JPH03179734A - Low-temperature sample stage - Google Patents
Low-temperature sample stageInfo
- Publication number
- JPH03179734A JPH03179734A JP31749389A JP31749389A JPH03179734A JP H03179734 A JPH03179734 A JP H03179734A JP 31749389 A JP31749389 A JP 31749389A JP 31749389 A JP31749389 A JP 31749389A JP H03179734 A JPH03179734 A JP H03179734A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- tank
- liquefied gas
- gas
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007789 gas Substances 0.000 claims abstract description 48
- 238000001816 cooling Methods 0.000 claims abstract description 19
- 239000000112 cooling gas Substances 0.000 claims abstract description 10
- 239000002826 coolant Substances 0.000 claims abstract description 5
- 239000003507 refrigerant Substances 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、真空内で試料を冷却剤とヒータの熱バランス
で温調する技術に係り、特に低温度に温度制御するに好
適な低温試料台に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a technology for controlling the temperature of a sample in a vacuum by controlling the heat balance between a coolant and a heater, and is particularly suitable for controlling the temperature of a low-temperature sample to a low temperature. Regarding the stand.
半導体集積回路が、LSIから超LS I八と集積度が
大きくなるにつれ、集積されるデバイスの寸法がますま
す微細化する。このLSIの製作時。As the degree of integration of semiconductor integrated circuits increases from LSI to VLSI, the dimensions of integrated devices become smaller and smaller. At the time of manufacturing this LSI.
ウェーハを低温度に冷却してエツチングするとアンダカ
ットのない微細パターンを得られることが判っている。It has been found that fine patterns without undercuts can be obtained by etching the wafer after cooling it to a low temperature.
また、超電導材料の高温化もあり試料を低温度に保持し
て、その物性値を計測することが、より重要な作業とな
ってきている。Additionally, as superconducting materials become hotter, it is becoming increasingly important to maintain samples at low temperatures and measure their physical properties.
このような加工装置、測定装置では、試料を低温度から
、室温付近まで、±1℃の温度で保持することが必要と
なる。In such processing devices and measuring devices, it is necessary to maintain the sample at a temperature of ±1° C. from low temperature to around room temperature.
試料を真空中で、冷媒とヒータの熱バランスで低温度に
保持することは広く知られている。特開昭63−115
338号公報では、冷媒に液化ガスを用い。It is widely known that a sample is maintained at a low temperature in a vacuum through the thermal balance between a coolant and a heater. Japanese Patent Publication No. 63-115
No. 338 uses liquefied gas as a refrigerant.
これをタンクに導き、タンク上部のヒータに給電するこ
とで、冷媒とヒータの熱バランスで、試料台上に接触し
て配置したウェーハの温度制御を行っている。By guiding this to the tank and supplying power to the heater above the tank, the temperature of the wafer placed in contact with the sample stage is controlled by the thermal balance between the coolant and the heater.
温度制御範囲は、室温〜−170℃である。低温試料台
に埋め込んだ熱電対で温度をモニタし、ヒータのパワー
を変化させて、制御温度の設定値を変更している。The temperature control range is room temperature to -170°C. The temperature is monitored with a thermocouple embedded in the low-temperature sample stage, and the control temperature set value is changed by changing the power of the heater.
上記従来技術では、試料台を室温付近で調整を行う場合
、ヒータに大電力を供給する必要があった。というのは
、液化ガスの低温の液面と試料台面が接近しているので
、液化ガス温度に対し、試料台面の温度を高温にすると
きは、ヒータに大電力を供給して液化ガスの液面と試料
台面の間で温度勾配を大きくする必要がある。ヒータに
供給した電力が液化ガスで消費されるため、大電力を供
給すれば、それ相当の液化ガスを補充する必要がある。In the above-mentioned conventional technology, when adjusting the sample stage at around room temperature, it was necessary to supply a large amount of power to the heater. This is because the low-temperature liquid level of the liquefied gas and the surface of the sample table are close to each other, so if you want to raise the temperature of the sample table surface to a higher temperature than the liquefied gas temperature, you need to supply a large amount of power to the heater to lower the temperature of the liquefied gas. It is necessary to increase the temperature gradient between the surface and the sample stage surface. Since the electric power supplied to the heater is consumed by the liquefied gas, if a large amount of electric power is supplied, it is necessary to replenish the amount of liquefied gas.
例えば、IKWのヒータ入力で、液化ガスに液体窒素を
用いた場合は、4cc/seeの量が消量される事にな
る。For example, when liquid nitrogen is used as the liquefied gas in the IKW heater input, an amount of 4 cc/see will be consumed.
本発明の目的は、上記の問題点を解決する為になされた
もので、特に室温近辺の温度制御時に、ヒータへの供給
電力を少なくシ、液化ガスの消費量を減らすものである
。An object of the present invention has been made to solve the above-mentioned problems, and is to reduce the amount of power supplied to the heater and the consumption of liquefied gas, especially when controlling the temperature around room temperature.
上記の目的を達成する為に、ヒータをその内部に埋め込
んだ試料台の下部に取り付いた低温タンクに、液化ガス
と低温度に冷却した冷却用ガスを試料台を制御しようと
する温度に対応して、すなわち、低温度にする場合は、
液化ガスを用いる。In order to achieve the above objective, liquefied gas and cooling gas cooled to a low temperature are supplied to a low-temperature tank attached to the bottom of the sample stage with a heater embedded inside, corresponding to the temperature at which the sample stage is to be controlled. In other words, if you want to lower the temperature,
Uses liquefied gas.
室温近辺の高温度にする場合は、冷却用ガスを低温タン
クに導くことで達成される。A high temperature near room temperature is achieved by introducing cooling gas into a low temperature tank.
また、上記の目的を達成する為にヒータを配置試料台の
下部の低温タンクを試料台に近い側と遠い側の2つに分
離し、その各々に制御温度に応じて液化ガスを導くこと
で達成される。すなわち低温時には上部タンクに液化ガ
スを導き、高温時には下部タンクに選択して液化ガスを
導くことで達成される。In addition, in order to achieve the above purpose, we installed a heater and separated the low-temperature tank at the bottom of the sample stand into two parts, one near the sample stand and the other far from the sample stand, and introduced liquefied gas to each of them according to the controlled temperature. achieved. That is, this is achieved by guiding the liquefied gas to the upper tank when the temperature is low, and selectively guiding the liquefied gas to the lower tank when the temperature is high.
低温度に試料を冷却する時は、吸熱作用の大きい液化ガ
スを低温タンク内に吸入する。すなわち液化ガス(液体
)が気体ガスとなる時の気化熱を利用して低温化を行う
。この気化熱は、大量の熱が吸収可能である。また室温
近辺の比較的温度の高い制御を行う時は、吸熱作用の小
さい冷却用ガスを低温タンクに導く。すなわち、低温の
気体ガスの吸熱能力は、そのガスの温度と定容比熱で示
され、比較的小さい値である。このように吸熱能力の異
なる冷媒を選択して使用することで、ヒータへの供給電
力が小電力で、設定温度に試料台を保つことが可能とな
る。すなわち、液化ガスの消費量が少なくてすむことに
なる。When cooling a sample to a low temperature, liquefied gas with a large endothermic effect is sucked into the low temperature tank. That is, the temperature is lowered by utilizing the heat of vaporization when liquefied gas (liquid) becomes gaseous gas. This heat of vaporization can absorb a large amount of heat. Furthermore, when controlling a relatively high temperature near room temperature, a cooling gas with a small endothermic effect is introduced into the low temperature tank. That is, the endothermic ability of a low-temperature gas is expressed by the temperature of the gas and the specific heat of constant volume, and is a relatively small value. By selecting and using refrigerants with different heat absorption capacities in this way, it is possible to maintain the sample stage at the set temperature with a small amount of power supplied to the heater. In other words, the amount of liquefied gas consumed can be reduced.
また、試料台の下方に低温タンクを上下に2個設けてお
き、低温時には、試料台と液化ガスの液面が接近した上
のタンクに液化ガスを入れる。またO℃近辺の温度制御
時には、試料台と液化ガスの液面が離れた、すなわちそ
の間の熱抵抗が大きい下のタンクに液化ガスを入れる。Further, two low-temperature tanks are provided below the sample stand, one above the other, and when the temperature is low, liquefied gas is poured into the upper tank where the sample stand and the liquid level of the liquefied gas are close to each other. Further, when controlling the temperature around 0° C., the liquefied gas is placed in a lower tank where the sample stage and the liquid level of the liquefied gas are separated from each other, that is, the thermal resistance between them is large.
こうすることでヒータへの供給電力を小さくして、設定
温度に試料台を保つことが可能となる。By doing so, it is possible to reduce the power supplied to the heater and maintain the sample stage at the set temperature.
本発明を一実施例装置によって以下説明する。 The present invention will be explained below using an example device.
第1図は、本発明による低温試料台を示した概要説明図
であって、低温試料台1が、真空槽2内に配置されてい
る。真空槽2には、真空ポンプ3が取り付いていて、槽
内を真空に保っている。試料台1の上部にある押え金具
4で固定された試料5の温度制御を行う。温度制御は、
冷却タンク6内に投入する冷媒とヒータ7の熱バランス
で行う。FIG. 1 is a schematic explanatory diagram showing a low-temperature sample stage 1 according to the present invention, in which a low-temperature sample stage 1 is placed in a vacuum chamber 2. As shown in FIG. A vacuum pump 3 is attached to the vacuum tank 2 to keep the inside of the tank vacuum. The temperature of the sample 5 fixed with the presser metal fitting 4 on the upper part of the sample stage 1 is controlled. Temperature control is
This is done by adjusting the heat balance between the refrigerant introduced into the cooling tank 6 and the heater 7.
熱電対8で試料5の温度をモニタし、この温度が、所定
温度となる様に温調器9でヒータ7の供給電力をコント
ロールするわけである。冷却タンク6内には、冷却効果
向上のためのフィン10が取り付けられている。この冷
却タンク6内には、冷媒として、液化ガスと低温冷却ガ
スが選択して投入可能な構造となっている。試料5を低
温度に温度制御する時は、バルブ↓1で、液化ガスを選
択し、冷却タンク6内に直接液化ガスを導入する。この
液化ガスは、冷却タンク6内で、気体に相変化する時に
気化熱を必要とし、相当量の熱をうばい低温試料台を低
温化する。The temperature of the sample 5 is monitored by a thermocouple 8, and the power supplied to the heater 7 is controlled by a temperature controller 9 so that this temperature becomes a predetermined temperature. Fins 10 are installed inside the cooling tank 6 to improve the cooling effect. The cooling tank 6 has a structure in which liquefied gas and low-temperature cooling gas can be selectively introduced as refrigerants. When controlling the temperature of the sample 5 to a low temperature, select liquefied gas with the valve ↓1 and directly introduce the liquefied gas into the cooling tank 6. This liquefied gas requires heat of vaporization when changing its phase to gas in the cooling tank 6, and a considerable amount of heat is lost to lower the temperature of the low-temperature sample stage.
この液化ガスに液体窒素を使用して、試料台lt、−1
50℃に保つ場合2ヒータに75Wのパワーを供給する
必要がある。ここで−120’Cに温度制御する時は、
300Wを必要とする。300Wのヒータパワーで、約
り、2cc/seeの液体窒素が消費される。Using liquid nitrogen as this liquefied gas, the sample stage lt, -1
When maintaining the temperature at 50°C, it is necessary to supply 75W of power to the two heaters. Here, when controlling the temperature to -120'C,
Requires 300W. With a heater power of 300 W, approximately 2 cc/see of liquid nitrogen is consumed.
温度が一100℃以上で、温調する場合は、バルブ11
でガスを選び、冷却タンク6内に導く。If the temperature is 1100℃ or higher and you want to adjust the temperature, turn valve 11.
select the gas and guide it into the cooling tank 6.
ガスは、配管12途中に配置したガス冷却タンク13内
を通り、その中に入っている液化ガス14で直接冷却さ
れる方式となっている。試料の−100’Cの温調時、
冷却ガスに窒素ガスを使用した場合は、約20Wのヒー
タ7人力で、この温度が達成できる。この時ヒータ7の
入力を200Wとすると室温近辺の温度制御が可能とな
る。The gas passes through a gas cooling tank 13 placed midway through the pipe 12 and is directly cooled by the liquefied gas 14 contained therein. When controlling the temperature of the sample at -100'C,
When nitrogen gas is used as the cooling gas, this temperature can be achieved with the power of seven heaters of approximately 20W. At this time, if the input to the heater 7 is 200 W, it becomes possible to control the temperature around room temperature.
低温度から室温付近までの温度制御の様子を第2図に示
す。試料台温度−100℃を境目として、冷媒を液化ガ
スから冷却ガスに切換えている。例えば、本図に示す様
に、室温を冷媒に液化ガスを用いて達成しようとすれば
、IKW以上のヒータ入力が必要となる。この時、冷媒
に冷却ガスを用いれば、200Wの入力パワーですみ、
約115のエネルギーとなる。Figure 2 shows how the temperature is controlled from low temperature to near room temperature. The refrigerant was switched from liquefied gas to cooling gas at the sample stage temperature of -100°C. For example, as shown in this figure, if a room temperature is to be achieved using liquefied gas as a refrigerant, a heater input of IKW or higher is required. At this time, if cooling gas is used as the refrigerant, the input power is only 200W.
The energy is approximately 115.
続いて、別の実施例を第3図に示す。冷却タンク21を
2段に積み、制御温度によって、冷媒の投入タンクを変
更する。例えば、低温に試料台1を温度制御する時は、
タンク22に冷媒を入れ、室温近辺に制御する時は、タ
ンク23に冷媒を入れる。温度は、試料5を熱電対8で
モニタして、実施例1と同様にヒータ7に供給する電力
を温調器9でコントロールしている。両タンク内には、
フィン10が取り付いており、熱効率を高める様になっ
ている。Next, another embodiment is shown in FIG. The cooling tanks 21 are stacked in two stages, and the refrigerant input tank is changed depending on the control temperature. For example, when controlling the temperature of sample stage 1 to a low temperature,
A refrigerant is put into the tank 22, and when the temperature is to be controlled around room temperature, the refrigerant is put into the tank 23. The temperature of the sample 5 is monitored by a thermocouple 8, and the power supplied to the heater 7 is controlled by a temperature controller 9, as in the first embodiment. Inside both tanks,
Fins 10 are attached to increase thermal efficiency.
本発明の実施により、試料の温度制御を冷媒に液体窒素
を使用した場合、−170’C〜室温まで±1℃の温度
精度で制御した。さらに室温付近の比較的高温時に於い
てもヒータ投入パワーは少なくなり、省エネ型の低温試
料台とすることができた。第1図に示す実施例の場合ヒ
ータ入力パワー200Wで、室温近辺の温度で制御が可
能となった。By implementing the present invention, when liquid nitrogen was used as a refrigerant, the temperature of the sample was controlled from -170'C to room temperature with a temperature accuracy of ±1°C. Furthermore, even at relatively high temperatures near room temperature, the power input to the heater was reduced, making it possible to create an energy-saving low-temperature sample stage. In the case of the embodiment shown in FIG. 1, with a heater input power of 200 W, it was possible to control the temperature around room temperature.
第1図は、実施例を示す断面図、第2図は、温度とヒー
タ入力パワーの関係を示す表、第3図は実施例を示す断
面図である。
1・・・低温試料台、2・・・真空槽、3・・・真空ポ
ンプ、4・・・押え金具、5・・・試料、6・・・冷却
タンク、7・・・ヒータ、8・・・熱電対、9・・・温
調器、10・・・フィン。
11・・・バルブ、12・・・配管、13・・・ガス冷
却タンク、14・・・液化ガス、22・・・タンク。
ヒータ入カバフー
(f)
↑
第
区
A度(°C)FIG. 1 is a sectional view showing an example, FIG. 2 is a table showing the relationship between temperature and heater input power, and FIG. 3 is a sectional view showing an example. DESCRIPTION OF SYMBOLS 1... Low-temperature sample stage, 2... Vacuum chamber, 3... Vacuum pump, 4... Holder fitting, 5... Sample, 6... Cooling tank, 7... Heater, 8... ...Thermocouple, 9...Temperature controller, 10...Fin. DESCRIPTION OF SYMBOLS 11... Valve, 12... Piping, 13... Gas cooling tank, 14... Liquefied gas, 22... Tank. Cover with heater (f) ↑ Section A degree (°C)
Claims (1)
スで、低温度に温調する試料台に於いて、その冷却タン
ク内に液化ガスと冷却用ガスを選択して導くことを特徴
とする低温試料台。 2、請求項1記載の低温試料台に於いて、冷却タンクを
2つに分離して、各々のタンクに別々に液化ガスを選択
して導くことを特徴とする低温試料台。[Claims] 1. On a sample stage where a sample placed in a vacuum is kept at a low temperature by the heat balance between a heater and a coolant, a liquefied gas and a cooling gas are selected in the cooling tank. A low-temperature sample stage that is characterized by its ability to guide 2. The low-temperature sample stand according to claim 1, characterized in that the cooling tank is separated into two, and the liquefied gas is separately selected and introduced into each tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31749389A JPH03179734A (en) | 1989-12-08 | 1989-12-08 | Low-temperature sample stage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31749389A JPH03179734A (en) | 1989-12-08 | 1989-12-08 | Low-temperature sample stage |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03179734A true JPH03179734A (en) | 1991-08-05 |
Family
ID=18088849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31749389A Pending JPH03179734A (en) | 1989-12-08 | 1989-12-08 | Low-temperature sample stage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03179734A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5716486A (en) * | 1994-01-13 | 1998-02-10 | Selwyn; Gary S. | Method and apparatus for tuning field for plasma processing using corrected electrode |
JP2009033918A (en) * | 2007-07-30 | 2009-02-12 | Sumitomo Electric Ind Ltd | Superconducting motor, and cooling system for superconducting motor |
-
1989
- 1989-12-08 JP JP31749389A patent/JPH03179734A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5716486A (en) * | 1994-01-13 | 1998-02-10 | Selwyn; Gary S. | Method and apparatus for tuning field for plasma processing using corrected electrode |
JP2009033918A (en) * | 2007-07-30 | 2009-02-12 | Sumitomo Electric Ind Ltd | Superconducting motor, and cooling system for superconducting motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6771086B2 (en) | Semiconductor wafer electrical testing with a mobile chiller plate for rapid and precise test temperature control | |
JP2020532106A (en) | Annealing chamber under high pressure and high temperature | |
JP4815295B2 (en) | Plasma processing equipment | |
KR101209503B1 (en) | Apparatus and method for controlling temperature of semiconductor wafer | |
US20100126666A1 (en) | Plasma processing apparatus | |
US20050178335A1 (en) | Method and apparatus for active temperature control of susceptors | |
KR100746231B1 (en) | Cooling apparatus having auxiliary chiller and semiconductor fabricating method using the same | |
JP2000310459A (en) | Thermoelectric cooling temperature regulator for semiconductor manufacturing step facility | |
JP6307220B2 (en) | Plasma processing apparatus and plasma processing method | |
WO2005064659A1 (en) | Temperature regulating method for substrate treating system and substrate treating system | |
JP5228177B2 (en) | Cryogenic cooling method and apparatus for high temperature superconductor devices | |
KR101923433B1 (en) | Dual cooling system for semiconductor parts cooling | |
JPH03179734A (en) | Low-temperature sample stage | |
JP2015059726A (en) | Area-specific parameter-base controlling hybrid chiller and circulatory fluid temperature regulation method using the same | |
TWI404117B (en) | Method and apparatus for heating a substrate | |
KR20020063178A (en) | Liquid gas exchanger | |
US7913752B2 (en) | Cooling device for vacuum treatment device | |
CN115218606B (en) | Low-temperature constant-temperature device and temperature control method | |
TW202042275A (en) | Substrate mounting table capable of improving temperature control precision and plasma treatment equipment | |
CN206907749U (en) | A kind of bogey and semiconductor processing equipment | |
KR100932619B1 (en) | Substrate heating method and apparatus | |
JP2009081387A (en) | Substrate cooling device | |
JP3054034B2 (en) | Contact heat transfer device | |
JP2000091186A (en) | Substrate processing device | |
JP2002164288A (en) | Temperature control system |