JPH03176939A - Manufacture of cathode-ray tube - Google Patents

Manufacture of cathode-ray tube

Info

Publication number
JPH03176939A
JPH03176939A JP31515189A JP31515189A JPH03176939A JP H03176939 A JPH03176939 A JP H03176939A JP 31515189 A JP31515189 A JP 31515189A JP 31515189 A JP31515189 A JP 31515189A JP H03176939 A JPH03176939 A JP H03176939A
Authority
JP
Japan
Prior art keywords
temperature
glass envelope
glass
outside
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31515189A
Other languages
Japanese (ja)
Inventor
Shinji Ohama
大濱 真二
Kiyoshi Tokita
清 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31515189A priority Critical patent/JPH03176939A/en
Publication of JPH03176939A publication Critical patent/JPH03176939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the breakage of a glass envelope without extending the production time by controlling the temperature difference between the inside and outside of the glass envelope during the production process to 100 deg.C or below at maximum in the low-temperature region with strong breaking strength. CONSTITUTION:An in-line type color picture tube device is heated to 350-450 deg.C at maximum during the sealing process in which a panel 10 and a funnel 11 are melted and connected at a high temperature and the exhausting process in which the interior of a glass envelope is exhausted to high vacuum at a high temperature after the neck section 4 of an electron gun structure 15 is sealed. The temperature rise speed for 5 min from the start is set to about 25 deg.C/min, the temperature rise speed for 30min thereafter is reduced to about 7.5 deg.C/min, and the temperature difference between the inside and outside of the glass envelope can be made 100 deg.C or below at the internal temperature 100 deg.C or below. The breakage of the glass envelope caused during heat treat ment can be reduced without extending the work time.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は陰極線管の製造方法に関するものであり、特に
製造工程中でのガラス外囲器の破壊を防止することので
きる製造方法に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a cathode ray tube, and in particular, a method for manufacturing a cathode ray tube, which can prevent destruction of a glass envelope during the manufacturing process. This relates to a manufacturing method.

(従来の技術) 一般に代表的陰極線管であるカラー受像管は、パネルお
よびファンネルからなるガラス外囲器を有し、そのパネ
ルの内側に装着された色選別電極となるシャドウマスク
に対向してパネル内面に、青、緑、赤に発光する3色蛍
光体層からなる蛍光面が形成されている。また、前記フ
ァンネルのネック内に3電子ビームを放出する電子銃構
体が配設され、各電子銃から放出される3電子ビームを
ファンネルのコーン部とネックとの境界部外側に装着さ
れた偏向装置により水平および垂直方向に偏向して蛍光
面上を走査することにより、カラ画像を表示する構造と
なっている。
(Prior Art) Generally, a color picture tube, which is a typical cathode ray tube, has a glass envelope consisting of a panel and a funnel. A phosphor screen made of three-color phosphor layers that emit light in blue, green, and red is formed on the inner surface. Further, an electron gun assembly for emitting three electron beams is disposed in the neck of the funnel, and a deflection device attached to the outside of the boundary between the funnel cone and the neck deflects the three electron beams emitted from each electron gun. The structure is such that a color image is displayed by deflecting the light horizontally and vertically and scanning the fluorescent screen.

通常、上記のようなカラー受像管の製造工程において、
前記ガラス外囲器は、数回の高温工程を経る。特に、パ
ネルとファンネルを低融点ガラスを介して融着接合させ
る封着工程と、電子銃構体を封止した後に内部を高真空
に排気する排気工程では高温300〜500℃に加熱さ
れる。この高温過程、特に、昇温過程および降温過程に
おいては、ガラス内部の温度分布によりガラス内部に種
々応力か働く。さらに、排気工程ではガラス外囲器内外
の気圧差による応力が加わり、これらの応力によってガ
ラス外囲器が機械的に破稙されることがある。
Normally, in the manufacturing process of color picture tubes as described above,
The glass envelope undergoes several high temperature steps. Particularly, in the sealing step in which the panel and funnel are fused and bonded through low-melting glass, and in the exhaust step in which the electron gun assembly is sealed and then evacuated to a high vacuum, the electron gun assembly is heated to a high temperature of 300 to 500°C. During this high-temperature process, particularly during the temperature rising and cooling processes, various stresses are exerted on the inside of the glass depending on the temperature distribution inside the glass. Furthermore, during the evacuation process, stress is applied due to the difference in air pressure between the inside and outside of the glass envelope, and these stresses may mechanically rupture the glass envelope.

これを、第5図(a)乃至(e)を用いて説明する。This will be explained using FIGS. 5(a) to 5(e).

まず、上記高温工程の昇温過程においては、第5図(a
)に示すように、パネル(50)およびファンネル(5
1)外壁と内壁にガラスの肉厚によって温度差が生じ、
温度の低いファンネル内壁には、引張り応力(Fl)か
働く。外面には圧縮応力(F2)が働く。逆に、上記高
温工程の降温過程では、第5図(b)に示すように外面
に引張り応力(Fl)、内面には圧縮応力(F2)が働
く。さらに排気炉中では、第5図(e)に示すように、
外囲器の内外の気圧差によって生じる変形によって圧縮
、引張り応力が複雑に加わる。
First, in the temperature raising process of the above-mentioned high-temperature step, as shown in Fig. 5 (a
) as shown in panel (50) and funnel (5
1) There is a temperature difference between the outer and inner walls depending on the thickness of the glass,
Tensile stress (Fl) acts on the inner wall of the funnel, which has a low temperature. Compressive stress (F2) acts on the outer surface. On the other hand, in the temperature decreasing process of the high temperature step, as shown in FIG. 5(b), tensile stress (Fl) acts on the outer surface and compressive stress (F2) acts on the inner surface. Furthermore, in the exhaust furnace, as shown in Fig. 5(e),
Compressive and tensile stresses are complexly applied due to the deformation caused by the pressure difference between the inside and outside of the envelope.

上記のように、高温工程で働く応力、特に引張り応力は
ガラス表面に歪を与え、微小クラックが生じる原因とな
り、微小クラックが存在する場合には応力集中によりガ
ラス外囲器を破壊させることかある。」−記応力のうち
ガラス外囲器内外の温度差により生じる応力は、ガラス
肉厚が同じ場合は内外温度差が小さい程働く応力は小さ
くなる。
As mentioned above, the stress that occurs during high-temperature processes, especially tensile stress, distorts the glass surface and causes microcracks to occur.If microcracks exist, stress concentration can cause the glass envelope to break. . Among the stresses mentioned above, the stress caused by the temperature difference between the inside and outside of the glass envelope becomes smaller as the temperature difference between the inside and outside is smaller when the glass wall thickness is the same.

ガラスの内外温度差は、炉の昇温速度とガラス内部の伝
熱速度により決まるものであり、昇温速度を小さくすれ
ば、内外温度差を小さくできるが、製造工程が長時間と
なり好ましくない。従って、通常の製造工程では昇温時
10’C/min、降温時−5’C/min前後のほぼ
一定速度で昇温、降温されている。このような温度条件
で昇温された場合には、第6図に示すように、ガラス外
囲器内面温度(54)と外面温度(53)の温度差(5
2)は、内面温度(54)が200℃付近の時に最大と
なり、約30’Cに達する。
The temperature difference between the inside and outside of the glass is determined by the temperature increase rate of the furnace and the heat transfer rate inside the glass.If the temperature increase rate is decreased, the temperature difference between the inside and outside can be reduced, but this is not preferable because the manufacturing process becomes long. Therefore, in a normal manufacturing process, the temperature is raised and lowered at a substantially constant rate of 10'C/min when the temperature is raised and about -5'C/min when the temperature is lowered. When the temperature is raised under such temperature conditions, as shown in FIG. 6, the temperature difference (5
2) becomes maximum when the inner surface temperature (54) is around 200°C, reaching about 30'C.

一方、ガラスの破壊強度は、一般に温度上昇に伴い低下
していく傾向があることが知られており、ガラス外囲器
内外の温度差が同じであるならば、ガラス外囲器内面の
温度が高い程ガラス外囲器が破壊される確率が高くなる
On the other hand, it is known that the breaking strength of glass generally tends to decrease as the temperature rises, and if the temperature difference between the inside and outside of the glass envelope is the same, the temperature on the inside of the glass envelope is The higher the value, the higher the probability that the glass envelope will be destroyed.

(発明が解決しようとする課題) このような応力の影響は従来の小型管では少なく問題と
ならなかったが、近年の大型の受像管やハイビジョン用
受像管では無視できなくなっており、製造工程中でガラ
ス外囲器の破壊が起こる確率が高くなっている。一方、
製造工程上では、生産数の増加によりインデックスアッ
プが問題となっており、製造工程の時間を長くすること
は難しくなっている。
(Problem to be solved by the invention) The influence of such stress has not been a problem in conventional small tubes, but in recent years it has become impossible to ignore in large picture tubes and high-definition picture tubes, and it has become a problem during the manufacturing process. The probability that the glass envelope will break is high. on the other hand,
In the manufacturing process, index increase has become a problem due to the increase in the number of products produced, and it has become difficult to lengthen the manufacturing process time.

本発明は、上記のような相反する要求を鑑みてなされた
もであり、製造工程時間を長くすることなしに、ガラス
外囲器が破壊されることを抑制する効果を持つ陰極線管
の製造方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned conflicting demands, and provides a method for manufacturing a cathode ray tube that has the effect of suppressing damage to the glass envelope without increasing the manufacturing process time. is intended to provide.

[発明の構成] (課題を解決するための手段) 本発明は、陰極線管の製造工程で経る高温工程でのガラ
ス外囲器内外の温度差が、ガラスの破壊強度が強い低温
領域で最大となるようにし、製造時間を長くすることな
しにガラス外囲器の破壊を抑制することのできる陰極線
管の製造方法である。
[Structure of the Invention] (Means for Solving the Problems) The present invention is characterized in that the temperature difference between the inside and outside of the glass envelope during the high-temperature process that goes through in the manufacturing process of cathode ray tubes is maximum in the low-temperature region where the breaking strength of the glass is strong. This is a method for manufacturing a cathode ray tube that can suppress destruction of the glass envelope without increasing the manufacturing time.

(作 用) 本発明の作用を前記のような製造方法で製造したカラー
受像管を一例にして、第1図乃至第7図を用いて説明す
る。
(Function) The function of the present invention will be explained with reference to FIGS. 1 to 7, using a color picture tube manufactured by the above manufacturing method as an example.

高温」二程の昇温過程では、ファンネルおよびパネルよ
りなるガラス外囲器は、第2図に示すように、ある一定
の肉厚を有するため外壁面(31)に加えられた熱が内
壁面(32)に伝導するためにはある一定の時間を要す
る。そのためにガラス外壁面(31)と内壁面(32)
に温度差が生じ、温度の低い内壁面(32〉には、温度
差に伴う膨張量の差から第2図に示すように、引張り応
力(41)が働く。逆に、降温過程では収縮量の差から
第3図に示すように、外壁面(31)に引張り応力(4
3)が働く。この時働く引張り応力(34)は、第4図
に示すように完全には均一ではないガラス表面(38)
の一部に微小クラック(39)を生じさせる。この表面
に生じた微小クラック(39)には引張り応力が集中(
40)L、ついには原子間の結合力以上の力が働きガラ
スの機械的破壊をもたらす。ここで一般にガラスの破壊
強度は、高温になる程低下するといわれており、内外の
温度差か同じならばガラス外囲器内面の温度が高い程破
壊する可能性か大きくなる。作業時間を長くすることな
しに破壊を抑制するためには、ガラス外囲器内外の温度
差か最大となる温度をたとえば第7図に示すように10
0℃以下にすることにより達成できる。比較的ガラス強
度の強い低温領域で最大応力を発生させ、その後の高温
領域では強い応力が発生しないようにすることによりガ
ラス強(実施例) 以下、図面を参照してこの発明を実施例に基づいて説明
する。第1図のインライン型カラー受像管装置をもとに
本発明の製造方法の一実施例を説明する。インライン型
カラー受像管装置は、初期段階ではパネル(lO)とフ
ァンネル(11)が別々に製造される。パネル(10)
内面には電子ビームが射突して発光する蛍光面(12)
と、この蛍光面に入射する電子ビームを選別する色選別
電極となるシャドウマスク(13)が装着される。一方
、ファンネル(11)にはグラファイトを主成分とする
内部導電性被膜(33)が形成される。このように別々
に製造されたパネル(10)とファンネル(11)を低
融点ガラス(23)を介して高温で融着結合させる。こ
れが所謂封着工程であり、通常最高400〜450°C
まで、昇温速度約10℃/minのほぼ一定速度で加熱
された後、一定温度である時間保持/される。その倹約
−5’C/minの速度で冷却される。
During the temperature increase process of about 2 degrees, the glass envelope made of funnels and panels has a certain wall thickness, as shown in Figure 2, so that the heat applied to the outer wall surface (31) is transferred to the inner wall surface. It takes a certain amount of time for conduction to (32). Therefore, the glass outer wall surface (31) and inner wall surface (32)
A temperature difference occurs, and tensile stress (41) acts on the low-temperature inner wall surface (32) as shown in Figure 2 due to the difference in the amount of expansion due to the temperature difference.On the contrary, during the cooling process, the amount of contraction As shown in Figure 3, from the difference in the tensile stress (4
3) works. The tensile stress (34) acting at this time is applied to the glass surface (38), which is not completely uniform, as shown in Figure 4.
A small crack (39) is generated in a part of the area. Tensile stress is concentrated in the micro cracks (39) generated on this surface (
40) L. Eventually, a force greater than the bonding force between atoms acts and mechanically breaks the glass. It is generally said that the breaking strength of glass decreases as the temperature increases, and if the temperature difference between the inside and outside is the same, the higher the temperature of the inner surface of the glass envelope, the greater the possibility of breaking. In order to suppress destruction without prolonging the working time, the temperature at which the temperature difference between the inside and outside of the glass envelope is the maximum must be set at 10, for example, as shown in Figure 7.
This can be achieved by keeping the temperature below 0°C. The glass is strengthened by generating the maximum stress in a low temperature region where the glass strength is relatively strong and preventing strong stress from occurring in the subsequent high temperature region (Example) Hereinafter, this invention will be explained based on an example with reference to the drawings. I will explain. An embodiment of the manufacturing method of the present invention will be described based on the in-line color picture tube device shown in FIG. In an in-line color picture tube device, the panel (lO) and funnel (11) are manufactured separately at the initial stage. Panel (10)
The inner surface has a fluorescent screen (12) that emits light when an electron beam hits it.
A shadow mask (13) serving as a color selection electrode for selecting electron beams incident on the phosphor screen is attached. On the other hand, an internal conductive coating (33) containing graphite as a main component is formed on the funnel (11). The panel (10) and the funnel (11), which were manufactured separately in this way, are fused and bonded at high temperature via the low melting point glass (23). This is the so-called sealing process, and is usually at a maximum temperature of 400 to 450°C.
After heating at a substantially constant temperature increase rate of about 10° C./min, the temperature is maintained at a constant temperature for a certain period of time. Its economy is cooled at a rate of -5'C/min.

次に、3電子ビームを放出する電子銃構体(15)をネ
ック部(4)に封止した後、ガラス外囲器内部が高温で
高真空に排気される。これが所謂排気工程である。排気
工程は、通常最高温度350〜4000Cまで昇温速度
10℃/minのほぼ一定速度で加熱された後、−5°
C/min前後の速度で冷却される。このような通常の
温度条件では前述のように昇温時のガラス外囲器の内外
の温度差が最大となるのは、引張り応力の働くガラス内
面の温度が150℃以上の時であり、ガラスの強度上負
担が大きくなる。
Next, after the electron gun assembly (15) that emits three electron beams is sealed in the neck part (4), the inside of the glass envelope is evacuated to high vacuum at high temperature. This is the so-called exhaust process. In the exhaust process, the temperature is heated at a nearly constant rate of 10°C/min to a maximum temperature of 350 to 4000°C, and then heated to -5°C.
It is cooled at a rate of around C/min. Under such normal temperature conditions, as mentioned above, the temperature difference between the inside and outside of the glass envelope becomes maximum when the temperature rises when the temperature of the inner surface of the glass, where tensile stress acts, is 150°C or higher. This increases the burden on the strength.

一方、本実施例では、第7図に示すように熱処理初期の
最初から5分間の昇温速度を約25℃/minとし、そ
の後30分間の昇温速度を約7.5°C/minと小さ
くすることにより、ガラス外囲器内外の温度差(56)
が最大になる時の内面温度(59)が100℃以下にな
り、ガラス内面に発生する応力が最大となる温度を10
0℃以下にすることができた。
On the other hand, in this example, as shown in FIG. 7, the temperature increase rate for the first 5 minutes of the initial heat treatment was approximately 25°C/min, and the temperature increase rate for the subsequent 30 minutes was approximately 7.5°C/min. By reducing the temperature difference between the inside and outside of the glass envelope (56)
The temperature at which the inner surface temperature (59) becomes 100 degrees Celsius or lower and the stress generated on the inner surface of the glass reaches its maximum is 10.
We were able to reduce the temperature to below 0°C.

第7図に示した本発明の実施例の温度条件では、第6図
に示した通常の温度条件で熱処理した場合と比較して、
内外温度差(56)が最大となる時の内面の温度(58
〉は明らかに低下しており、また、200℃以上での内
外温度差も減少している。さらに熱処理時間もほとんど
変化していない。このような温度条件で熱処理すること
により、作業時間を長くすることなしに、ガラス強度の
弱い高温でガラス内面(32)に働く引張り応力を軽減
することができ、熱処理中に起こるガラス外囲器の破壊
を減少させることができる。
Under the temperature conditions of the embodiment of the present invention shown in FIG. 7, compared to the case of heat treatment under the normal temperature conditions shown in FIG.
The inner temperature (58) when the inner and outer temperature difference (56) is maximum
> has clearly decreased, and the temperature difference between inside and outside at 200°C or higher has also decreased. Furthermore, the heat treatment time also hardly changed. By heat-treating under such temperature conditions, the tensile stress acting on the inner surface of the glass (32) at high temperatures where the glass strength is weak can be reduced without increasing the working time, and the tensile stress that occurs during heat treatment can be reduced. Destruction can be reduced.

上記の実施例では昇温速度をコントロールすることによ
り所望する温度条件を得ていたが、方法はこれに限るも
のではなく、封着工程で、内部を熱風で置換することに
より温度のコントロールする方法や、その他の方法を用
いてもよく、内外の温度差が内面温度が100℃以下の
時に最大となるような温度条件が得られればよい。
In the above example, the desired temperature conditions were obtained by controlling the temperature increase rate, but the method is not limited to this, and there is a method of controlling the temperature by replacing the inside with hot air during the sealing process. or other methods may be used, as long as temperature conditions are obtained such that the temperature difference between the inside and outside becomes maximum when the inner surface temperature is 100° C. or less.

また、上記実施例では、昇温過程について述べたが、降
温過程でも同様であり、内外温度差が最大となる温度は
低い程好ましいが、通常、冷却速度は昇温速度に比べて
小さく昇温過程はど内外温度差は大きくならないため特
に問題とはならない。
Further, in the above embodiment, the temperature raising process was described, but the same applies to the temperature lowering process, and the lower the temperature at which the inside and outside temperature difference is maximum, the better, but usually the cooling rate is smaller than the temperature rising rate. During the process, the difference in temperature between the inside and outside of the tube does not become large, so there is no particular problem.

以」二、本発明の実施例をカラー受像管を一例として説
明したが、本発明はこれに限定されることなく、ガラス
外囲器を有する陰極線管に広く適用されることは言うま
でもない。
In the following, the embodiments of the present invention have been described using a color picture tube as an example, but it goes without saying that the present invention is not limited to this and is widely applicable to cathode ray tubes having glass envelopes.

[発明の効果コ 本発明により、近年のカラー受像管の大型化に伴い問題
となっている/製造工程の熱処理中のガラス外囲器の機
械的破壊を特に作業時間を長くすることなしに減少させ
ることができる。
[Effects of the Invention] The present invention reduces mechanical breakage of the glass envelope during heat treatment in the manufacturing process, which has become a problem with the recent increase in size of color picture tubes, without particularly prolonging the working time. can be done.

0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するだめのカラー受像管装
置の構成を示す断面図、第2図乃至第4図は本発明が解
決しようとする問題を説明するための部分断面図であり
、第2図は高温工程の昇温過程で働く応力を示す図、第
3図は高温工程の降温過程で働く応力を示す図、第4図
はガラス表面に発生する微小クラックと応力集中を示す
た工程の昇温過程、第5図(b)は降温過程、第5図(
C)は排気炉中の外囲器の概略断面図であり、第6図は
通常温度条件で熱処理した場合のガラス外囲器内外の温
度の経時変化を示すための図、第7図は本発明の詳細な
説明するためのガラス外囲器内外の温度の経時変化を示
す図である。
FIG. 1 is a cross-sectional view showing the configuration of a color picture tube device, which does not provide a detailed explanation of the present invention, and FIGS. 2 to 4 are partial cross-sectional views for explaining the problems to be solved by the present invention. , Figure 2 shows the stress that acts during the temperature rising process in the high-temperature process, Figure 3 shows the stress that acts during the temperature cooling process in the high-temperature process, and Figure 4 shows the microcracks and stress concentration that occur on the glass surface. Figure 5(b) shows the temperature increasing process in the process shown in Fig. 5(b).
C) is a schematic cross-sectional view of the envelope in the exhaust furnace, FIG. 6 is a diagram showing the change in temperature inside and outside the glass envelope over time when heat treatment is performed under normal temperature conditions, and FIG. FIG. 3 is a diagram showing temporal changes in temperature inside and outside a glass envelope for explaining the invention in detail.

Claims (1)

【特許請求の範囲】[Claims] ガラスよりなる真空外囲器と、この外囲器内に形成され
る蛍光面と、この蛍光面に対向する位置に電子を放出し
蛍光面を発光させる電子銃を具備し、少なくとも高温で
排気される工程を有する陰極線管の製造方法において、
前記ガラス外囲器の外表面と内表面の温度差が最大とな
る時の内表面の温度が100℃以下であることを特徴と
する陰極線管の製造方法。
It is equipped with a vacuum envelope made of glass, a phosphor screen formed inside the envelope, and an electron gun that emits electrons at a position opposite to the phosphor screen to cause the phosphor screen to emit light, and is evacuated at at least a high temperature. In a method for manufacturing a cathode ray tube, the method includes the steps of:
A method for manufacturing a cathode ray tube, characterized in that the temperature of the inner surface of the glass envelope when the temperature difference between the outer surface and the inner surface is maximum is 100° C. or less.
JP31515189A 1989-12-06 1989-12-06 Manufacture of cathode-ray tube Pending JPH03176939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31515189A JPH03176939A (en) 1989-12-06 1989-12-06 Manufacture of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31515189A JPH03176939A (en) 1989-12-06 1989-12-06 Manufacture of cathode-ray tube

Publications (1)

Publication Number Publication Date
JPH03176939A true JPH03176939A (en) 1991-07-31

Family

ID=18062030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31515189A Pending JPH03176939A (en) 1989-12-06 1989-12-06 Manufacture of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPH03176939A (en)

Similar Documents

Publication Publication Date Title
KR19980033343A (en) Glass Bulbs for Cathode Ray Tubes
JP2002505796A (en) Low temperature glass frit encapsulation for thin computer displays
KR890003989B1 (en) Shadow mask for color cathode ray tube
KR900007753B1 (en) Method of manufacturing a display tube
US4923423A (en) Integrated thermal processing for kinescopes
JPH03176939A (en) Manufacture of cathode-ray tube
US3041127A (en) Method of fabricating a cathode ray tube
JPH0512812B2 (en)
US3663862A (en) Method of rebuilding an evacuated electron tube
US6614164B1 (en) CRT with neck and stem weld and method for manufacturing the same
KR100671756B1 (en) Panel for cathode ray tube
KR20040101628A (en) Color Flat Panel Display
JP2001176416A (en) Mask for color cathode-ray tube
KR100256980B1 (en) Flat type cathode ray tube
WO1999018592A1 (en) Method of manufacturing a display device
JPS6079645A (en) Color picture tube
JP2000106109A (en) Color cathode-ray tube
JPH03129647A (en) Cathode-ray tube
JP2001126618A (en) Method and apparatus of manufacturing cathode ray tube and cathode ray tube
JPH01200544A (en) Fluorescent character display tube
JPS62131440A (en) Manufacture of cathode-ray tube
JPH0517648B2 (en)
JPH01279546A (en) Manufacture of cathode-ray tube
JP2001126644A (en) Glass funnel for cathode-ray tube, and method of manufacturing the same
JPS58216336A (en) Production process of cathode-ray tube