JPH03178145A - Inspecting equipment for bonding ball - Google Patents

Inspecting equipment for bonding ball

Info

Publication number
JPH03178145A
JPH03178145A JP1316998A JP31699889A JPH03178145A JP H03178145 A JPH03178145 A JP H03178145A JP 1316998 A JP1316998 A JP 1316998A JP 31699889 A JP31699889 A JP 31699889A JP H03178145 A JPH03178145 A JP H03178145A
Authority
JP
Japan
Prior art keywords
pixels
image
pixel
bonding ball
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1316998A
Other languages
Japanese (ja)
Other versions
JP2843389B2 (en
Inventor
Hiroyuki Tsukahara
博之 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1316998A priority Critical patent/JP2843389B2/en
Publication of JPH03178145A publication Critical patent/JPH03178145A/en
Application granted granted Critical
Publication of JP2843389B2 publication Critical patent/JP2843389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PURPOSE:To precisely measure the diameter of a bonding ball with as little influence as possible of quantization errors and image density gradient, by extracting pixels with zero-cross, from pixels and subpixels subjected to secondary differentiation, by using a zero-cross detecting means. CONSTITUTION:An image sensing means 10 picks up the image of a bonding ball 5 at the tip of bonding wire 4. A pixel forming means 11 executes digital processing of the output video signal and forms pixels. A pixel forming means 12 executes gradation interpolation between elements in an inspection region having a specified size out of pixels formed by the pixel forming means 11, and forms subpixels. Each pixel and each subpixel formed in the above process are stored in a monochromatic gradation image memory 13. The picture elements and pixels read from the memory 13 are subjected to secondary differentiation, and the zero-cross as the result of the secondary differentiation is detected by a zero cross detecting means 14. On the basis of the detected results, the diameter of the bonding ball 5 is measured. Thereby quantization error can be reduced, and dimension measurement precision can be improved.

Description

【発明の詳細な説明】 〔概要〕 集積回路等のワイヤボンディングにおけるボンディング
状態を管理する上で重要な要素であるボンディングボー
ル径の寸法を計測検査するボンディングボール検査装置
に関し、 量子化誤差や画像の濃度勾配の影響をできるだけ受ける
ことなく、高精度にボンディングボール径の寸法を計測
することを目的とし、 パッドにボンディングされたワイヤの先端のボンディン
グボールを撮像する撮像手段と、該m像手段の出力映像
信号をディジタル処理して画素を生成する画素生成手段
と、該画素生成手段により生成された画素のうち所定サ
イズの検査領域における各画素の画素間を階調補間して
サブピクセルを生liするサブピクセル生成手段と、該
検査領域における該画素生成手段により生成された各画
素と、該サブピクセル生成手段により生成された各サブ
ピクセルを夫々記憶するII淡階調画像メモリと、該濃
淡階調画像メモリから読み出した画素及びサブピクセル
に対して2次微分を行ない、その2次微分結果のピロク
ロスを検出するピロクロス検出手段と、を有し、該ゼロ
クロス検出手段による検出結果に基づいて前記ボンディ
ングボールの径の寸法目測を行なうよう構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a bonding ball inspection device that measures and inspects the diameter of the bonding ball, which is an important element in managing the bonding state in wire bonding of integrated circuits, etc. The purpose of this invention is to measure the diameter of the bonding ball with high precision without being affected by the concentration gradient as much as possible. A pixel generating means for digitally processing a video signal to generate pixels, and generating sub-pixels by performing gradation interpolation between each pixel in an inspection area of a predetermined size among the pixels generated by the pixel generating means. a sub-pixel generating means, each pixel generated by the pixel generating means in the inspection area, and a II light gradation image memory storing each sub-pixel generated by the sub-pixel generating means, and the gray gradation. pyrocross detection means for performing second-order differentiation on pixels and sub-pixels read from the image memory and detecting pyrocrosses as a result of the second-order differentiation, and detecting the bonding ball based on the detection result by the zero-cross detection means It is configured to visually measure the diameter of.

〔産業上の利用分野〕[Industrial application field]

本発明はボンディングボール検査装置に係り、特に集積
回路等のワイヤボンディングにおけるボンディング状態
を管理する上で重要な要素であるボンディングボール径
の寸法を計測検査するボンディングボール検査装備に関
する。
The present invention relates to a bonding ball inspection device, and more particularly to bonding ball inspection equipment for measuring and inspecting the diameter of the bonding ball, which is an important element in managing the bonding state in wire bonding of integrated circuits and the like.

近年、集積回路(IC)や大規模集積回路〈LSI)は
広範囲に、かつ、大量に使用されるようになっているた
め、ICやLSIにおけるワイヤボンディング状態の外
観検査の自動化が行なわれるようになってきた。このワ
イヤボンディング状態の外観検査においては、ボンディ
ングボール径の寸法を正確に計測することが必要とされ
る。
In recent years, integrated circuits (ICs) and large-scale integrated circuits (LSIs) have become widely used and in large quantities, so the visual inspection of the wire bonding status of ICs and LSIs has been automated. It has become. In this visual inspection of the wire bonding state, it is necessary to accurately measure the diameter of the bonding ball.

(従来の技術) 第7図は従来のボンディングボール検査5A置の一例の
構成図を示す。同図中、1はリードフレームで、その上
にICチップ2が載置されている。
(Prior Art) FIG. 7 shows a configuration diagram of an example of a conventional bonding ball inspection device 5A. In the figure, 1 is a lead frame, on which an IC chip 2 is placed.

ICチップ2上にはバッド3が形成されている。A pad 3 is formed on the IC chip 2.

4はワイヤで、一端がバッド3上にボンディングボール
5を形成して固着されている。
4 is a wire, one end of which is fixed to the pad 3 to form a bonding ball 5.

リードフレーム1は搬送装置であるフレームフィーダ6
により、照明装N7及び撮像装置8の真下に搬送される
。これにより、ボンディングボール5は照明装置7で照
明され、Il像装@8で撮像される。撮像装置8から取
り出された映像信号は情報処理装置9に供給され、ここ
でアナログ処理又はディジタル処理にてシェーディング
が補正されて画像を均一な濃淡状態にしてから自動的に
求めた同値で2値化されて撮像画像のワイヤボンディン
グ状態が検査される。
The lead frame 1 is connected to a frame feeder 6 which is a conveying device.
As a result, it is transported directly below the illumination device N7 and the imaging device 8. Thereby, the bonding ball 5 is illuminated by the illumination device 7 and imaged by the Il imaging device @8. The video signal taken out from the imaging device 8 is supplied to the information processing device 9, where the shading is corrected by analog processing or digital processing to make the image into a uniform gray state, and then the image is automatically converted to a binary value with the same value. The wire bonding state of the captured image is inspected.

ここで、従来のボンディングボール検査装置では、上記
情報処理Kff9における処理として2ifI化閾値を
求め、この2値化閾値で2fa化した濃淡画像からボン
ディングボール径の寸法を計測し、この径からボンディ
ングボール5の形状を検査している。
Here, in the conventional bonding ball inspection apparatus, a 2ifI conversion threshold is obtained as a process in the information processing Kff9, the size of the bonding ball diameter is measured from the grayscale image converted to 2fa using this binarization threshold, and the size of the bonding ball diameter is measured from this diameter. The shape of 5 is being inspected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、上記の従来のボンディングボール検査装置で
は、映像信号をディジタル化しているため量子化誤差が
発生する。この量子化誤差は撮像光学系の分解能を上げ
ることにより低減することはできるが、分解能の増加に
伴い視野が狭くなるため、分解能の増加には制約がある
。このため従来は比較的大なる量子化誤差があり、それ
によりボンディングボール5の径の寸法誤差が生じてし
まう。
However, in the conventional bonding ball inspection apparatus described above, a quantization error occurs because the video signal is digitized. This quantization error can be reduced by increasing the resolution of the imaging optical system, but since the field of view becomes narrower as the resolution increases, there are restrictions on increasing the resolution. For this reason, conventionally there is a relatively large quantization error, which causes a dimensional error in the diameter of the bonding ball 5.

また、従来は2値化同値で2iil化した濃淡画像は画
像の濃度勾配の影響を受け、ボンディングボール5の形
状が2値化閾値によって変化してしまう。
Further, conventionally, a grayscale image converted into 2III by binarization equivalent value is affected by the density gradient of the image, and the shape of the bonding ball 5 changes depending on the binarization threshold value.

本発明は以上の点に鑑みなされたもので、量子化誤差や
画像の濃度勾配の影響をできるだけ受けることなく、高
精度にボンディングボール径の寸法を開側し得るボンデ
ィングボール検査装置を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a bonding ball inspection device capable of determining the open side of the bonding ball diameter with high accuracy without being affected by quantization errors or image density gradients as much as possible. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理ブロック図を示す。同図中、10
は撮像手段で、パッドにボンディングされたワイヤの先
端のボンディングボールをIl像する。11は画素生成
手段で映像信号をディジタル処理して画素を生成する。
FIG. 1 shows a block diagram of the principle of the present invention. In the same figure, 10
is an imaging means that images the bonding ball at the tip of the wire bonded to the pad. 11 is a pixel generation means that digitally processes the video signal to generate pixels.

12はサブピクセル生成手段で、所定サイズの検査領域
における各画素の画素間をi調変換してサブピクセルを
生成する。
Reference numeral 12 denotes a sub-pixel generating means, which performs i-tone conversion between each pixel in an inspection area of a predetermined size to generate sub-pixels.

また、13は濃淡階調画像メモリで、上記検査領域内の
各画素及びサブピクセルを記憶する。更に、14はピロ
クロス検出手段で、濃淡階調画像メモリ13からの画素
及びサブピクセルを2次微分し、その2次微分結果のピ
ロクロスを検出し、これによりボンディングボール径の
寸法#I測を行なう。
Further, 13 is a gray scale image memory which stores each pixel and sub-pixel within the above-mentioned inspection area. Furthermore, 14 is a pyrocross detection means that performs second-order differentiation of the pixels and sub-pixels from the gradation image memory 13, detects the pyrocross as a result of the second-order differentiation, and thereby measures the bonding ball diameter dimension #I. .

〔作用〕[Effect]

本発明では、サブピクセル生成手段12により、検査領
域内の各画素(ビクセル)間の階調補間を行なってサブ
ピクセルを生威し、それを濃淡階調画像メモリ13に、
上記検査領域内の各画素と共に格納している。従って、
濃淡階調画像メモリ13から取り出される画素は従来に
比べてサブピクセルの数だけ画素数が増加するので、画
像のディジタル量子化誤差が軽減する。
In the present invention, the subpixel generation means 12 performs tone interpolation between each pixel (pixel) in the inspection area to generate subpixels, and stores them in the grayscale image memory 13.
It is stored together with each pixel in the inspection area. Therefore,
Since the number of pixels taken out from the gray scale image memory 13 is increased by the number of sub-pixels compared to the conventional case, the digital quantization error of the image is reduced.

ところで、人間の視覚には側抑制(之ateralin
hibition >により物体輪郭を強調して検出す
る機能がある。一方、ディジタル画像において、物体の
輪郭を正確に検出する方法としてゼロクロッシング法が
知られている(Marr and H1dreth。
By the way, human vision involves lateral inhibition.
There is a function that emphasizes and detects object contours using hibition>. On the other hand, the zero-crossing method is known as a method for accurately detecting the outline of an object in a digital image (Marr and H1dreth).

1980)。この方法は画像の強度変化を検出するため
、ガウシアン・フィルタ(Gaussian F 1l
ter )を通すことにより画像をぼかし、そのぼかし
た画像にラプラシアン(2)をかけてその画像のゼロク
ロス(ビ0交差)を抽出してその画像の強度変化位M(
輪郭)とするものである。
1980). This method uses a Gaussian filter (Gaussian F 1l) to detect intensity changes in the image.
ter ), the blurred image is subjected to the Laplacian (2), the zero crossings (bi0 crossings) of the image are extracted, and the intensity change displacement M (
outline).

画像の強r!1関数1 (x、y)をガウス開数Gでぼ
かすという作業は、数学的にはG*lと1き、このラプ
ラシアンは2  (G*I)と記すが、実際には、上記
のガウシアン・フィルタを通し、かつ、ラプラシアンを
かけた2G*Iの画像において正の値をもつ画素と負の
値をもつ画素が隣接している画素のアドレスを抽出する
ことにより、ピロクロスを検出する。
The strength of the image! Mathematically, the task of blurring 1 function 1 (x, y) with a Gaussian number G is expressed as G*l, and this Laplacian is written as 2 (G*I), but in reality, the above Gaussian - Pyrocross is detected by extracting the address of a pixel in which a pixel with a positive value and a pixel with a negative value are adjacent to each other in a 2G*I image that has been passed through a filter and applied a Laplacian.

本発明はこのピロクロッシング法に鑑み、画像の輪郭を
検出する。ただし、本発明では前記サブピクセル生成手
段12により、オリジナルの画素から線形近似により階
調補間しているので、その階調補間後の画像には画素密
度が高くなるのと同時にぼけが生じている。そこで、本
発明ではガウシアン・フィルタを画像にかけることなく
、ラプラシアン〈2)をかけた、すなわち2次微分を施
した画素及びサブピクセルから、ゼロクロス検出手段1
4によりピロクロスの生じる画素を抽出するものであり
、これによりボンディングボールの輪郭を正確に検出す
ることができる。このぜロクOス検出は2ia化で生成
された2値画像に比べ、濃度勾配の影響を受けにくい。
The present invention detects the outline of an image based on this pyrocrossing method. However, in the present invention, since the sub-pixel generation means 12 performs tone interpolation from the original pixels by linear approximation, the image after the tone interpolation has an increased pixel density and blur. . Therefore, in the present invention, the zero-cross detection means 1 uses pixels and sub-pixels that have been subjected to Laplacian <2), that is, subjected to second-order differentiation, without applying a Gaussian filter to the image.
4, the pixels in which the pyrocross occurs are extracted, thereby making it possible to accurately detect the outline of the bonding ball. This ZERO detection is less affected by concentration gradients than a binary image generated by 2IA conversion.

このように本発明では画素数をサブピクセル分増加させ
ることでディジタル量子化誤差を軽減できると共に画像
にぼかし処理を行なったと同様の効果が得られ、ゼロク
ロス検出によりボンディングボールの輪郭をより精度良
く検出できる。
In this way, in the present invention, by increasing the number of pixels by subpixels, digital quantization errors can be reduced, and the same effect as blurring the image can be obtained, and the outline of the bonding ball can be detected more accurately by zero-cross detection. can.

(実施例) 第2図は本発明の一実施例の構成図を示す。同図中、第
7図と同一構成部分には同一符号を付し、その説明を省
略する。第2図において、照明装置7及び’ta像5A
置Bは第1図に示した撮像手段10を構成している。第
2図中、21は画像入力回路で、前記画素生成手段11
を構成しており、入力映像信号をディジタル処理する。
(Embodiment) FIG. 2 shows a configuration diagram of an embodiment of the present invention. In the figure, the same components as those in FIG. 7 are denoted by the same reference numerals, and their explanations will be omitted. In FIG. 2, the illumination device 7 and the 'ta image 5A
Place B constitutes the imaging means 10 shown in FIG. In FIG. 2, 21 is an image input circuit, and the pixel generating means 11
It is configured to digitally process input video signals.

22は画像メモリ、23は画像処理メモリで、これらは
前記濃淡階調画像メモリ13を構成している。
22 is an image memory, and 23 is an image processing memory, which constitute the gray scale image memory 13.

また、24は画像処理プロセッサで、前記サブピクセル
生成手段12及びぜロクロス検出手段14を構成してお
り、後述する第3図に示すフローチャートに従った動作
を行なう。25は画像表示回路で、デイスプレィ26に
画像表示を行なわせる。上記の画像入力回路212画像
メモリ22゜画像処理メモリ231画像処理プロセッサ
24及び画像表示回路25の相互間の画素データ転送は
、イメージバス27を介して行なわれる。
Reference numeral 24 denotes an image processing processor, which constitutes the sub-pixel generating means 12 and the zero cross detecting means 14, and performs operations according to a flowchart shown in FIG. 3, which will be described later. 25 is an image display circuit that causes a display 26 to display an image. Pixel data transfer between the image input circuit 212, image memory 22.degree. image processing memory 231, image processing processor 24, and image display circuit 25 is performed via the image bus 27.

また、2Bはプログラムメモリで、このボンディングボ
ール検査装置全体を制御するためのプログラムが格納さ
れている。29はシステムプロセッサで、プログラムメ
モリ28からのプログラムに従い、このボンディングボ
ール検査装置全体の回路を統括制御する。
Further, 2B is a program memory in which a program for controlling the entire bonding ball inspection apparatus is stored. Reference numeral 29 denotes a system processor, which centrally controls the circuits of the entire bonding ball inspection apparatus according to the program from the program memory 28.

30はカメラコントローラで、Iall装置8の動作制
御を行なう。31は照明コントローラで、照明装置7の
ICチップ2に対する照明光量を調整して映像信号のS
/Nを最適にする。32はフレームフィーダコントロー
ラで、搬送5A置であるフレームフィーダ6を搬送制御
する。33はI10コントローラで、キーボード及びジ
ョイスティック34.プリンタ35とシステムプロセッ
サ29との間のインタフェースをとる。キーボード及び
ジョイスティック34は検査条件の設定などに用いられ
、またプリンタ35は検査結果の印刷出力などに用いら
れる。
A camera controller 30 controls the operation of the Iall device 8. 31 is a lighting controller that adjusts the amount of illumination light for the IC chip 2 of the lighting device 7 and controls the S of the video signal.
/N is optimized. Reference numeral 32 denotes a frame feeder controller, which controls the transport of the frame feeder 6, which is the transporter 5A. 33 is the I10 controller, keyboard and joystick 34. Provides an interface between printer 35 and system processor 29. The keyboard and joystick 34 are used to set test conditions, and the printer 35 is used to print out test results.

36はフロッピーディスクコントローラ(FCC)及び
ハードディスクコントローラ(+−I D C)で、フ
ロッピーディスク37及びハードディスク38に接続さ
れている。フロッピーディスク37及びハードディスク
38には、検査結果や検査基準などが格納される。更に
39はシステムバスで、上記の各回路間のデータ転送用
バスである。
36 is a floppy disk controller (FCC) and a hard disk controller (+-IDC), which are connected to a floppy disk 37 and a hard disk 38. The floppy disk 37 and hard disk 38 store test results, test standards, and the like. Furthermore, 39 is a system bus, which is a bus for data transfer between the above-mentioned circuits.

次に本実施例の動作について説明する。撮像装置8はI
Cチップ2にボンディングされたワイヤ4のICチップ
2側の端に形成されたボンディングボール5を撮像し、
これにより得られる映像信号を画像入力回路21に供給
する。画像入力回路21は入力映像信号をディジタル処
理して画素群が時系列的に合成された画像データを生成
し、その画像データをイメージバス27を介して画像メ
モリ22に格納する。システムプロセッサ29は画像メ
モリ22から所定の位置、サイズの領f*Dの画素(画
像データ〉を切り出して画像処理メモリ23に格納する
Next, the operation of this embodiment will be explained. The imaging device 8 is I
The bonding ball 5 formed at the end of the wire 4 bonded to the C chip 2 on the IC chip 2 side is imaged;
The video signal obtained thereby is supplied to the image input circuit 21. The image input circuit 21 digitally processes the input video signal to generate image data in which pixel groups are synthesized in time series, and stores the image data in the image memory 22 via the image bus 27. The system processor 29 cuts out pixels (image data) of an area f*D at a predetermined position and size from the image memory 22 and stores them in the image processing memory 23.

このようにして画像処理メモリ23に格納された上記の
領wtDの全画素を用いて、画像処理プロセッサ24は
第3図に示すフローチャートに従って前記サブピクセル
生成手段12及びゼロクロス検出手段14を実現する。
Using all the pixels of the area wtD thus stored in the image processing memory 23, the image processing processor 24 realizes the sub-pixel generation means 12 and the zero-cross detection means 14 according to the flowchart shown in FIG.

まず、第3図に示すように画像処理プロセッサ24は前
記領域りの全画素を読み出す(切り出す)(ステップ4
1)。次に画像処理プロセッサ24は読み出した各画素
間の1!!講補間(サブピクセル生成)を行なう(第3
図中、ステップ42)。この画素間階調補間は第4図に
示す如く、画像処理メモリ23から読み出された領域り
の各画素のうち、任意の相隣る4つの画素を黒丸P1〜
P4で示シ、マt:−ソレラf)画M階mla’E:P
+ = f ’  (i 。
First, as shown in FIG. 3, the image processing processor 24 reads out (cuts out) all pixels in the area (step 4).
1). Next, the image processing processor 24 uses 1! between each read pixel! ! Performs interpolation (sub-pixel generation) (third
In the figure, step 42). As shown in FIG. 4, this inter-pixel gradation interpolation is performed by selecting any four adjacent pixels from the black circle P1 to
Shown in P4, mat: - solera f) picture M floor mla'E:P
+ = f' (i.

j>、P2 =f’  (i+l、j)、P3 =f’
(i、j+1)、P4 =f’  (i+1.j+1)
とすると、白丸SPで示す位置に次式 %式%) で表わされるf (x、y)の階調値をもつサブピクセ
ルを生成する方法である。ただし、上式中αはPlから
の水平方向の距離、βはPlからの垂直方向の距離を示
す。
j>, P2 = f' (i+l, j), P3 = f'
(i, j+1), P4 = f' (i+1.j+1)
Then, this is a method of generating a sub-pixel having a gradation value of f (x, y) expressed by the following formula (%) at the position indicated by a white circle SP. However, in the above formula, α represents the horizontal distance from Pl, and β represents the vertical distance from Pl.

この画素間階調補間によって、上記の4画素P1〜P4
間には第4図に白丸で示す各位置に上記と同様にしてサ
ブピクセルが生成される。これにより、上記の画素間階
調補間前のボンディングボール5の画像が第5図(A>
に示す如く斜めの画像部分のギザギザが大であったのに
対し、上記の画素間M講補間を行なうことにより、ボン
ディングボール5の画像は同図(B)に示す如く斜めの
画像部分のギザギザが大幅に小さくなり、ディジタル化
に伴う量子化誤差が大幅に軽減された画像が得られる。
By this inter-pixel gradation interpolation, the above four pixels P1 to P4
In between, sub-pixels are generated in the same manner as above at each position indicated by white circles in FIG. As a result, the image of the bonding ball 5 before the above interpixel gradation interpolation is changed to FIG. 5 (A>
As shown in Figure (B), the jaggedness in the diagonal image part was large, but by performing the above interpixel interpolation, the image of the bonding ball 5 has a large jaggedness in the diagonal image part as shown in Figure (B). is significantly reduced, and an image with significantly reduced quantization errors caused by digitization can be obtained.

このようにして生成されたサブピクセルは、画像処理メ
モリ23の前記検査領域りにおける原画素の記憶領域と
は別の領域に記憶される。
The sub-pixels generated in this manner are stored in an area of the image processing memory 23 that is different from the original pixel storage area in the inspection area.

次に、画像処理プロセッサ24は画像処理メモリ23か
ら上記検査領域り内の各画素及びサブピクセルを読み出
してそれらに対して2次微分処理を施しく第3図中、ス
テップ43)、その後にその2次微分結果のゼロクロス
を検出する(同、ステップ44)。すなわち、このステ
ップ43及び44の各処理は前記ゼロクロス検出手段1
4を実現する処理である。
Next, the image processing processor 24 reads out each pixel and sub-pixel within the inspection area from the image processing memory 23 and performs quadratic differential processing on them (step 43 in FIG. 3). A zero cross of the second-order differential result is detected (step 44 in the same example). That is, each process of steps 43 and 44 is performed by the zero cross detection means 1.
This is the process for realizing 4.

ここで、上記ステップ43で画111!lメモリ23か
ら読み出される画像及びサブピクセルによる検査領vt
Dの画像が第6図(A)に示す如く、パッド3.ワイヤ
4及びボンディングボール5の形状を表わす画像である
ものとすると、同図(A)に実線aで示す部分の画素位
置とその画素IM調値との関係は同図(B)に示す如く
になり、ボンディングボール5の輪郭で濃度勾配を示す
Here, in step 43 above, the image 111! l Inspection area vt by image and sub-pixels read out from memory 23
As the image of D is shown in FIG. 6(A), pad 3. Assuming that the image represents the shapes of the wire 4 and the bonding ball 5, the relationship between the pixel position of the part indicated by the solid line a in FIG. 10A and its pixel IM tone value is as shown in FIG. The outline of the bonding ball 5 shows a density gradient.

この画像の画素g!1ill値をf (x、y)と表わ
すものとすると、上記ステップ43でこの画像に対して
2次微分を施すと、その2次微分結果D (X。
Pixel g of this image! 1ill value is expressed as f (x, y), and when second-order differentiation is applied to this image in step 43 above, the second-order differentiation result D (X.

y)は D(x、y)=2*f (x、y) で表わされ、第6図(C)に示す如くになる。y) is D(x,y)=2*f(x,y) It is expressed as shown in FIG. 6(C).

前記ステップ44のゼロクロス検出は、第6図(C)に
示す中心Oから右方向と左方向の各々について行ない、
最初のピロクロス位I C+及びC2を夫々検出する。
The zero cross detection in step 44 is performed in the right direction and the left direction from the center O shown in FIG. 6(C),
Detect the first pyrocross positions I C+ and C2, respectively.

ここで、中心Oから右方向へのピロクロス検出はD (
x+1.V)>O,D(X−1,y)<Oの両条件を満
足する10 (x。
Here, the detection of pirocros from the center O to the right is D (
x+1. 10 (x.

y)をもつ画素を抽出することで行ない、中心0から左
方向へのゼロクロス検出はD (X−1,1>O,D 
(x+1.y)<Oの両条件を満足する値D (x、y
)をもつ画素を抽出することで行なう。
y), and zero cross detection from center 0 to the left is done by extracting pixels with D (X-1,1>O,D
A value D that satisfies both conditions (x+1.y)<O (x,y
) by extracting pixels with

また、上記のステップ43の2次微分処理及びステップ
44のぜロクロス検出処理は、第6図(A)の実線aに
ついての一方向だけでなく、同図(A)に破線で示した
各方向の夫々について同様にして行なう。ただし、検出
方向はワイヤ4にかからないようにされている。ワイヤ
4はボンディングボール5ではないからである。
Furthermore, the second-order differential processing in step 43 and the zero cross detection processing in step 44 are performed not only in one direction with respect to the solid line a in FIG. 6(A), but also in each direction indicated by the broken line in FIG. Do the same for each. However, the detection direction is set so as not to cover the wire 4. This is because the wire 4 is not the bonding ball 5.

次に、画素処理プロセッサ24はこのようにして得られ
た各検出方向の2つのピロクロス検出値の差分からボン
ディングボール5の径を1測する(第3図中、ステップ
45)。この場合、ボンディングボール5の中心を例え
ば階調変換した画像の各画素の鉋をワイヤ4の画像と反
対の方向からサーチして最初に検出した最大値の位置か
ら求め、このボンディングボール5の中心を通る直線上
で上記のステップ43〜45の処理を行なうことにより
、ボンディングボール5の直径を正確に4測することが
できる。
Next, the pixel processing processor 24 measures the diameter of the bonding ball 5 from the difference between the two pillow cross detection values in each detection direction obtained in this manner (step 45 in FIG. 3). In this case, the center of the bonding ball 5 is determined from the position of the maximum value first detected by searching the plane of each pixel of the gradation-converted image from the direction opposite to the image of the wire 4, and By carrying out the above steps 43 to 45 on a straight line passing through , the diameter of the bonding ball 5 can be accurately measured four times.

また、ボンディングボール5の直径を複数の方向につい
て各々計測することにより、ボンディングボール5の形
状の歪みを検査することができる。
Further, by measuring the diameter of the bonding ball 5 in each of a plurality of directions, distortion in the shape of the bonding ball 5 can be inspected.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、検査領域の画素数をサブ
ピクセル分増加させることができるため、量子化誤差を
従来に比べて低減することができ、またサブピクセルを
含む検査領域の全画素に対してラプラシアン(2)をか
けるだけで、ゼロクロス検出により、ボンディングボー
ルの輪郭を正確に検出できるため、2値化illで2値
化した濃淡画像を用いる場合に比しボンディングボール
の寸法計測精度を向上することができ、よって従来に比
しボンディングボールの検査精度を向上することができ
る等の特長を有するものである。
As described above, according to the present invention, the number of pixels in the inspection area can be increased by the amount of sub-pixels, so quantization errors can be reduced compared to the conventional method, and all pixels in the inspection area including sub-pixels can be By simply applying Laplacian (2) to , the contour of the bonding ball can be accurately detected by zero-cross detection, which improves the accuracy of bonding ball dimension measurement compared to the case of using a binarized gray image using binarized ill. This method has the advantage of improving the accuracy of bonding ball inspection compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、 第2図は本発明の一実施例の構成図、 第3図は本発明の一実施例の動作説明用フローチャート
、 第4図は画素1m1lill補間の説明図、第5図は画
素間WA調補間前後の画像例を示す図、第6図はゼロク
ロス検出によるボール径計測説明図、 第7図は従来装置の一例の構成図である。 図において、 2はICチップ、 3はパッド、 4はワイヤ、 5はボンディングボール、 10は1111手段、 11は画像生成手段、 12はサブピクセル生成手段、 13は濃淡階調画像メモリ、 1 4はピロクロス検出手段 を示す。
Fig. 1 is a block diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the invention, Fig. 3 is a flowchart for explaining the operation of an embodiment of the invention, and Fig. 4 is an explanation of 1m1lill pixel interpolation. 5 is a diagram showing an example of images before and after interpixel WA tone interpolation, FIG. 6 is an explanatory diagram of ball diameter measurement by zero-cross detection, and FIG. 7 is a configuration diagram of an example of a conventional device. In the figure, 2 is an IC chip, 3 is a pad, 4 is a wire, 5 is a bonding ball, 10 is an 1111 means, 11 is an image generation means, 12 is a subpixel generation means, 13 is a gray scale image memory, 1 and 4 are The Pirokuros detection means is shown.

Claims (1)

【特許請求の範囲】 パッドにボンディングされたワイヤの先端のボンディン
グボールを撮像する撮像手段(10)と、該撮像手段(
10)の出力映像信号をディジタル処理して画素を生成
する画素生成手段(11)と、 該画素生成手段(11)により生成された画素のうち所
定サイズの検査領域における各画素の画素間を階調補間
してサブピクセルを生成するサブピクセル生成手段(1
2)と、 該検査領域における該画素生成手段(11)により生成
された各画素と、該サブピクセル生成手段(12)によ
り生成された各サブピクセルを夫々記憶する濃淡階調画
像メモリ(13)と、該濃淡階調画像メモリ(13)か
ら読み出した画素及びサブピクセルに対して2次微分を
行ない、その2次微分結果のゼロクロスを検出するゼロ
クロス検出手段(14)と、 を有し、該ゼロクロス検出手段(14)による検出結果
に基づいて前記ボンディングボールの径の寸法計測を行
なうことを特徴とするボンディングボール検査装置。
[Claims] An imaging means (10) for imaging a bonding ball at the tip of a wire bonded to a pad;
pixel generating means (11) for digitally processing the output video signal of step 10) to generate pixels; Sub-pixel generation means (1) that generates sub-pixels by tonal interpolation
2), and a grayscale image memory (13) for storing each pixel generated by the pixel generation means (11) and each subpixel generated by the subpixel generation means (12) in the inspection area, respectively. and zero-cross detection means (14) for performing second-order differentiation on the pixels and sub-pixels read out from the gray scale image memory (13) and detecting zero-crossings of the second-order differentiation results. A bonding ball inspection device characterized in that the dimension of the diameter of the bonding ball is measured based on a detection result by a zero cross detection means (14).
JP1316998A 1989-12-06 1989-12-06 Bonding ball inspection device Expired - Fee Related JP2843389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316998A JP2843389B2 (en) 1989-12-06 1989-12-06 Bonding ball inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316998A JP2843389B2 (en) 1989-12-06 1989-12-06 Bonding ball inspection device

Publications (2)

Publication Number Publication Date
JPH03178145A true JPH03178145A (en) 1991-08-02
JP2843389B2 JP2843389B2 (en) 1999-01-06

Family

ID=18083277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316998A Expired - Fee Related JP2843389B2 (en) 1989-12-06 1989-12-06 Bonding ball inspection device

Country Status (1)

Country Link
JP (1) JP2843389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243656A (en) * 2001-02-14 2002-08-28 Nec Corp Method and equipment for visual inspection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243656A (en) * 2001-02-14 2002-08-28 Nec Corp Method and equipment for visual inspection

Also Published As

Publication number Publication date
JP2843389B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JPS58215541A (en) Automatic optical inspection method
JPH01224881A (en) Pattern inspecting device
JP2003057019A (en) Pattern inspection device and inspection method using the same
JP2005121546A (en) Defect inspection method
JP2710527B2 (en) Inspection equipment for periodic patterns
JPH03178145A (en) Inspecting equipment for bonding ball
JPH04256844A (en) Pattern inspecting method for printed board
JP2843388B2 (en) Wire bonding condition inspection device
JP4220061B2 (en) Periodic pattern defect inspection method and apparatus
JPH0310107A (en) Inspecting method utilizing gradation pattern matching
JPH0319990B2 (en)
JPH0682724B2 (en) Wafer defect inspection system
JPH048833B2 (en)
JP2701872B2 (en) Surface inspection system
JPH0236026B2 (en)
JP2002259971A (en) Method for detecting uneven image density and inspection device therefor
JP3785693B2 (en) Image processing inspection equipment
JPH01269035A (en) Instrument for inspecting printed circuit board
JP2513528Y2 (en) Gray image processor
JPH07107711A (en) Detection of displacement of core coil
JPH01161137A (en) Recognizing device
JPH01319872A (en) Distortion measuring method and device by lattice picture
JPH0727569B2 (en) Defect inspection method by visual inspection
JPH04254745A (en) Inspecting device of quality
JPS61150080A (en) Method for detecting defect

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees