に基づいて終点炭素濃度を制御する。
(Co□ is corrected by converting it to CO) Y: Amount of gas other than CO group introduced into the vacuum system into steel (kg
/hour) [Operation] In the end point carbon concentration control method of the present invention, in low carbon steel where the carbon concentration is 50 ppm or less, the basic equation of the decarburization reaction, which is assumed to be the following reaction, and the mass balance equation of CO are At the same time, the relationship between the CO concentration in the exhaust gas and the decarburization time is determined for each decarburization rate, and the end point carbon concentration is controlled based on the relationship between the two in response to fluctuations in the decarburization rate.

〔原理〕 以下、本発明の制御方法の原理について説明する。〔principle〕 The principle of the control method of the present invention will be explained below.

低炭素域(炭素濃度が400ppm以下程度)における
脱炭反応は、見かけ上−次反応式に従うので、下記(1
)が戒り立つ。
The decarburization reaction in the low carbon region (carbon concentration of about 400 ppm or less) apparently follows the -order reaction formula, so the following (1
) is admonished.

但し、 [C] :鋼中の炭素濃度(ppm ) 。however, [C]: Carbon concentration in steel (ppm).

t:脱炭時間〈分)、に、:係数(1/分)。t: decarburization time (min), t: coefficient (1/min).

また、真空精錬においてはガスの出入は厳密に管理され
ており、排気ガスの正確な情報が得られる。
Furthermore, in vacuum refining, the inflow and outflow of gas is strictly controlled, and accurate information on exhaust gas can be obtained.

総説炭量が同一である場合には、総CO発生量(COz
も同時に発生する場合には発生したCo□を当モルのC
Oに換算する〉も同一である。そして、脱炭速度が大き
いときには、初期に大量のCOが発生し、炭素濃度の低
下に伴って急速にC0発生量が減少する。一方、脱炭速
度が小さいときには、初期ρCO発生は少なくなるが、
総CO発生量は同一であるので、一定時間後のC0発生
量はむしろ大きくなる。
OverviewIf the amount of coal is the same, the total amount of CO generated (COz
If both occur at the same time, the generated Co□ is the current molar C
Convert to O> is also the same. When the decarburization rate is high, a large amount of CO is generated initially, and the amount of CO generated rapidly decreases as the carbon concentration decreases. On the other hand, when the decarburization rate is low, the initial ρCO generation decreases, but
Since the total amount of CO generated is the same, the amount of CO generated after a certain period of time is rather larger.

このように、脱炭速度によって時間とC0発生量との関
係は変化するので、本発明ではこの関係を溶鋼中の炭素
濃度の推定に利用する。
As described above, since the relationship between time and the amount of CO generated changes depending on the decarburization rate, this relationship is utilized in the present invention to estimate the carbon concentration in molten steel.

前記(11式の微分方程式を解き、t=Qにおける[C
Iの初期値を[CI。とすると、下記(2)式が得られ
る。
Solving the differential equation (11) above, [C at t=Q
Set the initial value of I to [CI. Then, the following equation (2) is obtained.

[CI。:鋼中の初期炭素濃度(ppm)ここで(11
,(2+式における変数は、Kc、t、  [CIであ
るのでに、を設定すると乙と[CIとの関係が算出され
る。また(1)、 (2i弐より、単位時間当たりの脱
炭量Δ[CI も設定されたKc毎に計算されるので、
下記(3)式により、単位時間当たりのCO発生量、[
C]oが求められる。
[C.I. : Initial carbon concentration in steel (ppm) where (11
, (Since the variables in the formula 2+ are Kc, t, and [CI, the relationship between B and [CI is calculated by setting . Since the amount Δ[CI is also calculated for each set Kc,
According to the following formula (3), the amount of CO generated per unit time, [
C] o is required.

イFIL 、 Δ[CI:1針当たりの脱炭量(ppm/分)X:処理
溶鋼量(トン) (Co) : 鋼中のCO発生量(kg/時〉。
FIL, Δ[CI: Amount of decarburization per needle (ppm/min) X: Amount of molten steel processed (tons) (Co): Amount of CO generated in steel (kg/hour).

(Co2が発生する場合は等モル数のCOに換算して補
正) 従って、設定されたKc毎に、時間tに対応するCO濃
度(XCO)も下記(4)弐にて算出される。
(If Co2 is generated, it is corrected by converting it into an equimolar number of CO.) Therefore, for each set Kc, the CO concentration (XCO) corresponding to time t is also calculated in (4) 2 below.

但し、 (XCO):排気ガス中のCO濃度(%)(COXはC
Oに換算して補正) ゛t:鋼中に真空系に導入されるCOO40ガス量(k
g/時) ここで、初期(I!¥[C1o=300(ppm)、処
理溶鋼量X=275()ン)、COO40ガス量Y =
1580 (kg/時)を、R1t処理の実績値として
代入する。そしてKc=0.1.0.2.0.3  (
1/分)とした場合の脱炭時間りと炭素量[CI及び排
気ガス中のCO濃度(XCO)との関係を第1図に示す
。第1図(a)は、脱炭時間t (分)と炭素量[CI
 (ppm) との関係を示し、第1図(b)は、脱炭
時間L (分)と排気ガス中co?fi度(XCO) 
(%)との関係を示している。
However, (XCO): CO concentration (%) in exhaust gas (COX is C
(corrected by converting into O) ゛t: Amount of COO40 gas introduced into the vacuum system into steel (k
g/hour) Here, initial (I!\[C1o = 300 (ppm), amount of processed molten steel X = 275 ()n), COO40 gas amount Y =
1580 (kg/hour) is substituted as the actual value of R1t processing. And Kc=0.1.0.2.0.3 (
Fig. 1 shows the relationship between the decarburization time and the carbon content [CI] and the CO concentration (XCO) in the exhaust gas when the decarburization time is 1/min). Figure 1(a) shows the decarburization time t (min) and the carbon content [CI
(ppm), and FIG. 1(b) shows the relationship between decarburization time L (min) and co? in exhaust gas. fi degree (XCO)
(%).

脱炭速度(係数Kc)が大きい場合はど排気ガスCO濃
度が小さくなるのは、第1図(b)のグラフかられかる
ように、脱炭処理開始6分以降である。
When the decarburization rate (coefficient Kc) is high, the exhaust gas CO concentration becomes small after 6 minutes from the start of the decarburization process, as can be seen from the graph in FIG. 1(b).

脱炭処理開始6分における炭素M [CIの最低値は5
0ppmであるので(第1図f8)参照)、本発明にお
いて対象となる低炭素鋼の炭素濃度は50ppm以下と
なる。
Carbon M at 6 minutes from the start of decarburization [the lowest value of CI is 5
0 ppm (see Fig. 1 f8)), the carbon concentration of the low carbon steel targeted in the present invention is 50 ppm or less.

第1図(a)においてKc毎の[C] = 20ppm
に到達する時間tを求め、この時間tに対応するKc毎
の排気ガス中のco?fi度を求める。そうすると、第
1図(blにおいて、6分以降は、係数に、が大きい程
、つまり EC]が早く低値に達するもの程、(XCO
)は小さいので、脱炭処理開始6分以降にあっては、K
、毎の[CI =20ppm到達点を結んだ一点鎖線へ
よりも下方では必ず[C’l ≦20ppmとなってい
る。このため、脱炭処理開始6分以降、つまり[CI 
≦50ppmの範囲では、第1図(blまたは第1図f
b)の部分拡大図である第1図(C)における−点鎖1
mAより下方の領域に達した際には、[CI−20pp
mに到達したと判断しても良い。
In Fig. 1(a), [C] for each Kc = 20 ppm
Find the time t to reach , and calculate the co? in the exhaust gas for each Kc corresponding to this time t. Find the fi degree. Then, in Figure 1 (bl), after 6 minutes, the larger the coefficient, that is, the faster EC] reaches a low value, the faster (XCO
) is small, so after 6 minutes from the start of decarburization, K
, [C'l ≦20 ppm is always held below the dashed-dotted line connecting the [CI = 20 ppm reaching points]. Therefore, after 6 minutes from the start of decarburization, that is, [CI
In the range ≦50ppm, see Figure 1 (bl or Figure 1f).
− point chain 1 in FIG. 1(C) which is a partially enlarged view of b)
When reaching the region below mA, [CI-20pp
It may be determined that m has been reached.

以上のようにして、[C′2  ≦50ppmの領域に
おいては、所定の[CIへの到達時点を排気ガス中のC
O濃度(XCO)と脱炭時間tとにより精度良く判断す
ることができる。
As described above, in the region of [C'2 ≦50 ppm, the time point at which C'2 in the exhaust gas reaches
It can be accurately determined based on the O concentration (XCO) and the decarburization time t.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第2図は、本発明の制御方法のRH法における実施状態
を示す模式図であり、図中1は溶鋼11が収容された取
鍋を示す。取鍋1の上方には、2木の浸漬管2a、 2
bを備えたRH真空槽2が設けられており、2本の浸漬
管2a、 2bはその先端部が取鍋1内の溶mll中に
浸漬されている。また一方の浸漬管2aには、管内に環
流^rガスを導入するためのガス供給管3が開設されて
いる。R1+真空槽2は排気管4を介して真空排気装置
5に接続され、その槽内が真空状態に維持される。排気
管4の中途には、排気ガス中のCO+ COz ’ly
i度及びこれら以外のガス(Hz、 0□+ NZ+ 
Ar等)の濃度を測定するための赤外線分析計(または
質量分析計)6が設置されている。また、溶nの循環開
始からの脱炭時間を計測するタイマ(図示せず)が設け
られている。
FIG. 2 is a schematic diagram showing the implementation state of the control method of the present invention in the RH method, and in the figure, 1 indicates a ladle in which molten steel 11 is accommodated. Above the ladle 1 are two wooden dip tubes 2a, 2.
An RH vacuum tank 2 is provided, and the tips of two immersion tubes 2a and 2b are immersed in the molten liquid in the ladle 1. Further, a gas supply pipe 3 for introducing reflux ^r gas into the pipe is provided in one of the immersion pipes 2a. The R1+ vacuum tank 2 is connected to a vacuum evacuation device 5 via an exhaust pipe 4, and the inside of the tank is maintained in a vacuum state. In the middle of the exhaust pipe 4, CO+ COz 'ly in the exhaust gas is
i degrees and other gases (Hz, 0□+ NZ+
An infrared spectrometer (or mass spectrometer) 6 is installed to measure the concentration of Ar, etc.). Further, a timer (not shown) is provided to measure the decarburization time from the start of circulation of the molten n.

そして、侵)貞管2a内に^rガスを吹き込んで、ガス
リットポンプの原理にて取鍋1内の溶鋼11を矢符で示
すように循環させ、R)I真空槽2内にて溶鋼11を真
空と接触させて真空精錬を行う。本実施例では、処理条
件を処理溶lff1=250〜270トン。
Then, ^r gas is blown into the chaste pipe 2a to circulate the molten steel 11 in the ladle 1 as shown by the arrow using the principle of a gas slit pump. 11 is brought into contact with vacuum to perform vacuum refining. In this example, the processing conditions are: processing melt lff1 = 250 to 270 tons.

浸漬管2a、 2bの径”=750 m、環流Arガス
=2000〜250ON#/分とし、脱炭終了時の炭素
濃度の制御値を15ppmとした。
The diameter of the immersion tubes 2a and 2b was 750 m, the reflux Ar gas was 2000 to 250 ON#/min, and the control value of the carbon concentration at the end of decarburization was 15 ppm.

前記(11,(21式により、係数KC毎に、時間tと
鋼中の炭素濃度[C]との関係及び単位時間当たりの脱
炭量Δ「C〕を算出し、算出したΔ[C]を用いて、前
記(3)式により単位時間当たりのCO発生l 、[C
]oを求め、次に求めた、[C]o’c−用いて、前記
(4)式により排気ガス中のCO?W度(ZCO)を算
出する。
The relationship between time t and the carbon concentration [C] in the steel and the decarburization amount Δ "C" per unit time are calculated for each coefficient KC using the formulas (11 and (21) above, and the calculated Δ[C] Using equation (3) above, CO generation per unit time l, [C
]o is obtained, and then using the obtained [C]o'c-, CO? in the exhaust gas is determined by the above equation (4). Calculate W degrees (ZCO).

原理”にて説明した場合と同様にして、係数Kc毎にt
と[C]及びtと(XCO)との関係を求め、[C] 
= 15ppm到達と判断可能な領域を、前述の第1図
(b)(または(C))のように予め設定しておく。
Similarly to the case explained in "Principle", t is calculated for each coefficient Kc.
Find the relationship between and [C] and t and (XCO), [C]
= 15 ppm is determined in advance as shown in FIG. 1(b) (or (C)).

そして、タイマでの計時、及び赤外線分析計6の計測値
に基づ< (XCO)の算出を行いながら、溶鋼11に
真空精錬を施し、予め設定した領域内に入った時点にて
脱炭処理を終了する。
Then, vacuum refining is performed on the molten steel 11 while calculating the < end.

このようにして行った、本発明例における終点く脱炭終
了地点)の炭素濃度[C]の分布を第3図に示す。第3
図では横軸は脱炭処理終了後の炭素濃度(ppm)、縦
軸は溶鋼の頻度(%)を夫々示しており、大枠にて囲ん
だ部分が本発明例である。
The distribution of carbon concentration [C] at the end point (decarburization end point) in the example of the present invention, which was conducted in this way, is shown in FIG. Third
In the figure, the horizontal axis shows the carbon concentration (ppm) after the decarburization process, and the vertical axis shows the frequency of molten steel (%), and the area surrounded by the large frame is the example of the present invention.

なお、第2図には、精錬条件を同一にして終点の炭素濃
度を同様に15ppmに制御した比較例における結果も
併せて示し、パッチングを付した部分が比較例である。
Note that FIG. 2 also shows the results of a comparative example in which the refining conditions were the same and the carbon concentration at the end point was similarly controlled to 15 ppm, and the patched portion is the comparative example.

この比較例における終点への到達予想時間の設定につい
て説明する。前記(2)式において時間tについて解く
と、下記(5)式の如くになる。
Setting of the expected time to reach the end point in this comparative example will be explained. When the above equation (2) is solved for time t, the following equation (5) is obtained.

t=          12n([Cコo/  [C
]  )  −(5)c 前述したような精錬条件にあっては、係数Kcの平均値
は0.22 (1/分)であるので、上記(5)式にK
 c = 0.22.[C] = 15ppmを代入す
ると、下記(6)式の如くになる。
t= 12n([C ko/ [C
] ) −(5)c Under the refining conditions described above, the average value of the coefficient Kc is 0.22 (1/min), so K is added to the above equation (5).
c = 0.22. By substituting [C] = 15 ppm, the following equation (6) is obtained.

上記(6)式に基づき、様々な初期値[C]。について
到達予想時間tを算出すると、[C]。(ppm) =
200、250.300.350.400.450とし
た場合に、t(分)  =11.8. 12.8. 1
3.6.14.3.14.9. 15.5となる。従っ
て、この比較例では初期値[C]。の変域に合せて、下
記第1表のように終点への到達予想時間を設定した。
Various initial values [C] based on the above formula (6). When the expected arrival time t is calculated for [C]. (ppm) =
200, 250.300.350.400.450, t (minutes) = 11.8. 12.8. 1
3.6.14.3.14.9. It becomes 15.5. Therefore, in this comparative example, the initial value is [C]. The expected time to reach the end point was set according to the range of , as shown in Table 1 below.

第   1   表 本発明例と比較例とについて比較すると、比較例では係
数Kcのバラツキのために、+13〜−5ppmの範囲
においてのみ制御可能であったが、本発明例では、係数
Kcの変化に対応して終点判定を行っているので、目標
の15ppmに対して+3〜−5ppmの範囲に制御可
能である。
Table 1 Comparing the inventive example and the comparative example, it is found that in the comparative example, control was possible only within the range of +13 to -5 ppm due to the variation in the coefficient Kc, but in the inventive example, control was possible only in the range of +13 to -5 ppm. Since the end point is determined accordingly, it is possible to control the target value of 15 ppm to a range of +3 to -5 ppm.

なお本実施例ではR11法による真空精錬について説明
したが、本発明の制御方法をDH,LFV、 VOD等
の他の方法による真空精錬についても適用できることは
勿論である。
In this embodiment, vacuum refining using the R11 method has been described, but it goes without saying that the control method of the present invention can also be applied to vacuum refining using other methods such as DH, LFV, and VOD.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の制御方法では、真空精錬を用
いて、炭素量が50ppm以下である低炭素鋼を溶製す
る際に、脱炭終了後の炭素濃度を極めて高精度に調整す
ることができ、この結果、過剰な脱炭処理を避けること
ができ合理化を促進することが可能となる。
As detailed above, in the control method of the present invention, when producing low carbon steel with a carbon content of 50 ppm or less using vacuum refining, the carbon concentration after the completion of decarburization can be adjusted with extremely high precision. As a result, excessive decarburization can be avoided and rationalization can be promoted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る制御方法の原理を説明するための
グラフ、第2図は本発明に係る制御方法を適用できるR
H真空精錬設備の模式図、第3図は本発明例と従来例と
におけるRH処理後の炭素濃度分布を示すグラフである
FIG. 1 is a graph for explaining the principle of the control method according to the present invention, and FIG. 2 is a graph for explaining the principle of the control method according to the present invention.
FIG. 3, which is a schematic diagram of the H vacuum refining equipment, is a graph showing the carbon concentration distribution after the RH treatment in the example of the present invention and the conventional example.

Claims (1)

【特許請求の範囲】 1、炭素濃度が50ppm以下である低炭素鋼を真空精
錬にて溶製する際に、脱炭終了時の炭素濃度を制御する
方法であって、 下記4式を連立させて、係数K_cが変動した際の到達
する炭素濃度毎のCO濃度(CO)と時間tとの関係を
算出し、この算出した関係に基づいて脱炭終点タイミン
グを決定し、この決定したタイミングにより終点炭素濃
度を制御することを特徴とする真空精錬における終点炭
素濃度制御方法。 −d[C]/dt=K_c・[C] [C]=[C]_oexp(−K_c・t)(CO)=
Δ[C]×(1/1000)×(28/12)×60×
x(%CO)={(CO)/[(CO)+Y]}×10
0但し、 [C]:鋼中の炭素濃度(ppm)、 t:脱炭時間(分)、K_c:係数(1/分)、[C]
_o:鋼中の初期炭素濃度(ppm)、Δ[C]:1分
当たりの脱炭量(ppm/分)、x:処理溶鋼量(トン
)、 (CO):1時間当たりのCO発生量(kg/時)、(
CO_2が発生する場合は等モル数のCOに換算して補
正)、 (%CO):排気ガス中のCO濃度(%)、(CO_2
はCOに換算して補正) Y:1時間当たりに真空系に導入されるCO以外のガス
量(kg/時)
[Claims] 1. A method for controlling the carbon concentration at the end of decarburization when melting low carbon steel with a carbon concentration of 50 ppm or less by vacuum refining, the method comprising: Then, calculate the relationship between the CO concentration (CO) and time t for each carbon concentration reached when the coefficient K_c fluctuates, determine the decarburization end point timing based on this calculated relationship, and use this determined timing to determine the decarburization end point timing. A method for controlling end point carbon concentration in vacuum refining, the method comprising controlling end point carbon concentration. -d[C]/dt=K_c・[C] [C]=[C]_oexp(-K_c・t)(CO)=
Δ[C]×(1/1000)×(28/12)×60×
x(%CO)={(CO)/[(CO)+Y]}×10
0 However, [C]: Carbon concentration in steel (ppm), t: Decarburization time (minutes), K_c: Coefficient (1/minute), [C]
_o: Initial carbon concentration in steel (ppm), Δ[C]: Amount of decarburization per minute (ppm/min), x: Amount of molten steel processed (tons), (CO): Amount of CO generated per hour (kg/hour), (
If CO_2 is generated, it is corrected by converting it into an equimolar number of CO), (%CO): CO concentration in exhaust gas (%), (CO_2
is corrected by converting it to CO) Y: Amount of gas other than CO introduced into the vacuum system per hour (kg/hour)
JP31994889A 1989-12-08 1989-12-08 Method for controlling end point carbon concentration for vacuum refining Pending JPH03180424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31994889A JPH03180424A (en) 1989-12-08 1989-12-08 Method for controlling end point carbon concentration for vacuum refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31994889A JPH03180424A (en) 1989-12-08 1989-12-08 Method for controlling end point carbon concentration for vacuum refining

Publications (1)

Publication Number Publication Date
JPH03180424A true JPH03180424A (en) 1991-08-06

Family

ID=18116031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31994889A Pending JPH03180424A (en) 1989-12-08 1989-12-08 Method for controlling end point carbon concentration for vacuum refining

Country Status (1)

Country Link
JP (1) JPH03180424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028813A (en) * 1999-09-27 2001-04-06 이구택 A method for controlling carbon contents in molten steel when refining the ultra low carbon steel
CN102766730A (en) * 2012-06-25 2012-11-07 攀钢集团研究院有限公司 Method for on-line prediction of total decarbonization amount of molten steel in circulating vacuum degassing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028813A (en) * 1999-09-27 2001-04-06 이구택 A method for controlling carbon contents in molten steel when refining the ultra low carbon steel
CN102766730A (en) * 2012-06-25 2012-11-07 攀钢集团研究院有限公司 Method for on-line prediction of total decarbonization amount of molten steel in circulating vacuum degassing method

Similar Documents

Publication Publication Date Title
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
JPH03180424A (en) Method for controlling end point carbon concentration for vacuum refining
US5028258A (en) Process of controlling the slag in a top-blowing steelmaking converter
KR930011671B1 (en) Method of producting ultra-low-carbon steel
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JP2985643B2 (en) Method of estimating carbon concentration in molten steel using RH type vacuum chamber
KR100925595B1 (en) Method for Re-blowing Molten Steel in Converter Steel Making Process
KR20200065998A (en) Manufacturing method of high nitrogen stainless steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
SU1010140A1 (en) Method for vacuum treating molten steel in ladle
RU2037529C1 (en) Method to control metal temperature in converter
JPH09287016A (en) Method for melting stainless steel
JPH0741826A (en) Method for vacuum-refining molten steel
KR20040091653A (en) Method for deep decarburisation of steel melts
JPH07166228A (en) Method for controlling ultimate carbon concentration of molten steel by rg degassing
SU1715859A1 (en) Method of converter process control
JP3126374B2 (en) Vacuum decarburization control method for molten steel
JPH0192314A (en) Ladle refining method
JPH1017918A (en) Guidance method for vacuum decarburizing treatment of molten material
JPS58153721A (en) Controlling method of end carbon content in vod process
JPH0668123B2 (en) Nitrogenizing method in a converter with a bottom blowing tuyere
JP2020132999A (en) Control device and control method for vacuum degassing facility
JPS57137415A (en) Steel making method for chromium-containing steel
JPH03271315A (en) Rh vacuum decarbonizing method for stainless steel