JPH03178578A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPH03178578A
JPH03178578A JP1315995A JP31599589A JPH03178578A JP H03178578 A JPH03178578 A JP H03178578A JP 1315995 A JP1315995 A JP 1315995A JP 31599589 A JP31599589 A JP 31599589A JP H03178578 A JPH03178578 A JP H03178578A
Authority
JP
Japan
Prior art keywords
elastic body
vibration wave
vibrator
sliding
wave motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1315995A
Other languages
Japanese (ja)
Other versions
JP2874773B2 (en
Inventor
Koji Kitani
耕治 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18072068&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03178578(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1315995A priority Critical patent/JP2874773B2/en
Publication of JPH03178578A publication Critical patent/JPH03178578A/en
Application granted granted Critical
Publication of JP2874773B2 publication Critical patent/JP2874773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To prevent production of abrasion dust and irritation of a sliding surface due to chipping of a vibrator by carbon fiber, to reduce irregularity of the output of a vibration wave motor, and to improve durability of the motor by making the hardness of a sliding member of a vibrator not less then Hv 600. CONSTITUTION:The upper surface of comb-teeth of a friction-contact surface has a hardened section 1c with a coat having Vickers hardness not less than Hv 600. The sliding surface of a vibrator 1 and a sliding member 2b of a mover 2 are in pressure-contact with each other by applying an axial force of, for example, 10kgf. by a pressing means not shown. An AC voltage at the frequency inherent to the vibrator 1 is applied to two groups of piezoelectric elements 1a consisting of piezoelectric elements polarized alternately in the thickness direction. And, then, the vibrator 1 resonates and a progressive vibration wave is generated in the direction toward the sliding surface and the mover 2 in pressure-contact with the surface of the vibrator 1, rotates by a friction force produced between the sliding surfaces of the vibrator 1 and the sliding member 2b.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気−機械エネルギー変換素子に電圧を印加し
、振動体に生ずる振動波によって、例えば振動体に加圧
接触する部材を摩擦駆動する振動波モータに関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies a voltage to an electro-mechanical energy conversion element, and uses vibration waves generated in a vibrating body to frictionally drive, for example, a member that comes into pressure contact with the vibrating body. This relates to a vibration wave motor.

[従来の技術] 進行性振動波を利用した振動波モータの原理的概要は下
記のようである。
[Prior Art] The basic principle of a vibration wave motor using progressive vibration waves is as follows.

全周長がある長ざλの整数倍であるような弾性材料製の
リング状の弾性体の片面に、周方向に配列された1群の
複数個の圧電素子を固着したものをステータとする。こ
れらの圧電素子は各群内ではλ/2のピッチにて且つ交
互に逆の伸縮極性となるようじ配列されており、また両
群間にはλ/4の奇数倍のずれがあるように配置されて
いる。圧電素子の両群には夫々電極膜が施されている。
A stator is a ring-shaped elastic body made of an elastic material whose total circumference is an integral multiple of a certain length λ, and a group of piezoelectric elements arranged in the circumferential direction are fixed to one side of the ring-shaped elastic body. . These piezoelectric elements are arranged at a pitch of λ/2 within each group so that they alternately have opposite expansion and contraction polarities, and are arranged so that there is a shift of an odd multiple of λ/4 between the two groups. has been done. Both groups of piezoelectric elements are provided with electrode films, respectively.

いずれかの−群(以下A相と称す)のみに交流電圧を印
加すれば、上記弾性体は、語群の各圧電素子の中央点及
びそこから入/2おきの点が腹の位置、また詰腹の位置
間の中央点が節の位置であるような曲げ振動の定在波(
波長λ)が弾性体の全周に亘って発生する。他の一群(
以下B相と称す)のみに交流電圧を印加すれば同様に定
在波が生ずるが、その腹及び節の位置はA相による定在
波に対してλ/4ずれたものとなる。両A、B相に、周
波数が同じで且つ互いに90°の時間的位相差を有する
交流電圧を同時に印加すると、両者の定在波の合成の結
果、弾性体には周方向に振動する曲げ振動の進行波(波
長λ)が発生し、このとき、厚みを有する上記弾性体の
多面状の各点は一種の楕円運動をする。よって、弾性体
の各他面にロータとして、例えばリング状の移動体を加
圧接触させておけば、該移動体は弾性体から周方向の摩
擦を受は回転駆動される。
If an alternating current voltage is applied only to one of the groups (hereinafter referred to as A phase), the elastic body will move to the center point of each piezoelectric element of the word group and every other point from there to the antinode position, or A standing wave of bending vibration (
wavelength λ) is generated over the entire circumference of the elastic body. Another group (
If an AC voltage is applied only to the B phase (hereinafter referred to as the B phase), a standing wave will similarly be generated, but the positions of the antinodes and nodes will be shifted by λ/4 with respect to the standing wave due to the A phase. When AC voltages with the same frequency and a temporal phase difference of 90° are simultaneously applied to both A and B phases, as a result of the synthesis of both standing waves, bending vibration vibrates in the circumferential direction in the elastic body. A traveling wave (wavelength λ) of Therefore, if a rotor, such as a ring-shaped movable body, is brought into pressure contact with each other surface of the elastic body, the movable body receives circumferential friction from the elastic body and is rotationally driven.

したがって、弾性体と移動体との接触する摺動面は連続
的な摩擦力を受けつづけるために、金属からなる弾性体
に対し、移動体には、炭素繊維を充填した複合樹脂なと
゛を摺動材として固着し、摩擦力の安定と摩耗量の減少
を図り、性能の向上と長寿命を確保するようにしていた
Therefore, since the sliding surface where the elastic body and the movable body come into contact continues to receive continuous frictional force, the movable body is made of a composite resin filled with carbon fiber that slides against the elastic body made of metal. It was designed to adhere as a material, stabilize frictional force, and reduce wear to ensure improved performance and long life.

[発明が解決しようとしている課題] しかしながら上記従来例では、例えば、弾性体をオース
テナイト系のステア1/ス5US303、ビッカース硬
さ()IV約230)で形成し、移動体側の摺動材をP
AN系炭素炭素繊維0wt%充填した熱可塑性樹脂(ポ
リエーテルエーテルケトン)で形成し、駆動すると、駆
動10時間位から回転が不安定になり、異音の発生もひ
んばんになった。50時間駆動後接触面を観察すると弾
性体である5115303の摺動面に、かなり深い摺り
傷がついており、また、移動体側の摺動面の元素分析を
すると、鉄が検出された。これは駆動によりステンレス
が摩耗して摺動面に摩耗粉をまきこんだため、回転が不
安定になり、さらにその摩耗粉が比較的軟らかい樹脂に
埋まりこんだものと考えられる。
[Problems to be Solved by the Invention] However, in the above conventional example, the elastic body is made of austenitic Stair 1/S 5US303, Vickers hardness (IV) approximately 230), and the sliding material on the moving body side is made of P.
When a thermoplastic resin (polyether ether ketone) filled with 0 wt % of AN-based carbon fibers was used and the motor was driven, the rotation became unstable after about 10 hours of operation, and abnormal noises were frequently generated. Observation of the contact surface after driving for 50 hours revealed that there were quite deep scratches on the sliding surface of the elastic body 5115303, and elemental analysis of the sliding surface on the movable body side detected iron. This is thought to be because the stainless steel was worn away by the drive and abrasion powder was scattered on the sliding surface, making rotation unstable, and the abrasion powder became embedded in the relatively soft resin.

本発明の目的は、出力の安定化を図れると共に、充分な
耐久性も保証できる振動波モータをt是イ共することに
ある。
An object of the present invention is to provide a vibration wave motor that can stabilize the output and also ensure sufficient durability.

[課題を解決するための手段及び作用]本発明者は、従
来の振動波モータに生じた前述の現象が、摩擦面を観察
することによって、炭素繊維がより軟らかいステンレス
を削ることによっておきるいわゆるアブ1/ツシブ的な
摩耗であると判断し、振動体側の摩擦摺動部の硬度をH
v 600以上にすることにより、炭素繊維が振動体を
削ることによる摩耗粉の生成と摺動面の荒れを防ぎ、振
動波モータの出力ムラを少なくし、耐久性をもたせるこ
とを可能とする本発明をなすにいたったものである。
[Means and effects for solving the problem] By observing the friction surface, the present inventor discovered that the above-mentioned phenomenon that occurred in conventional vibration wave motors was caused by the so-called ablation caused by carbon fibers cutting softer stainless steel. 1/ Judging that it is abrasion, the hardness of the friction sliding part on the vibrating body side is set to H.
By setting v600 or higher, carbon fiber can prevent the generation of abrasion powder and roughness of the sliding surface caused by scraping the vibrating body, reduce uneven output of the vibration wave motor, and increase durability. This led to the invention.

摺動材を構成する炭素繊維は、PAN系の高強度タイプ
、ピッチ系の高弾性タイプのどちらでもよく、5〜35
vo目樹脂に充填することにより、樹脂の機械的強度や
熱伝導率を上げて耐摩耗性を上げる働きをする。また母
材となる樹脂は、ポリイミド、エポキシ、フェノールな
どの熱硬化性樹脂または、ポリアミド、ポリアセタール
、ポリアミドイミド、ポリエーテルイミド、ポリエーテ
ルエーテルケトン、ポリエーテルサルフォン、ポリフェ
ニレンサルファイド、変性ポリフェニレンサルファイド
などの機械的強度が高く、耐熱性のある熱可塑性樹脂も
しくは、芳香族ポリエステルなどの、液晶ポリマーや、
それらのポリマーアロイが望ましい。また、弾性体側の
摩擦摺動面は、浸炭、窒化、浸硫などの浸透拡散法、高
周波、レーザーなどによる焼入れなど、弾性体自身の表
面を硬化する方法や、CVD、PVDの蒸着法、アーク
、レーザ、プラズマなどによる溶射法、電解、無電解な
ど各種メッキなど表面を硬質材料で被覆する方法等によ
り表面硬化層が形成される。特に表面の靭性が高くなる
、WC,Tic、 SiCなどの炭化系セラミックもし
くは、それらと Co、 Niのサーメットの被膜や、
Ni、 Go、 Crなどをマトリックス金属とした、
Sin、 TiG、 WC,A1203St(h、 T
i(hなどの粒子の複合メッキなどは、弾性体の金属と
の密着性もよく、耐摩耗性も上がりさらには、防錆効果
もあり長寿命が期待できる。
The carbon fiber constituting the sliding material may be either a PAN-based high-strength type or a pitch-based high-elasticity type, and has a carbon fiber of 5 to 35%.
By filling the resin, it works to increase the mechanical strength and thermal conductivity of the resin, thereby increasing its abrasion resistance. The base material resin may be a thermosetting resin such as polyimide, epoxy, or phenol, or a thermosetting resin such as polyamide, polyacetal, polyamideimide, polyetherimide, polyetheretherketone, polyethersulfone, polyphenylene sulfide, or modified polyphenylene sulfide. Liquid crystal polymers such as thermoplastic resins with high mechanical strength and heat resistance or aromatic polyesters,
Polymer alloys thereof are desirable. In addition, the friction sliding surface on the elastic body side can be formed using methods that harden the surface of the elastic body itself, such as penetration diffusion methods such as carburizing, nitriding, and sulfurization, hardening with high frequency, laser, etc., vapor deposition methods such as CVD, PVD, and arc A hardened surface layer is formed by a method of coating the surface with a hard material, such as thermal spraying using a laser or plasma, or various types of plating such as electrolytic and electroless plating. In particular, carbonized ceramics such as WC, Tic, and SiC, or cermet coatings of Co and Ni, which have particularly high surface toughness,
Using Ni, Go, Cr, etc. as the matrix metal,
Sin, TiG, WC, A1203St (h, T
Composite plating of particles such as i(h) has good adhesion to the metal of the elastic body, improves wear resistance, and has a rust-preventing effect, so it can be expected to have a long life.

[実施例コ 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
[Embodiments] The present invention will now be described in detail based on embodiments shown in the drawings.

第1図は本発明による振動波モータの一実施例を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of a vibration wave motor according to the present invention.

図中、1は可撓性を有する例えばステンレススやリン青
銅からなるリング状の金属弾性体1bの一側面に、前述
した如く複数個に分極された2群の圧電素子をリング状
に形成した圧電素子群1aを耐熱性のエポキシ樹脂系接
着剤で同心的に接着した振動体で、圧電素子i1aの接
着面と反対の摺動面側は駆動速度を大きくするために櫛
歯状に複数の溝(不図示)が周方向に等間隔で形成され
、摩擦接触部である櫛歯の上面は、ビッカース硬さ、)
lV600以上の硬度を有する被膜としては硬化処理が
なされた表面硬化部ICが形成され、また振動体は不図
示の筐体に中心部近辺で固定されている。
In the figure, reference numeral 1 denotes a flexible ring-shaped metal elastic body 1b made of stainless steel or phosphor bronze, for example, and two groups of piezoelectric elements polarized as described above are formed in a ring shape on one side of the elastic metal body 1b. It is a vibrating body in which a piezoelectric element group 1a is concentrically bonded with a heat-resistant epoxy resin adhesive, and the sliding surface opposite to the bonding surface of the piezoelectric element i1a has a plurality of comb-like shapes to increase the driving speed. Grooves (not shown) are formed at equal intervals in the circumferential direction, and the upper surface of the comb teeth, which is the friction contact area, has a Vickers hardness.
A surface-hardened portion IC is formed as a coating having a hardness of lV600 or higher, and the vibrating body is fixed near the center of the casing (not shown).

2は例えばアルミ合金等の金属からなるリング状の支持
体2aの一側面に、リング状の炭素繊維を充填した複合
樹脂からなる摺動材2bをエポキシ系接着剤などで同心
的に固着した移動体である。
2 is a moving device in which a sliding material 2b made of a composite resin filled with ring-shaped carbon fibers is fixed concentrically to one side of a ring-shaped support 2a made of a metal such as an aluminum alloy with an epoxy adhesive or the like. It is the body.

そして、振動体1の摺動面と移動体2の摺動材2bとを
不図示の加圧手段により、軸方向に例えば10kgfの
荷重で加圧接触させている。
Then, the sliding surface of the vibrating body 1 and the sliding member 2b of the movable body 2 are brought into pressure contact in the axial direction with a load of, for example, 10 kgf by a pressing means (not shown).

そして、交互に厚み方向に分極処理された圧電素子から
なる2群の圧電素子に振動体1の固有の周波数の交流電
圧を印加すると、弾性体1は共振を起こし、その摺動面
周方向に進行性振動波が発生し、振動体1の表面に加圧
接触している移動体2が、振動体1と摺動体2bの摺動
面の摩擦力により回転駆動される。
When an AC voltage with a frequency specific to the vibrating body 1 is applied to two groups of piezoelectric elements that are alternately polarized in the thickness direction, the elastic body 1 resonates, and the elastic body 1 resonates in the circumferential direction of its sliding surface. A progressive vibration wave is generated, and the movable body 2, which is in pressure contact with the surface of the vibrating body 1, is rotationally driven by the frictional force between the sliding surfaces of the vibrating body 1 and the sliding body 2b.

弾性体1bの表面に形成される表面硬化部ICとして、
クロムメッキ(Hv= 700)、SiC分散ニッケル
メッキ()Iv= 600) 、 SiC分散ニッケル
メッキ(アニール)  (Hv= 9(10) 、 T
ic−Coi射被DI ()Iv= 1100) 、W
C−Co溶射被膜(tlv−1300)を用い、又比較
例として表面処理を施している弾性体1 b  St]
53D3(H,=230)、5LIS420 ()Iv
=500)を用いて、駆動前後の面粗さ(R,) 、回
転変動について夫々評価した。
As a surface hardened portion IC formed on the surface of the elastic body 1b,
Chrome plating (Hv=700), SiC dispersed nickel plating (Iv=600), SiC dispersed nickel plating (annealing) (Hv=9(10), T
ic-Coi radiation coverage DI ()Iv=1100), W
Elastic body 1 b St] using C-Co thermal spray coating (TLV-1300) and surface treatment as a comparative example
53D3 (H, = 230), 5LIS420 ()Iv
=500) to evaluate the surface roughness (R,) and rotational fluctuation before and after driving, respectively.

摺動材2bは、ポリエーテルエーテルケトンにPAN系
炭素炭素繊維ミルドファイバ0wt%ランダムに充填し
た複合樹脂を用いた。
The sliding material 2b used was a composite resin in which polyether ether ketone was randomly filled with 0 wt % of PAN-based carbon fiber milled fibers.

また、振動波モータの駆動は、振幅を一定にして 13
0〜20Orpmの回転数で50時間駆動して上記の評
価を行なった。その結果を表1に示す。
In addition, the vibration wave motor is driven with a constant amplitude.13
The above evaluation was performed by driving at a rotation speed of 0 to 20 rpm for 50 hours. The results are shown in Table 1.

比較例1.2の5US303、及び420は駆動後、駆
動体の摩擦面の荒れがひどく、移動体の摩耗も多く回転
変動も次第にひんばんになった。
In Comparative Examples 1.2, 5US303 and 420, after driving, the friction surface of the drive body was severely roughened, the moving body was worn a lot, and the rotation fluctuation gradually became severe.

実施例1のクロムロツキは、他に比べて若干起動トルク
が低かったが、メッキのはがれはなく、荒れも少なく回
転変動も少なかった。
Although the starting torque of the chrome plate of Example 1 was slightly lower than that of the others, there was no peeling of the plating, little roughness, and little rotational fluctuation.

実施例2〜5については、面のはがれも荒れもほんどな
く、回転変動もなかった。
In Examples 2 to 5, there was almost no peeling or roughness of the surface, and there was no rotational fluctuation.

本実施例では移動体側の摺動材の充填材としてPAN系
の炭素繊維をもちいたが、ピッチ系の炭素繊維を充填し
た摺動材でも同様の効果を得ることができる。
In this embodiment, PAN-based carbon fibers were used as the filling material for the sliding material on the movable body side, but the same effect can be obtained by using a sliding material filled with pitch-based carbon fibers.

また、摺動材に固体潤滑剤(ポリテトラフルオロエチレ
ン、二酸化モリブデン、グラファイト、マイカ、タルク
など)の添加も有効である。
It is also effective to add a solid lubricant (polytetrafluoroethylene, molybdenum dioxide, graphite, mica, talc, etc.) to the sliding material.

なお、上記実施例では振動体は固定され、移動体が進行
性振動波に応じて移動されるが、例えば平板上の支持部
材(不図示)上に振動体を移動体として加圧接触させ、
弾性体上に発生した進行性振動波により、振動体自身を
移動させるようにしてもよく、また弾性体側に炭素繊維
を充填した複合樹脂を固着し、摺動する相手部材を11
 v800以上のものにしてもよい。
In the above embodiments, the vibrating body is fixed and the movable body is moved according to the progressive vibration waves.
The vibrating body itself may be moved by the progressive vibration waves generated on the elastic body, or a composite resin filled with carbon fibers may be fixed to the elastic body side, and the sliding mating member may be moved.
It may be v800 or higher.

[発明の効果コ 以上説明したように、本発明によれば、振動波モータに
おける摩擦摺動材を炭素繊維を充填した複合樹脂とした
とき、該摺動材に接触する相手側の摩擦接触部をHv 
600以上にすることによって、摺動材に充電される炭
素繊維によって相対移動面が掘り起こされたり、削られ
たすせず、従って、経時的な面の荒れ、摩耗が少なく、
出力が安定し、耐久性のある振動波モータを得ることが
できた。
[Effects of the Invention] As explained above, according to the present invention, when the frictional sliding material in a vibration wave motor is made of a composite resin filled with carbon fiber, the frictional contact portion of the other side that comes into contact with the sliding material Hv
By setting it to 600 or more, the relative movement surface will not be dug or scraped by the carbon fiber charged in the sliding material, and therefore the surface will be less rough and worn over time.
We were able to obtain a vibration wave motor with stable output and durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による、振動波モータの一実施例の断面
図を示している。 1・・・振動体      1a・・・圧電素子群1b
・・・金属振動体   IC・・・表面硬化部2・・・
移動体      2a・・・支持体2b・・・摺動材
(炭素繊維充填複合樹脂)化4名 第 図
FIG. 1 shows a cross-sectional view of an embodiment of a vibration wave motor according to the invention. 1... Vibrating body 1a... Piezoelectric element group 1b
...Metal vibrating body IC...Surface hardened part 2...
Moving body 2a...Support 2b...Sliding material (carbon fiber filled composite resin) 4 people Figure

Claims (1)

【特許請求の範囲】 1 電気−機械エネルギー変換素子に交流電圧を印加す
ることにより、該電気−機械エネルギー変換素子の固着
される弾性体に進行性振動波を形成し、以て該弾性体と
、該弾性体と加圧接触する部材とを摩擦力により相対移
動させる振動波モータにおいて、 該弾性体と該弾性体と加圧接触する部材との接触部のい
ずれか一方には、樹脂材に炭素繊維を充填材した摺動材
を設けると共に、該弾性体と該弾性体と加圧接触する部
材との接触部のいずれか他方には、ビッカース硬度(H
v)が600以上の硬化部を形成したことを特徴とする
振動波モータ。 2 前記硬化部はセラミックもしくはサーメットの被膜
であることを特徴とする請求項1に記載の振動波モータ
。 3 前記硬化部はセラミック粒子を分散した複合メッキ
層であることを特徴とする請求項1に記載の振動波モー
タ。
[Claims] 1. By applying an alternating current voltage to the electro-mechanical energy conversion element, a progressive vibration wave is formed in the elastic body to which the electro-mechanical energy conversion element is fixed, and thereby the elastic body and , in a vibration wave motor that relatively moves the elastic body and a member in pressure contact with each other by frictional force, one of the contact portions between the elastic body and the member in pressure contact with the elastic body is coated with a resin material. A sliding material filled with carbon fiber is provided, and one of the contact parts between the elastic body and a member that contacts the elastic body under pressure has a Vickers hardness (H
v) A vibration wave motor comprising a hardened portion having a hardness of 600 or more. 2. The vibration wave motor according to claim 1, wherein the hardened portion is a ceramic or cermet coating. 3. The vibration wave motor according to claim 1, wherein the hardened portion is a composite plating layer in which ceramic particles are dispersed.
JP1315995A 1989-12-05 1989-12-05 Vibration wave drive Expired - Lifetime JP2874773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315995A JP2874773B2 (en) 1989-12-05 1989-12-05 Vibration wave drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1315995A JP2874773B2 (en) 1989-12-05 1989-12-05 Vibration wave drive

Publications (2)

Publication Number Publication Date
JPH03178578A true JPH03178578A (en) 1991-08-02
JP2874773B2 JP2874773B2 (en) 1999-03-24

Family

ID=18072068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315995A Expired - Lifetime JP2874773B2 (en) 1989-12-05 1989-12-05 Vibration wave drive

Country Status (1)

Country Link
JP (1) JP2874773B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129625A (en) * 2004-10-29 2006-05-18 Konica Minolta Opto Inc Drive unit
WO2006114947A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Drive device
JP2015203130A (en) * 2014-04-11 2015-11-16 キヤノン株式会社 Method for manufacturing elastic body, vibration type actuator and image forming device
JPWO2013146922A1 (en) * 2012-03-27 2015-12-14 株式会社ニコン Vibration actuator, lens barrel and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129625A (en) * 2004-10-29 2006-05-18 Konica Minolta Opto Inc Drive unit
WO2006114947A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Drive device
JPWO2013146922A1 (en) * 2012-03-27 2015-12-14 株式会社ニコン Vibration actuator, lens barrel and electronic equipment
JP2015203130A (en) * 2014-04-11 2015-11-16 キヤノン株式会社 Method for manufacturing elastic body, vibration type actuator and image forming device

Also Published As

Publication number Publication date
JP2874773B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JP2578903B2 (en) Vibration wave motor
US5034646A (en) Vibration motor
US4978882A (en) Vibration wave driven motor
JP5631018B2 (en) Rotational vibration wave drive
JPH03117384A (en) Friction material for ultrasonic motor
JPH05161368A (en) Vibration wave motor
JP2898053B2 (en) Vibration wave device
JPH1042579A (en) Oscillatory wave motor
US8970091B2 (en) Vibration-type driving apparatus
JPH03178578A (en) Vibration wave motor
JPH1084682A (en) Vibration wave driving device and equipment having vibration wave driving device
JPH0583960A (en) Ultrasonic motor
JP3450733B2 (en) Sliding member, vibration wave driving device and device using the same
US5338998A (en) Vibration driven actuator
JP4838455B2 (en) Rolling sliding member and rolling device
JP2012203085A (en) Vibration actuator, lens barrel and electronic apparatus
JP3016617B2 (en) Vibration wave motor
JPH07194152A (en) Formation of frictional member for oscillatory wave motor
JP2018050467A (en) Vibration actuator, lens barrel, and electronic apparatus
JPH11206159A (en) Vibration type driving equipment
JPH07264881A (en) Ultrasonic motor
JPH05244784A (en) Vibration wave motor
JP2022007314A (en) Vibration actuator, lens barrel, and electronic apparatus
JP2014233175A (en) Vibration actuator, lens barrel and electronic apparatus
JPH01238473A (en) Lining material and ultrasonic drive motor using the same material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

EXPY Cancellation because of completion of term