JPH0317786B2 - - Google Patents

Info

Publication number
JPH0317786B2
JPH0317786B2 JP58216124A JP21612483A JPH0317786B2 JP H0317786 B2 JPH0317786 B2 JP H0317786B2 JP 58216124 A JP58216124 A JP 58216124A JP 21612483 A JP21612483 A JP 21612483A JP H0317786 B2 JPH0317786 B2 JP H0317786B2
Authority
JP
Japan
Prior art keywords
silicon carbide
boron
weight
carbon
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58216124A
Other languages
Japanese (ja)
Other versions
JPS60112669A (en
Inventor
Mikio Sakai
Keizo Otani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58216124A priority Critical patent/JPS60112669A/en
Publication of JPS60112669A publication Critical patent/JPS60112669A/en
Publication of JPH0317786B2 publication Critical patent/JPH0317786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、近年注目されているフアイセラミ
ツクスの代表的なものの一つである炭化珪素質焼
結体の製造を無加圧で行うことができる常圧焼結
炭化珪素質焼結体の製造方法に関するものであ
る。 (従来技術) 従来、炭化珪素質焼結体の製造方法としては、
反応焼結法、ホツトプレス法、常圧焼結法等があ
る。これらのうち、反応焼結法では珪素(Si)が
過剰になりやすく、ホツトプレス法では複雑形状
のものが製造しがたいという欠点を有しているの
に対し、常圧焼結法では無加圧で焼結できるため
複雑形状のものも製造でき、過剰珪素の問題もな
いという利点を有している。このような利点を有
する従来の常圧焼結炭化珪素質焼結体の製造方法
としては、炭化珪素粉末に硼素および炭素もしく
はこれらの化合物を添加した混合粉末を圧粉成形
し、得られた圧粉成形体を不活性雰囲気中とくに
1気圧のアルゴン雰囲気中で1900〜2300℃に加熱
して焼結する方法があつた(例えば、特開昭50−
78609号、特開昭56−92167号公報参照)。 この製造方法において、炭素は炭化珪素粉末の
表面に形成されたSiO2被膜を還元作用により除
去し、炭化珪素粉末の表面エネルギーを向上させ
て粒子間の原子拡散を増長させる作用を有し、一
方、硼素は焼結過程の初期において炭化珪素粉末
の表面に拡散し、炭化珪素粉末の表面エネルギー
を低下させて炭化珪素の蒸発・凝縮および表面拡
散を抑制し、物質移動すなわち炭化珪素の緻密化
を増長させる作用を有しており、焼結過程の後期
において硼素および炭素とも炭化珪素中に固溶し
て焼結をさらに進行させる作用を有しているもの
と考えられている。 しかしながら、このような従来の常圧焼結炭化
珪素質焼結体の製造方法にあつては、高密度、と
くに理論密度の95%以上の緻密な焼結体を得るに
は、硼素を炭化珪素中への固溶限(約0.2重量%
といわれている)以上に添加しなければならない
ため、焼結過程において硼素が粒界に偏在し、結
晶粒の成長を促進したり(β炭化珪素は0.3μmか
ら20μm程度に成長する)、さらには炭化珪素のβ
→α変態を起こし、異常な粗大結晶(200〜
400μm程度)を生じさせ、このため焼結体の強度
を著しく低下させるという問題があつた。 (発明の目的) この発明は、このような従来の問題点に着目し
てなされたもので、硼素を炭化珪素中への固溶限
である約0.2重量%以上添加したときでも結晶粒
の成長を抑制し、炭化珪素の粗大結晶が生成され
るのを防止して、理論密度比が85%以上の緻密で
あつてしかも結晶粒が著しく微細であり、従来の
炭化珪素質焼結体よりもさらに強度の優れた炭化
珪素質焼結体を得ることができる炭化珪素質焼結
体の製造方法を提供することを目的としている。 (発明の構成) この発明による炭化珪素質焼結体の製造方法
は、平均粒径0.2μm以下でかつβ相を90重量%以
上含有する炭化珪素粉末と、該炭化珪素粉末に対
して0.4〜2.0重量%の元素状硼素および/または
該重量%に相当する硼素含有化合物と、1.01〜
1.49重量%の元素状炭素および/または該重量%
に相当する炭素含有化合物と、0.1〜1.0重量%の
窒化チタンとを混合したのち成形し、必要に応じ
て、前記硼素含有化合物または炭素含有化合物か
ら元素状の硼素または炭素を生成させたのち、真
空、窒素雰囲気、不活性雰囲気等の非酸化性雰囲
気中において例えば大気圧もしくは大気圧以上の
圧力で、前記成形体を1900〜2200℃の温度に加熱
し、密度が理論値の85%以上の焼結体を得るよう
にしたことを特徴としている。 この発明において使用される炭化珪素粉末は、
平均粒径が0.2μm以下でかつβ相を90重量%以上
含有するものである。ここで、炭化珪素粉末は
100%β−SiCであることがより望ましいが、α
−SiC,SiO2その他遊離Si,Fe,Al,Ca,Mg等
を含んでいても、β−SiCが90重量%以上であれ
ば問題はない。また、炭化珪素粉末の粒径が大き
すぎると焼結しにくくなり、高密度化が困難とな
るので、平均粒径0.2μm以下のものを使用するの
がよい。 また、硼素および炭素の添加量は、前記炭化珪
素粉末に対して、硼素を0.4〜2.0重量%、炭素を
1.01〜1.49重量%とするのが良い。この理由は、
硼素量が少なすぎると焼結時に炭化珪素の蒸発・
凝集および表面拡散を抑制して炭化珪素の緻密化
を増長させるという硼素の効果が十分に得られ
ず、炭素量が少なすぎると炭化珪素粉末の表面に
形成されたSiO2被膜を還元作用により除去して
粒子間の原子拡散を増長させるという炭素の効果
が十分に得られなくなり、その結果、焼結体の高
密度化が達成されなくなるためであり、また、反
対に硼素および炭素量が多すぎる場合にも同様に
焼結体の高密度化が達成されなくなるためであ
る。 この場合、硼素はその一部または全体を硼素含
有化合物として前記硼素添加量に相当する量の範
囲内で添加することも可能であり、また炭素はそ
の一部または全体を炭素含有化合物として前記炭
素添加量に相当する量の範囲内で添加することも
可能である。 さらに、この発明においては、前記硼素および
炭素の添加に加えて、窒化チタンを0.1〜1.0重量
%の範囲で添加する。この窒化チタンは、炭化珪
素の緻密化を促進する作用を有していると共に、
余剰の硼素を化合物として吸収することにより硼
素が粒界に偏在するのを防ぎ、結晶粒の成長を抑
制する作用を有するものであり、これによつて炭
化珪素質焼結体の強度を著しく高める効果を有し
ている。そして、このような効果を得るために
は、0.1〜1.0重量%の範囲とするのが良いことが
種々の実験からわかつた。 かくして、炭化珪素粉末と、硼素または硼素含
有化合物または硼素と硼素含有化合物と、炭素ま
たは炭素含有化合物または炭素と炭素含有化合物
と、窒化チタンとを混合することにより均質化
し、次いで所定形状に成形する。次に、前記硼素
あるいは炭素源として硼素含有化合物あるいは炭
素含有化合物を用いた場合には、前記成形体中の
硼素含有化合物あるいは炭素含有化合物から元素
状の硼素あるいは炭素を生成させたのち、前記炭
化珪素、硼素、炭素および窒化チタンに対して非
酸化性雰囲気中において1900〜2200℃の温度に加
熱して焼結させる。このとき使用する非酸化性雰
囲気としては、真空、窒素雰囲気、不活性雰囲気
などがある。そして、この焼結後には密度が理論
値の85%以上の高密度焼結体が得られる。 (作用) 例えば、炭化珪素粉末と、硼素粉末と、炭素粉
末と、窒化チタン粉末とを混合した後に、ボール
ミル等によつて均一に混合することにより、炭化
珪素粉末の表面には炭素粉末が均一に被覆された
状態となつている。また、炭素源として例えば液
状のフエノール樹脂を用いた場合には、フエノー
ル樹脂はボールミルによつて炭化珪素粉末間に均
一に混合され、その後の炭化処理によつて炭化珪
素粉末の表面に炭素が均一に被覆された状態にな
つている。この遊離炭素は1000〜1650℃において
炭化珪素粉末の酸化被膜SiO2を還元作用により
除去し(SiO2+3C→SiC+2CO)、炭化珪素粒子
の表面エネルギーを高める。 一方、硼素は焼結の初期段階において前記のご
とく活性化した炭化珪素粒子の表面に拡散し、炭
化珪素粒子の表面エネルギーを低下させ、炭化珪
素粒子の合体を抑制する。すなわち、炭化珪素粒
子における原子の表面拡散、蒸発・凝縮を減少さ
せて炭化珪素粒子の合体・粗大化を抑制し、炭化
珪素粒子における体積拡散、粒界拡散を助長させ
て炭化珪素粒子の緻密化を促進する。 この場合、窒化チタンも表面が揮発し(1550℃
にて10-4mmHg)、炭化珪素粒子表面に拡散して、
炭化珪素粒子表面における原子の表面拡散、蒸
発・凝縮を抑制する。 さらに、窒化チタンが炭化珪素粒子の表面に拡
散することによつて、炭化珪素の結晶粒子表面に
は多数の格子欠陥が惹起され、焼結過程の後期に
おいて、これら格子欠陥を媒介として各種原子が
拡散するための下地を生成する。 以上のようにして、硼素と窒化チタンは炭化珪
素粒子内の体積拡散を助長させて緻密化を進行さ
せるが、硼素、還元作用後に余つた炭素、および
窒化チタンより分解して生成したチタン、窒素は
それぞれ焼結過程の後期において炭化珪素粒子中
に固溶するが、固溶しきれない硼素は粒界におい
てチタンと化合物TiB2(融点2900℃)、TiB(融点
2550℃)、Ti2B(融点2200℃)を形成し、これら
の化合物は硼素単体よりも著しく炭化珪素の粒界
を強固にする。 また、窒素は炭化珪素結晶粒子の成長およびβ
相からα相への変態を抑制する効果が著しいた
め、焼結体の結晶粒径は1〜2μmと非常に小さ
く、また異常に成長した粗大粒が生ずることは全
くない。 このように、窒化チタンはある存在量の条件下
で炭化珪素の体積拡散を誘起させ、焼結を助長さ
せるのみならず、硼素とチタンからなる化合物を
粒界に生成して粒界を強固にさせ、さらに焼結体
の結晶を微細にして焼結体の強度を著しく向上さ
せる効果を有し、高密度でかつ高強度の炭化珪素
質焼結体が得られる。 (実施例 1) 次にこの発明の実施例を比較例と共に説明す
る。 炭化珪素粉末(ベータランダム・ウルトラフア
イン、平均粒径0.3μm、β相ほぼ100重量%;イ
ビデン(株)製)100gと、硼素粉末(アモルフアス、
平均粒径0.3μm;(株)セラツク製)0.3〜2.5gと、
フエノール樹脂(PR50404、炭素収率27重量%;
住友ベークライト(株)製)3.0〜6.0gと、窒化チタ
ン粉末(−325mesh;(株)セラツク製)0.1〜1.2g
とを混合し、溶媒としてアセトン200c.c.を用いて
25時間ボールミル混合した。 次いで、ボールミル混合により得られたスラリ
ーを真空中で加熱・乾燥してアセトンを除去した
後、得られた混合粉末をメノー乳鉢内で解砕し、
標準篩によつて105μm以下の粒子に整粒した。続
いて、整粒した粒子を金型内に入れて圧力500Kg
f/cm2で圧粉成形し、さらに冷間静水圧装置を用
いて圧力2000Kgf/cm2で再圧粉して13×6×32mm
の圧粉成形体を成形した。 次に、このようにして成形した圧粉成形体を真
空炉内に装入して加熱し、フエノール樹脂を炭素
に変換した。このとき、真空度10-3mmHgの真空
中において前記圧粉成形体を100℃/hrの加熱速
度で900℃まで加熱し、900℃で1時間保持した炭
化処理において炭素収率は27重量%であつた。 次いで、炭化処理した後の成形体を真空度10-3
mmHg以下の真空中において2100℃に30分間加熱
保持する焼成を行つて前記成形体を焼結させた。
このときの焼結における加熱昇温は、1500℃→
1650℃;20分間、1650℃にて30分間保持、
1650℃→2100℃;3時間である。 次に、このようにして得た炭化珪素質焼結体の
表面を#600ダイヤモンド砥石で研磨した後、さ
らに粒径1μmのダイヤモンドペーストを用いて仕
上げ研磨した。 このようにして得た炭化珪素質焼結体(8×4
×27mm)の密度と抗折強度を調べたところ、第1
表に示す結果となつた。
(Industrial Application Field) This invention is a pressureless sintered silicon carbide material that can produce silicon carbide sintered bodies without pressure, which is one of the representative ceramics that have been attracting attention in recent years. The present invention relates to a method for producing a quality sintered body. (Prior art) Conventionally, as a method for manufacturing a silicon carbide sintered body,
There are reaction sintering methods, hot press methods, pressureless sintering methods, etc. Of these, the reactive sintering method tends to contain excess silicon (Si), and the hot pressing method has the drawbacks of making it difficult to manufacture products with complex shapes, whereas the pressureless sintering method has the disadvantages of being difficult to manufacture products with complex shapes. Since it can be sintered under pressure, it has the advantage of being able to manufacture products with complex shapes and eliminating the problem of excess silicon. A conventional method for producing a pressureless sintered silicon carbide sintered body having such advantages is to compact a mixed powder obtained by adding boron and carbon or a compound thereof to silicon carbide powder, and to press the obtained compact. There was a method of heating and sintering a powder compact at 1900 to 2300°C in an inert atmosphere, especially an argon atmosphere at 1 atm (for example, Japanese Patent Application Laid-open No.
78609, JP-A-56-92167). In this manufacturing method, carbon has the effect of removing the SiO 2 film formed on the surface of the silicon carbide powder through a reducing action, improving the surface energy of the silicon carbide powder, and increasing atomic diffusion between particles. , boron diffuses onto the surface of silicon carbide powder at the beginning of the sintering process, lowers the surface energy of silicon carbide powder, suppresses evaporation, condensation, and surface diffusion of silicon carbide, and promotes mass transfer, that is, densification of silicon carbide. It is thought that boron and carbon have the effect of solid-dissolving in silicon carbide in the latter stage of the sintering process and have the effect of further promoting sintering. However, in the conventional pressureless sintering method for producing a silicon carbide sintered body, in order to obtain a dense sintered body with high density, especially 95% or more of the theoretical density, it is necessary to replace boron with silicon carbide. Solid solubility limit (approximately 0.2% by weight)
Because boron must be added in amounts greater than is β of silicon carbide
→ α transformation occurs and abnormal coarse crystals (200~
400 μm), which caused a problem in that the strength of the sintered body was significantly reduced. (Purpose of the Invention) The present invention was made by focusing on such conventional problems, and even when boron is added in silicon carbide at a solid solubility limit of approximately 0.2% by weight or more, crystal grain growth does not occur. It is dense with a theoretical density ratio of 85% or more, and the crystal grains are significantly finer than conventional silicon carbide sintered bodies. Furthermore, it is an object of the present invention to provide a method for manufacturing a silicon carbide sintered body that can obtain a silicon carbide sintered body with excellent strength. (Structure of the Invention) A method for producing a silicon carbide sintered body according to the present invention includes silicon carbide powder having an average particle size of 0.2 μm or less and containing a β phase of 90% by weight or more, 2.0% by weight of elemental boron and/or a boron-containing compound corresponding to said weight%;
1.49 wt% elemental carbon and/or the wt%
A carbon-containing compound corresponding to 0.1 to 1.0% by weight of titanium nitride is mixed and then molded, and if necessary, after generating elemental boron or carbon from the boron-containing compound or carbon-containing compound, The molded body is heated to a temperature of 1,900 to 2,200°C in a non-oxidizing atmosphere such as a vacuum, a nitrogen atmosphere, an inert atmosphere, etc. at atmospheric pressure or a pressure higher than atmospheric pressure, so that the density becomes 85% or more of the theoretical value. The feature is that a sintered body is obtained. The silicon carbide powder used in this invention is
It has an average particle size of 0.2 μm or less and contains 90% by weight or more of β phase. Here, silicon carbide powder is
100% β-SiC is more desirable, but α
-SiC, SiO 2 Even if it contains other free Si, Fe, Al, Ca, Mg, etc., there is no problem as long as β-SiC is 90% by weight or more. Furthermore, if the particle size of the silicon carbide powder is too large, it becomes difficult to sinter and increase the density, so it is preferable to use a silicon carbide powder with an average particle size of 0.2 μm or less. In addition, the amounts of boron and carbon added are 0.4 to 2.0% by weight of boron and 0.4 to 2.0% by weight of carbon, based on the silicon carbide powder.
The content is preferably 1.01 to 1.49% by weight. The reason for this is
If the amount of boron is too small, silicon carbide will evaporate during sintering.
If the effect of boron, which increases the densification of silicon carbide by suppressing agglomeration and surface diffusion, is insufficient and the amount of carbon is too low, the SiO 2 film formed on the surface of the silicon carbide powder will be removed by reducing action. This is because carbon's effect of increasing atomic diffusion between particles cannot be obtained sufficiently, and as a result, high density of the sintered body cannot be achieved. This is because, in this case, the sintered body cannot achieve high density. In this case, boron can be partially or entirely added as a boron-containing compound in an amount corresponding to the amount of boron added, and carbon can be partially or entirely added as a carbon-containing compound. It is also possible to add within the range of the amount corresponding to the amount added. Furthermore, in this invention, in addition to the addition of boron and carbon, titanium nitride is added in a range of 0.1 to 1.0% by weight. This titanium nitride has the effect of promoting densification of silicon carbide, and
By absorbing excess boron as a compound, it prevents boron from being unevenly distributed at grain boundaries and has the effect of suppressing the growth of crystal grains, thereby significantly increasing the strength of silicon carbide sintered bodies. It has an effect. It has been found from various experiments that in order to obtain such effects, it is preferable to set the content in the range of 0.1 to 1.0% by weight. Thus, silicon carbide powder, boron or a boron-containing compound, or boron and a boron-containing compound, carbon or a carbon-containing compound, or carbon and a carbon-containing compound, and titanium nitride are mixed and homogenized, and then formed into a predetermined shape. . Next, when a boron-containing compound or a carbon-containing compound is used as the boron or carbon source, elemental boron or carbon is generated from the boron-containing compound or carbon-containing compound in the compact, and then the carbonization is performed. Silicon, boron, carbon and titanium nitride are sintered by heating to a temperature of 1900-2200°C in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere used at this time include vacuum, nitrogen atmosphere, and inert atmosphere. After this sintering, a high-density sintered body with a density of 85% or more of the theoretical value is obtained. (Function) For example, by mixing silicon carbide powder, boron powder, carbon powder, and titanium nitride powder, and then uniformly mixing them using a ball mill or the like, the carbon powder can be uniformly distributed on the surface of the silicon carbide powder. It is covered with. Furthermore, when a liquid phenolic resin is used as a carbon source, the phenolic resin is uniformly mixed between the silicon carbide powder using a ball mill, and carbon is uniformly distributed on the surface of the silicon carbide powder through the subsequent carbonization process. It is covered with. This free carbon removes the oxide film SiO 2 of the silicon carbide powder by a reducing action at 1000 to 1650°C (SiO 2 +3C→SiC+2CO) and increases the surface energy of the silicon carbide particles. On the other hand, boron diffuses onto the surface of the silicon carbide particles activated as described above in the initial stage of sintering, lowers the surface energy of the silicon carbide particles, and suppresses coalescence of the silicon carbide particles. In other words, surface diffusion, evaporation, and condensation of atoms in silicon carbide particles are reduced to suppress coalescence and coarsening of silicon carbide particles, and volumetric diffusion and grain boundary diffusion in silicon carbide particles are promoted to make the silicon carbide particles densified. promote. In this case, the surface of titanium nitride also volatilizes (1550℃
10 -4 mmHg), diffuses onto the surface of silicon carbide particles,
Suppresses surface diffusion, evaporation, and condensation of atoms on the surface of silicon carbide particles. Furthermore, as titanium nitride diffuses onto the surface of silicon carbide particles, many lattice defects are induced on the surface of silicon carbide crystal particles, and in the latter stage of the sintering process, various atoms are generated through these lattice defects. Generates a base for diffusion. As described above, boron and titanium nitride promote volumetric diffusion within silicon carbide particles and promote densification. In the latter stage of the sintering process, each of the boron becomes a solid solution in the silicon carbide particles, but the boron that is not completely dissolved is combined with titanium and the compounds TiB 2 (melting point 2900℃) and TiB (melting point
2550℃) and Ti 2 B (melting point 2200℃), and these compounds significantly strengthen the grain boundaries of silicon carbide than boron alone. In addition, nitrogen is responsible for the growth of silicon carbide crystal particles and β
Since the effect of suppressing the transformation from phase to α phase is remarkable, the crystal grain size of the sintered body is very small, 1 to 2 μm, and no abnormally grown coarse grains are produced. In this way, titanium nitride not only induces volumetric diffusion of silicon carbide under certain abundance conditions and promotes sintering, but also forms compounds consisting of boron and titanium at the grain boundaries to strengthen the grain boundaries. Furthermore, it has the effect of making the crystals of the sintered body finer and significantly improving the strength of the sintered body, and a high-density and high-strength silicon carbide sintered body can be obtained. (Example 1) Next, an example of the present invention will be described together with a comparative example. 100 g of silicon carbide powder (Beta Random Ultra Fine, average particle size 0.3 μm, β phase approximately 100% by weight; manufactured by IBIDEN Co., Ltd.) and boron powder (Amorphous,
Average particle size: 0.3 μm; manufactured by Seratsuku Co., Ltd.) 0.3 to 2.5 g,
Phenol resin (PR50404, carbon yield 27% by weight;
3.0 to 6.0 g (manufactured by Sumitomo Bakelite Co., Ltd.) and 0.1 to 1.2 g of titanium nitride powder (-325mesh; manufactured by Cerac Co., Ltd.)
and using acetone 200c.c. as the solvent.
Mixed in a ball mill for 25 hours. Next, the slurry obtained by ball mill mixing was heated and dried in a vacuum to remove acetone, and the obtained mixed powder was crushed in an agate mortar.
The particles were sized to particles of 105 μm or less using a standard sieve. Next, put the sized particles into the mold and apply a pressure of 500 kg.
The powder was compacted at f/cm 2 and then re-compacted using a cold isostatic pressure device at a pressure of 2000Kgf/cm 2 to form 13 x 6 x 32 mm.
A powder compact was molded. Next, the powder compact formed in this manner was placed in a vacuum furnace and heated to convert the phenolic resin into carbon. At this time, in a carbonization treatment in which the compact was heated to 900°C at a heating rate of 100°C/hr in a vacuum with a degree of vacuum of 10 -3 mmHg and held at 900°C for 1 hour, the carbon yield was 27% by weight. It was hot. Next, the molded body after carbonization treatment is placed in a vacuum degree of 10 -3
The molded body was sintered by heating and holding at 2100° C. for 30 minutes in a vacuum of mmHg or less.
The heating temperature during sintering at this time is 1500℃→
1650℃ for 20 minutes, held at 1650℃ for 30 minutes,
1650℃→2100℃; 3 hours. Next, the surface of the silicon carbide sintered body thus obtained was polished with a #600 diamond grindstone, and then finished polished using a diamond paste with a particle size of 1 μm. The silicon carbide sintered body thus obtained (8×4
When examining the density and bending strength of
The results are shown in the table.

【表】【table】

【表】 第1表に示すように、炭化珪素粉末に添加する
硼素量、炭素量、窒化チタン量がこの発明の範囲
を外れる場合にはいずれも密度比が85%よりも低
いことが確かめられた。これに対して、この発明
の範囲を満足する場合にはいずれも密度比が85%
以上の高密度であり、強度も高い値を示すことが
確認できた。また、この発明例によつて得た焼結
体の結晶粒径は1〜2μmと非常に小さかつたのに
対して、窒化チタンを含まない焼結体の場合には
10〜20μmと窒化チタンを含む場合よりもかなり
大きかつた。さらに、この発明例によつて得た焼
結体では異常に成長した粗大粒が全く観察されな
かつたのに対して、窒化チタンを含まない焼結体
の場合には粒径200μmに達する粗大粒子がしばし
ば観察され、この粗大粒子が破壊の起点となつて
いる場合が多いことが明らかとなつた。 (実施例 2) 次に、この発明の他の実施例を比較例と共に説
明する。 炭化珪素粉末(ベータランダム・ウルトラフア
イン、平均粒径0.3μm、β相ほぼ100重量%;イ
ビデン(株)製)100gに、炭化硼素粉末(シユタル
ク製;−325meshの原料を100時間ボールミルし
たもの)1.0gと、フラン樹脂(V−901、炭素収
率48重量%;日立化成(株)製)2.5gと、窒化チタ
ン粉末(−325mesh;(株)セラツク製)0.4gとを
添加し、溶媒としてベンゼン250c.c.を用いて25時
間ボールミル混合した。 次いで、このようにして得られたスラリーを液
体窒素中に噴射して粒径1〜3mmの凍結粒を形成
した。続いて、前記凍結された粒子を真空容器内
に入れ、真空度5〜10mmHg、温度25℃に保持し
てベンゼンを昇華・乾燥することにより粉末を得
た後、得られた粉末を105μmの標準篩を用いて整
粒した。その後、実施例1の場合と同様にして混
合粉末を圧粉成形および炭化処理し試験片を作製
した。次いで、得られた試験片を真空中(10-3mm
Hg以下)、もしくはアルゴンガス雰囲気1気圧中
において2100℃で30分間加熱保持して焼成を行う
ことにより炭化珪素質焼結体を得た。そして、得
られた焼結体試験片を実施例1と同じ要領で研磨
加工し、密度比と抗折強度を調べたところ、第2
表に示す結果となつた。 また、比較のために、上記と同じ炭化珪素粉末
100gに、上記と同じ炭化硼素粉末1.0gと、フラ
ン樹脂2.5gとを添加して混合し、続いて前記と
同じ要領で得た試験片についても同様に密度比お
よび抗折強度を調べた。この結果を同じく第2表
に示す。
[Table] As shown in Table 1, it was confirmed that the density ratio was lower than 85% when the amount of boron, carbon, and titanium nitride added to the silicon carbide powder were outside the scope of this invention. Ta. On the other hand, in all cases where the scope of this invention is satisfied, the density ratio is 85%.
It was confirmed that the material had a high density and a high value of strength. Furthermore, the crystal grain size of the sintered body obtained by this invention example was very small, 1 to 2 μm, whereas in the case of the sintered body that did not contain titanium nitride,
It was 10 to 20 μm, which was considerably larger than the case containing titanium nitride. Furthermore, in the sintered body obtained according to this invention, no abnormally grown coarse grains were observed, whereas in the case of the sintered body that did not contain titanium nitride, coarse particles with a grain size of 200 μm were observed. were often observed, and it became clear that these coarse particles were often the starting point of fracture. (Example 2) Next, another example of the present invention will be described together with a comparative example. 100 g of silicon carbide powder (Beta Random Ultra Fine, average particle size 0.3 μm, almost 100% by weight of β phase; manufactured by IBIDEN Co., Ltd.) and boron carbide powder (manufactured by Syuutark; −325 mesh) were ball milled for 100 hours. ), 2.5 g of furan resin (V-901, carbon yield 48% by weight; manufactured by Hitachi Chemical Co., Ltd.), and 0.4 g of titanium nitride powder (-325 mesh; manufactured by Serac Co., Ltd.) were added, Ball mill mixing was performed for 25 hours using 250 c.c. of benzene as a solvent. The slurry thus obtained was then injected into liquid nitrogen to form frozen particles with a particle size of 1 to 3 mm. Subsequently, the frozen particles are placed in a vacuum container, the degree of vacuum is maintained at 5 to 10 mmHg, and the temperature is maintained at 25°C to sublimate and dry the benzene to obtain a powder. The particles were sized using a sieve. Thereafter, the mixed powder was compacted and carbonized in the same manner as in Example 1 to prepare a test piece. Then, the obtained specimen was placed in vacuum (10 -3 mm
Hg or less) or by heating and holding at 2100° C. for 30 minutes in an argon gas atmosphere of 1 atm to obtain a silicon carbide sintered body. Then, the obtained sintered compact test piece was polished in the same manner as in Example 1, and the density ratio and bending strength were examined.
The results are shown in the table. Also, for comparison, the same silicon carbide powder as above
To 100 g, 1.0 g of the same boron carbide powder as above and 2.5 g of furan resin were added and mixed, and then the density ratio and bending strength of test pieces obtained in the same manner as above were examined in the same manner. The results are also shown in Table 2.

【表】 第2表に示すように、窒化チタンを添加した場
合には密度比および強度ともに優れた焼結体が得
られるのに対して、窒化チタンを添加しない場合
には抗折強度が低い結果となつた。 なお、この実施例で採用した凍結乾燥法は、炭
化珪素粉末中に各種焼結助剤を極めて均一に分散
させることができるので、著しく焼結性の優れた
混合粉末を得ることが可能であるという利点を有
している。 (発明の効果) 以上説明してきたように、この発明の炭化珪素
質焼結体の製造方法によれば、平均粒径0.2μm以
下でかつβ相を90重量%以上含有する炭化珪素粉
末と、該炭化珪素粉末に対して0.4〜2.0重量%の
元素状硼素または該重量%に相当する硼素含有化
合物と、1.01〜1.49重量%の元素状炭素または該
重量%に相当する炭素含有化合物と、0.1〜1.0重
量%の窒化チタンとを混合したのち成形し、非酸
化性雰囲気中において前記成形体を1900〜2200℃
の温度に加熱し、密度が理論値の85%以上の焼結
体を得るようにしたから、硼素を炭化珪素中への
固溶限である約0.2重量%以上添加したときでも
結晶粒の成長を抑制し、炭化珪素の粗大結晶が生
成されるのを防止して、理論密度比が85%以上の
高密度・緻密なものであつて、しかも結晶粒が著
しく微細であり、従来の炭化珪素質焼結体よりも
さらに強度の優れた炭化珪素質焼結体を得ること
ができるという著大なる効果を有している。
[Table] As shown in Table 2, when titanium nitride is added, a sintered body with excellent density ratio and strength is obtained, whereas when titanium nitride is not added, the bending strength is low. That was the result. Note that the freeze-drying method adopted in this example allows various sintering aids to be dispersed extremely uniformly in the silicon carbide powder, making it possible to obtain a mixed powder with extremely excellent sinterability. It has the advantage of (Effects of the Invention) As explained above, according to the method for producing a silicon carbide sintered body of the present invention, silicon carbide powder having an average particle size of 0.2 μm or less and containing 90% by weight or more of β phase; 0.4 to 2.0% by weight of elemental boron or a boron-containing compound corresponding to this weight%, 1.01 to 1.49% by weight of elemental carbon or a carbon-containing compound corresponding to this weight%, and 0.1% by weight of the silicon carbide powder. ~1.0% by weight of titanium nitride is mixed and molded, and the molded body is heated at 1900~2200°C in a non-oxidizing atmosphere.
Since the sintered body was heated to a temperature of It is highly dense and dense with a theoretical density ratio of 85% or more, and its crystal grains are extremely fine, making it different from conventional silicon carbide. This has the remarkable effect that it is possible to obtain a silicon carbide sintered body that is even stronger in strength than a silicon carbide sintered body.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径0.2μm以下でかつβ相を90重量%以
上含有する炭化珪素粉末と、該炭化珪素粉末に対
して0.4〜2.0重量%の元素状硼素または該重量%
に相当する硼素含有化合物と、1.01〜1.49重量%
の元素状炭素または該重量%に相当する炭素含有
化合物と、0.1〜1.0重量%の窒化チタンとを混合
したのち成形し、非酸化性雰囲気中において前記
成形体を1900〜2200℃の温度に加熱し、密度が理
論値の85%以上の焼結体を得ることを特徴とする
炭化珪素質焼結体の製造方法。
1 Silicon carbide powder with an average particle size of 0.2 μm or less and containing 90% by weight or more of β phase, and 0.4 to 2.0% by weight of elemental boron or the weight% of the silicon carbide powder.
boron-containing compounds equivalent to 1.01-1.49% by weight
of elemental carbon or a carbon-containing compound corresponding to this weight % and 0.1 to 1.0 weight % of titanium nitride are mixed and then molded, and the molded body is heated to a temperature of 1900 to 2200°C in a non-oxidizing atmosphere. A method for producing a silicon carbide sintered body, characterized in that a sintered body having a density of 85% or more of the theoretical value is obtained.
JP58216124A 1983-11-18 1983-11-18 Manufacture of silicon carbide sintered body Granted JPS60112669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216124A JPS60112669A (en) 1983-11-18 1983-11-18 Manufacture of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216124A JPS60112669A (en) 1983-11-18 1983-11-18 Manufacture of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS60112669A JPS60112669A (en) 1985-06-19
JPH0317786B2 true JPH0317786B2 (en) 1991-03-08

Family

ID=16683629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216124A Granted JPS60112669A (en) 1983-11-18 1983-11-18 Manufacture of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS60112669A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177669A (en) * 1984-09-20 1986-04-21 日本ピラ−工業株式会社 Superhigh density silicon carbide sintered body and manufacture
JPS62260774A (en) * 1986-05-01 1987-11-13 新日本製鐵株式会社 Non-oxide base composite ceramic sintered body

Also Published As

Publication number Publication date
JPS60112669A (en) 1985-06-19

Similar Documents

Publication Publication Date Title
US4569922A (en) Silicon carbide-aluminum nitride sintered article and process for its production
JPH1149572A (en) Ceramic composite particles and their production
US5139719A (en) Sintering process and novel ceramic material
JPH0317786B2 (en)
JPH08500634A (en) Cermet or ceramic / glass composites containing self-reinforcing beta silicon nitride and methods of making the same
JPS6360159A (en) Manufacture of high density silicon carbide sintered body
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPH04270173A (en) Sintered sic
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
EP0412661A1 (en) Improved sintering process and novel ceramic material
JPS616177A (en) Silicon carbide sintered body
JPS60180960A (en) Silicon carbide sintered body
JPH03177372A (en) Sic-based vesicular sintered compact and its production
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JPS6355165A (en) Tib2 base sintering material and manufacture
JPS60239360A (en) Silicon carbide ceramic sintered body
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact
JPH0610115B2 (en) Manufacturing method of composite ceramics
JP2793635B2 (en) Silicon nitride powder composition
JPS6321251A (en) Silicon carbide base ceramic sintered body