JPH03179613A - Insulated electric wire and its anticorrosive - Google Patents

Insulated electric wire and its anticorrosive

Info

Publication number
JPH03179613A
JPH03179613A JP7517690A JP7517690A JPH03179613A JP H03179613 A JPH03179613 A JP H03179613A JP 7517690 A JP7517690 A JP 7517690A JP 7517690 A JP7517690 A JP 7517690A JP H03179613 A JPH03179613 A JP H03179613A
Authority
JP
Japan
Prior art keywords
conductor
insulated electric
insulator
corrosion
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7517690A
Other languages
Japanese (ja)
Other versions
JPH07105171B2 (en
Inventor
Ryunosuke Masui
増井 龍之助
Hiroyuki Oura
宏之 大浦
Chikashi Takeya
竹谷 千加士
Nobuhiro Fujio
信博 藤尾
Shinya Hayashi
晋也 林
Tsutomu Murao
勉 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2075176A priority Critical patent/JPH07105171B2/en
Publication of JPH03179613A publication Critical patent/JPH03179613A/en
Publication of JPH07105171B2 publication Critical patent/JPH07105171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To prevent the breaking of an insulated electric wire resulting from stress and corrosion by applying the reacted product of benzotriazole and an epoxy system plasticizer to the surface of each of hard copper-wires, and laying a vinyl chloride composition insulator on the applied coat. CONSTITUTION:The reacted product (a) of benzotriazole and an epoxy system plasticizer, as an anticorrosive, is applied to the surface of each of hard copper- wires 1, and the insulator of a vinyl chloride composition 3 is laid on the applied coat. In this case, there is caused no transfer of the plasticizer to each of PVC insulated electric wires because the non-transferential anticorrosive (a) is applied to the wire. For this reason, the corrosion resistance of a conductor 2 to a sulfide may not be deteriorated. The corrosion resistance of the conductor 2 to the sulfide, even if the insulator 3 is made of a PVC composition, can thus be maintained for effectively impeding corrosion of the conductor to obtain an insulated electric wire having its high reliability over a long period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、屋外で架渉されるビニル絶縁電線であって、
その応力腐食断線を防止した絶縁電線及びその防食剤に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vinyl insulated electric wire strung outdoors,
The present invention relates to an insulated wire that prevents stress corrosion and disconnection, and an anticorrosive agent therefor.

〔従来技術とその課題〕[Conventional technology and its issues]

この種の絶縁電線の導体には、伸線や撚線工程で残留応
力が生しており、その絶縁電線内(導体とその被覆絶縁
体の間)に雨水が浸入すると、前記残留応力により、雨
水中の腐食性物質(硫化物)による導体の腐食が助長さ
れる、所謂応力腐食が生じる。この応力腐食は、導体の
欠かん部に集中的に生して断線に至る。この現象は応力
腐食断線として広く知られている。
Residual stress is generated in the conductor of this type of insulated wire during the wire drawing and wire twisting processes, and when rainwater enters into the insulated wire (between the conductor and its covering insulation), the residual stress causes Corrosion of the conductor is promoted by corrosive substances (sulfides) in rainwater, resulting in so-called stress corrosion. This stress corrosion occurs intensively in the cutout portion of the conductor, leading to wire breakage. This phenomenon is widely known as stress corrosion disconnection.

この応力腐食断線を防止する策として、従来では下記の
■〜■がある。
Conventionally, the following measures have been taken to prevent stress corrosion and disconnection.

■撚導体にロールをかけて圧縮し、引張りによる残留応
力と撚り時に生しる曲げによる残留応力を圧縮応力に変
えて、応力腐食を生しにくくする。
- Rolls are applied to the twisted conductor to compress it, converting the residual stress caused by tension and bending that occurs during twisting into compressive stress, making stress corrosion less likely to occur.

■導体と絶縁体の隙間に、水密コンパウンドを充てんし
て、その隙間への水の浸入を阻止する。
■Fill the gap between the conductor and the insulator with a watertight compound to prevent water from entering the gap.

■導体上に、防食剤(耐硫化剤)としてベンゾトリアゾ
ール(BTA)又はBTAとアミンとの反応生成物を塗
布する。
(2) Applying benzotriazole (BTA) or a reaction product of BTA and amine as an anti-corrosion agent (anti-sulfuration agent) onto the conductor.

■導体上に、BTAとエポキシ系、フタル酸系又はリン
酸系の可塑剤とを混合した液を塗布する。
(2) Apply a mixture of BTA and an epoxy, phthalic acid, or phosphoric acid plasticizer onto the conductor.

しかしながら、前記の手段■は、腐食自体を防止するも
のでないため、有効でない0手段■は、水密コンパウン
ドの充てん作業が非常に煩られしく生産性が悪い0手段
■は、導体の腐食を直接に防止するため有効であるが、
手段■に比べ、防止効果が劣る。
However, since the above-mentioned method (2) does not prevent corrosion itself, the method (2), which is not effective, and the method (2), which is unproductive due to the troublesome work of filling the watertight compound, directly prevent corrosion of the conductor. Although it is effective for preventing
The prevention effect is inferior to that of method ■.

このため、手段■が最も有効であるが、導体を被覆する
絶縁体が塩化ビニル(PVC)組成物の場合、可塑剤が
そのPVCMi成物に移行して(喰われて)、硫化物へ
の耐性が損われ、浸水により導体が腐食される。
For this reason, method (2) is the most effective, but if the insulator covering the conductor is a vinyl chloride (PVC) composition, the plasticizer will migrate (be eaten) by the PVCMi composition, resulting in sulfide formation. Resistance is impaired and conductors corrode due to water intrusion.

このメカニズムは、pvcl成物にははしめからジ・オ
クチルフタレート(DOP)や塩パラ(塩素化パラフィ
ン)等の可塑剤が混合されているが、−船釣な混合量で
は、飽和状態になっておらず、且つ、PVCは、可塑剤
との相溶性が良いため、可塑剤が接すると、どんどん吸
収する。このため、導体上に塗布した可塑剤が絶縁体を
なすpvc&II成物に喰われるものと考えられる。
This mechanism is explained by the fact that plasticizers such as dioctyl phthalate (DOP) and salt paraffin (chlorinated paraffin) are mixed into the PVCL composition, but when mixed in a typical amount, it becomes saturated. Moreover, since PVC has good compatibility with plasticizers, when it comes into contact with plasticizers, it rapidly absorbs them. For this reason, it is thought that the plasticizer applied on the conductor is eaten by the PVC&II composition forming the insulator.

本発明は、上記に鑑み、絶縁体がPvC組成物の絶縁電
線において、浸水による応力腐食を有効に防止すること
を課題とする。
In view of the above, an object of the present invention is to effectively prevent stress corrosion due to water immersion in an insulated wire whose insulator is made of a PvC composition.

〔発明の課題を解決するための手段] 上記Li!題を解決するために、本発明に係る防食剤に
あっては、上記手段■、■と同様に、BTAを使用する
が、その可塑剤としてエポキシ系を使用し、かつそれら
を反応させたものであり、例えば、下記の一般式から成
るものである。
[Means for solving the problems of the invention] The above Li! In order to solve the problem, in the anticorrosive agent according to the present invention, BTA is used as in the above measures (1) and (2), but an epoxy-based plasticizer is used and they are reacted. For example, it consists of the following general formula.

この一般式から成る防食剤は、下記の反応式(可塑剤:
例えばエポキシ化大豆油1’1loOEL)によって得
られる。この反応式において、BTAと一100ELは
、無溶媒(触媒)の場合・加熱下で反応が生し、例えば
、130°C+lO”C程度に加熱する。溶媒を用いる
場合は、溶媒には、両者が溶けるものならいずれでもよ
く、例えばテトラヒドロフラン(T)(F)を使用する
。この場合は、常温でもよいが、加熱することが好まし
く、例えば、約60°C以上に加熱する。溶媒の両者に
対する重量比は反応性、防腐食性等を考慮して実験等に
より適宜に選定する。
The anticorrosive agent consisting of this general formula has the following reaction formula (plasticizer:
For example, it can be obtained by epoxidized soybean oil (1'1loOEL). In this reaction formula, BTA and -100EL react in the absence of a solvent (catalyst) and when heated, for example, heated to about 130°C + 10"C. If a solvent is used, both are present in the solvent. For example, tetrahydrofuran (T) (F) may be used as long as it dissolves in the solvent.In this case, it may be heated at room temperature, but it is preferable to heat it, for example, to about 60°C or higher.For both solvents, The weight ratio is appropriately selected through experiments, taking into account reactivity, corrosion resistance, etc.

(可塑剤)     (BTA) 一−−−→ −CH−CI − この防食剤は非移行性(可塑剤が食われない)であり、
これを導体に塗布した絶縁電線が本発明に係るものであ
る。すなわち、硬銅線の表面にベンゾトリアゾールとエ
ポキシ系可塑剤との反応生成物を塗布し、該硬銅線上に
塩化ビニルa威物を被覆してなる構成としたのである。
(Plasticizer) (BTA) 1---→ -CH-CI - This anti-corrosion agent is non-migratory (the plasticizer is not eaten away),
The present invention relates to an insulated wire in which a conductor is coated with this. That is, the surface of the hard copper wire is coated with a reaction product of benzotriazole and an epoxy plasticizer, and the hard copper wire is coated with vinyl chloride a.

[作用] 上記のごとく構成される絶縁電線にあっては、非移行性
の防食剤が塗布されているため、その可塑剤がPVC絶
縁電線に移行することがない、このため、硫化物への耐
性は劣化しない。
[Function] Since the insulated wire constructed as described above is coated with a non-migratory anticorrosive agent, the plasticizer will not migrate to the PVC insulated wire. Resistance does not deteriorate.

〔実施例〕〔Example〕

まず、表1で示す、重量比(かっこ内はモル比)でもっ
て、WlooELとBTAを無溶媒・+30+10’C
の条件下で反応重合させたところ、同表下欄に示す重量
比の未反応BTA、反応BTA、反応h100ELから
成る反応生成物を得、それをさらに溶剤で溶かし、防食
剤の原液とした。
First, WlooEL and BTA were mixed in a solvent-free solution at +30+10'C according to the weight ratio (molar ratio in parentheses) shown in Table 1.
As a result of reaction polymerization under the conditions shown in Table 1, a reaction product consisting of unreacted BTA, reacted BTA, and reacted h100EL in the weight ratio shown in the lower column of the same table was obtained, which was further dissolved in a solvent to obtain a stock solution of an anticorrosive agent.

なお、l’1100ELの平均分子量:約1000、エ
ポキシ基数:約4である。このため、BTAとWloo
ELが完全に反応重合するとすれば、その反応モル比は
、約4=1となる。
Note that l'1100EL has an average molecular weight of about 1000 and a number of epoxy groups of about 4. For this reason, BTA and Wloo
If EL is completely reactively polymerized, the reaction molar ratio will be approximately 4=1.

重量比(知 つぎに、上記原液を1、 タンにより20倍に稀釈し、 1 まず、 1、トリクロルエ 2.0■φ硬銅線 1を撚線用ボビンに巻き替える工程で、その稀釈原液a
を点滴塗布し、図に示すように、該硬銅線19本を同心
撚りする際、中心の7本撚りの時点と、外層19本撚り
の時点で、再度前記稀釈原液aを点滴塗布し、この撚り
導体2 (60m”硬銅撚M)上に、公知の押出成形に
よりpvcm威物からなる絶縁被覆3を施し、絶縁電線
Pを得た。
Weight ratio (Next, the above stock solution is diluted 20 times with 1. 1. First, the diluted stock solution a is
As shown in the figure, when the 19 hard copper wires are concentrically twisted, the diluted stock solution A is drip-applied again at the time when the center 7 wires are twisted and when the outer layer 19 wires are twisted, On this twisted conductor 2 (60 m'' hard copper twisted M), an insulating coating 3 made of PVCM material was applied by known extrusion molding to obtain an insulated wire P.

〔効果の確認〕[Confirmation of effect]

上記の如くして得た絶縁IMF(表1で示す実施例1.
2.3の20倍稀釈液aを導体2上に点滴塗布したもの
)からそれぞれ1100a長さのサンプルを採取し、そ
の各サンプルの絶縁体3を剥ぎ取り、その各導体2を1
100ppの硫化ナトリウム水溶液(20°C)中に3
0秒間浸せきした。その各導体2の変色の有無を目視に
より観察した処、何れも異常は認められなかった。
Insulating IMF obtained as described above (Example 1 shown in Table 1.
Samples with a length of 1100a were taken from each conductor 2 (20 times diluted solution a of 2.3 was dripped onto the conductor 2), the insulator 3 of each sample was stripped off, and each conductor 2 was
3 in 100 pp aqueous sodium sulfide solution (20°C)
It was soaked for 0 seconds. When each conductor 2 was visually observed for discoloration, no abnormality was found in any of them.

また、前記と同様に採取したサンプルを80±1°Cの
恒温槽中に30日間放置したのち、取出して絶縁体3を
剥ぎ取り、その導体2を前記と同様に、100ρm硫化
ナトリウム水溶液(20℃)中に30秒間浸せきした後
、導体2の変色の有無を観察した処、何れも異常は認め
られなかった。
In addition, after leaving the sample collected in the same manner as above in a constant temperature bath at 80 ± 1°C for 30 days, it was taken out, the insulator 3 was stripped off, and the conductor 2 was treated with a 100 μm sodium sulfide aqueous solution (20 μm) in the same manner as above. ℃) for 30 seconds, the conductor 2 was observed for discoloration, and no abnormality was observed.

因みに、上記手段■のようにBTAに対し一100EL
を混合してイソプリピルアルコールで溶解したものを塗
布したものは、80±1℃の恒温槽中に30日加熱放置
し、その導体を前記硫化ナトリウム水溶液に30秒間浸
せきしたとき、可塑剤がPVC&ll威物に喰われて硫
化物に対する耐性を失い変色が認められた。
By the way, as in the above method (■), 100EL for BTA
The conductor coated with a mixture of the following and dissolved in isopropyl alcohol was heated for 30 days in a constant temperature bath at 80±1°C, and when the conductor was immersed in the sodium sulfide aqueous solution for 30 seconds, the plasticizer was removed. It was eaten by PVC&ll materials and lost its resistance to sulfides, resulting in discoloration.

〔効果] 本発明は、以上のように構成したので、絶縁体がPvC
組成物であっても、導体の硫化物に対する耐性が維持さ
れて腐食が有効に阻止される。このため、本発明によれ
ば、長期に亘って信頼性の高い絶縁電線を提供すること
ができる。
[Effect] Since the present invention is configured as described above, the insulator is PvC.
Even with the composition, the conductor's sulfide resistance is maintained and corrosion is effectively inhibited. Therefore, according to the present invention, it is possible to provide an insulated wire that is highly reliable over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係るt!!、縁電線の一実施例の部分切
断斜視図である。 1・・・・・・硬銅線、    2・・・・・・導体、
3・・・・・・絶縁体(pVc&Il或物)、a・・・
・・・反応生成物塗布液(稀釈原液、防食剤)、 P・・・・・・絶縁電線。
The drawings are t! ! FIG. 2 is a partially cutaway perspective view of one embodiment of the edge wire. 1... Hard copper wire, 2... Conductor,
3...Insulator (pVc & Il), a...
... Reaction product coating liquid (diluted stock solution, anticorrosive agent), P ... Insulated wire.

Claims (2)

【特許請求の範囲】[Claims] (1)硬銅線の表面にベンゾトリアゾールとエポキシ系
可塑剤との反応生成物を塗布し、該硬銅線上に塩化ビニ
ル組成物を被覆してなることを特徴とする絶縁電線。
(1) An insulated electric wire characterized in that the surface of a hard copper wire is coated with a reaction product of benzotriazole and an epoxy plasticizer, and the hard copper wire is coated with a vinyl chloride composition.
(2)下記の一般式から成る絶縁電線の防食剤。 ▲数式、化学式、表等があります▼(2) Corrosion inhibitor for insulated wires consisting of the following general formula. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
JP2075176A 1989-08-30 1990-03-22 Insulated wire and its anticorrosion agent Expired - Fee Related JPH07105171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075176A JPH07105171B2 (en) 1989-08-30 1990-03-22 Insulated wire and its anticorrosion agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22347789 1989-08-30
JP1-223477 1989-08-30
JP2075176A JPH07105171B2 (en) 1989-08-30 1990-03-22 Insulated wire and its anticorrosion agent

Publications (2)

Publication Number Publication Date
JPH03179613A true JPH03179613A (en) 1991-08-05
JPH07105171B2 JPH07105171B2 (en) 1995-11-13

Family

ID=26416326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075176A Expired - Fee Related JPH07105171B2 (en) 1989-08-30 1990-03-22 Insulated wire and its anticorrosion agent

Country Status (1)

Country Link
JP (1) JPH07105171B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200446743Y1 (en) * 2008-01-18 2009-11-24 삼성중공업 주식회사 Water-cooling type welding cable having coating wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262595A (en) * 1985-05-16 1986-11-20 Furukawa Electric Co Ltd:The Heat exchanger for motorcar
JPS61277120A (en) * 1985-05-31 1986-12-08 昭和電線電纜株式会社 Manufacture of anti-stress corrosion cracking overhead insulated wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262595A (en) * 1985-05-16 1986-11-20 Furukawa Electric Co Ltd:The Heat exchanger for motorcar
JPS61277120A (en) * 1985-05-31 1986-12-08 昭和電線電纜株式会社 Manufacture of anti-stress corrosion cracking overhead insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200446743Y1 (en) * 2008-01-18 2009-11-24 삼성중공업 주식회사 Water-cooling type welding cable having coating wire

Also Published As

Publication number Publication date
JPH07105171B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US3944717A (en) Flame-retardant, water-resistant composition and coating transmission member therewith
JPH03179613A (en) Insulated electric wire and its anticorrosive
JPH03100186A (en) Corrosion prevention coating material
JPS62170107A (en) Heat resistant/oil resistant insulated wire
JPS61277120A (en) Manufacture of anti-stress corrosion cracking overhead insulated wire
JP2610172B2 (en) Outdoor insulated wires
JPS6136005Y2 (en)
JPH02181318A (en) Manufacture of insulated electric cable
JPH0664951B2 (en) Method for manufacturing cross-linked polyethylene insulation fictional cable
JPH0799648B2 (en) Insulated wire
JPS58130283A (en) Corrosion inhibitor for copper material
JPH02181319A (en) Manufacture of insulated electric cable
JPS61277121A (en) Manufacture of anti-stress corrosion cracking overhead insulated wire
JPH02181317A (en) Manufacture of insulated electric cable
JPH01281608A (en) Insulated wire and manufacture thereof
JPH02148624A (en) Manufacture of insulating cable
JPH02181316A (en) Manufacture of insulated electric cable
JPS63271810A (en) Insulated wire
JPH01253118A (en) Corrosion preventive insulated electric wire
JPH02148623A (en) Manufacture of insulating cable
JPH02148622A (en) Manufacture of insulating cable
JPS61277117A (en) Manufacture of compression copper twisted conductor
SU1092573A1 (en) Method of applying protective coating
JPH01281609A (en) Insulated wire and manufacture thereof
JPH0359524B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees