JPH03129647A - Cathode-ray tube - Google Patents
Cathode-ray tubeInfo
- Publication number
- JPH03129647A JPH03129647A JP26515589A JP26515589A JPH03129647A JP H03129647 A JPH03129647 A JP H03129647A JP 26515589 A JP26515589 A JP 26515589A JP 26515589 A JP26515589 A JP 26515589A JP H03129647 A JPH03129647 A JP H03129647A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- funnel
- envelope
- thermal expansion
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 claims abstract description 80
- 239000011247 coating layer Substances 0.000 claims description 20
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 11
- 230000008719 thickening Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 39
- 238000000576 coating method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 12
- 238000002844 melting Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 5
- 239000005385 borate glass Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- ZPPSOOVFTBGHBI-UHFFFAOYSA-N lead(2+);oxido(oxo)borane Chemical compound [Pb+2].[O-]B=O.[O-]B=O ZPPSOOVFTBGHBI-UHFFFAOYSA-N 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- DYIZHKNUQPHNJY-UHFFFAOYSA-N oxorhenium Chemical compound [Re]=O DYIZHKNUQPHNJY-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229910003449 rhenium oxide Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Landscapes
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、陰極線管に関するものであり、特に機械的強
度を向上させた陰極線管用ガラス外囲器に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a cathode ray tube, and particularly to a glass envelope for a cathode ray tube with improved mechanical strength.
(従来の技術)
一般にカラー陰極線管は、パネルおよびファンネルから
なるガラス外囲器を有し、そのパネルの内側に装着され
た色選別電極となるシャドウマスクに対向してパネル内
面に、青、緑、赤に発光する3色蛍光体層からなる蛍光
面が形成されている。また、ファンネルのネック内に3
電子ビームを放出する電子銃構体が配設され、各電子銃
から放出される3電子ビームをファンネルのコーン部と
ネックとの境界部外側に装着された偏向装置により水平
および垂直方向に偏向して、蛍光面上を走査することに
より、カラー画像を表示する構造となっている。(Prior Art) Generally, a color cathode ray tube has a glass envelope consisting of a panel and a funnel. , a phosphor screen made of three-color phosphor layers that emits red light is formed. Also, there are 3 inside the neck of the funnel.
An electron gun structure for emitting electron beams is provided, and the three electron beams emitted from each electron gun are deflected in horizontal and vertical directions by a deflection device attached to the outside of the boundary between the cone and neck of the funnel. The structure is such that a color image is displayed by scanning a phosphor screen.
通常、上記カラー陰極線管のファンネルの内壁面には、
黒鉛と水ガラスを主成分とする内部導電性被膜が形成さ
れている。この内部導電性被膜には、ファンネルに埋設
されたアノードボタンを介して外部より高電圧が印加さ
れ、さらにバルブスペーサーコンタクトを介してこの高
電圧は電子銃構体の加速電極に印加され3電子ビームを
加速する。Usually, the inner wall surface of the funnel of the color cathode ray tube mentioned above has
An internal conductive coating is formed whose main components are graphite and water glass. A high voltage is applied to this internal conductive coating from the outside via an anode button embedded in the funnel, and this high voltage is further applied to the accelerating electrode of the electron gun body via a valve spacer contact to generate three electron beams. To accelerate.
一方、上記カラー陰極線管の製造工程において、前記ガ
ラス外囲器は、数回の高温工程を経る。特にパネルとフ
ァンネルを低融点ガラスを介して融着接合させる封着工
程と、電子銃構体を封止した後に、内部を高真空に排気
する排気工程では300°〜500℃に加熱される。こ
の高温工程、特に昇温過程および降温過程においては、
ガラス内部の温度分布により、ガラス内部に種々応力が
働く。Meanwhile, in the manufacturing process of the color cathode ray tube, the glass envelope undergoes several high-temperature processes. In particular, the temperature is heated to 300° to 500° C. in the sealing process in which the panel and the funnel are fused and bonded via low-melting glass, and in the exhaust process in which the interior is evacuated to a high vacuum after the electron gun assembly is sealed. In this high-temperature process, especially the temperature rising and cooling processes,
Various stresses act on the inside of the glass depending on the temperature distribution inside the glass.
さらに、排気工程ではガラス外囲器内外の気圧差による
応力が加わり、これらの応力によってガラス外囲器が機
械的に破壊されることがある。Furthermore, during the evacuation process, stress is applied due to the difference in air pressure between the inside and outside of the glass envelope, and these stresses may mechanically break the glass envelope.
すなわち、第6図(a)乃至(c)に示すように、まず
上記高温工程の昇温過程において第6図(a)のように
、パネル(50)およびファンネル(51)外壁と内壁
にガラスの肉厚によって温度差が生じ、温度の低いファ
ンネル内壁には、引張り応力(F4)が働く。外面には
圧縮応力(F2)が働く。この際、ファンネル内壁面に
被着された内部導電性被膜(53)の熱膨張率が前記フ
ァンネル(51)を成すガラスの熱膨張率よりも大きい
場合には、ファンネル内壁面にはさらに引張り応力が働
く。この引張り応力はガラス表面にひずみを与え微小ク
ラックが生じる原因となり、微小クラックが存在する場
合には応力集中による破壊の原因となる。That is, as shown in FIGS. 6(a) to (c), glass is first applied to the outer and inner walls of the panel (50) and funnel (51) as shown in FIG. A temperature difference occurs depending on the wall thickness of the funnel, and tensile stress (F4) acts on the inner wall of the funnel where the temperature is low. Compressive stress (F2) acts on the outer surface. At this time, if the coefficient of thermal expansion of the internal conductive coating (53) adhered to the inner wall surface of the funnel is larger than the coefficient of thermal expansion of the glass forming the funnel (51), the inner wall surface of the funnel is subjected to additional tensile stress. works. This tensile stress causes strain on the glass surface and causes micro-cracks to occur, and when micro-cracks exist, it causes destruction due to stress concentration.
また、上記高温工程の降温過程においては、第6図(b
)に示すように、外面は引張り応力(FL)。In addition, in the temperature decreasing process of the above-mentioned high temperature step, Fig. 6 (b
), the outer surface is under tensile stress (FL).
内面には圧縮応力(F2)が働く。さらに、排気炉中で
は、第6図(c)に示すように、外囲器の内外の気圧差
によって生じる変形によって圧縮、引張り応力が複雑に
加わる。Compressive stress (F2) acts on the inner surface. Further, in the exhaust furnace, as shown in FIG. 6(c), compressive and tensile stresses are complexly applied due to deformation caused by the difference in pressure between the inside and outside of the envelope.
(発明が解決しようとする課題)
このような、応力の影響は従来の小型管では少なく無視
できたが、近年の大型の受像管やハイビジョン用受像管
では無視できなくなっている。(Problem to be Solved by the Invention) The influence of stress as described above was small and could be ignored in conventional small tubes, but it can no longer be ignored in recent large picture tubes and high-definition picture tubes.
この対策の1つとしてガラス肉厚を大きくし強度を向上
する方法があるが、重量の点で問題が残る。One way to deal with this problem is to increase the thickness of the glass to improve its strength, but the problem remains in terms of weight.
そこで近年では、軽量化しかつ強度を保つことのできる
ガラス外囲器への要求が高まっている。本発明は上記の
ような問題点を鑑みてなされたものであり、ガラスの肉
厚を薄くして軽量化しても、強度を保つことのできるガ
ラス外囲器を与えることを目的としている。Therefore, in recent years, there has been an increasing demand for glass envelopes that are lightweight and can maintain strength. The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a glass envelope that can maintain strength even when the glass wall thickness is reduced and the weight is reduced.
(m1題を解決するための手段)
本発明は、ガラスよりなる真空外囲器を有し、このガラ
ス外囲器に、外囲器との熱膨張係数の差により歪を発生
する被覆Mを有する陰極線管である。(Means for solving problem m1) The present invention has a vacuum envelope made of glass, and a coating M that generates distortion due to the difference in thermal expansion coefficient with the glass envelope is provided on the glass envelope. It is a cathode ray tube with
(作用)
前記のように構成されるガラス外囲器が、封着工程およ
び排気工程のような高温工程を通過した場合の本発明の
作用を第2図乃至第5図を用いて説明する。(Operation) The operation of the present invention when the glass envelope configured as described above passes through a high temperature process such as a sealing process and an exhaust process will be explained using FIGS. 2 to 5.
高温工程の昇温過程では、ファンネル(U)はある一定
の肉厚を有するために、ファンネル外壁面(31)に加
えられた熱がファンネル内壁面(32)に伝導するため
にはある一定の時間を要する。そのためにはファンネル
外壁面(31)と内タマ面(32)に温度差が生じ、温
度の低い内壁面(32)には、温度差に伴う膨張量の差
から第2図図示のように引張り応力<34)が働く。こ
の際ファンネル内壁面(32)に被着した内部導電性被
膜(33)の熱膨張係数(α。)が、ファンネル(11
)を威すガラスの熱膨張係数(αg)より大ならば、フ
ァンネル内壁面(32)には引張り応力が働き、前記引
張り応力を助長することになる。In the temperature raising process of the high-temperature process, since the funnel (U) has a certain wall thickness, a certain certain amount is required for the heat applied to the funnel outer wall surface (31) to be conducted to the funnel inner wall surface (32). It takes time. For this purpose, a temperature difference occurs between the funnel outer wall surface (31) and the inner ball surface (32), and the lower temperature inner wall surface (32) has a tensile force as shown in Figure 2 due to the difference in the amount of expansion caused by the temperature difference. Stress <34) acts. At this time, the coefficient of thermal expansion (α) of the internal conductive coating (33) adhered to the funnel inner wall surface (32) is
), tensile stress acts on the funnel inner wall surface (32) and aggravates the tensile stress.
この引張り応力(34)は、第5図図示のように完全に
は均一ではないガラス表面(38)の一部に微小クラッ
ク(39)を生じさせる。この表面に生じた微小クラッ
ク(39)には引張り応力が集中(40) L、 、つ
いには原子間の結合力以上の応力が働き、ガラスの機械
的破壊をもたらす。ここで、本発明の構成のように、内
部導電被膜(33)の熱膨張係数(α。)が、ファンネ
ルガラス(11)の熱膨張係数(αg)より小ならば、
ファンネル内壁面(32)には、圧縮応力(36)が働
き、前記引張り応力(34)を打消すことができる。This tensile stress (34) causes micro-cracks (39) in a portion of the glass surface (38) which is not completely uniform as shown in FIG. Tensile stress concentrates on the micro cracks (39) generated on the surface (40) L, and eventually a stress greater than the bonding force between atoms acts, resulting in mechanical destruction of the glass. Here, as in the configuration of the present invention, if the thermal expansion coefficient (α.) of the internal conductive coating (33) is smaller than the thermal expansion coefficient (αg) of the funnel glass (11),
Compressive stress (36) acts on the funnel inner wall surface (32) and can cancel out the tensile stress (34).
その後の定温過程では、ガラス外壁面(31)と内壁面
(32)との間の温度差はなくなり、第3図図示のよう
に、ファンネル内壁面(32)には、ファンネルガラス
と内部導電被膜(33)の熱膨張係数の差により生じた
圧縮歪(41)のみが残る。In the subsequent constant temperature process, the temperature difference between the glass outer wall surface (31) and the inner wall surface (32) disappears, and as shown in FIG. Only the compressive strain (41) caused by the difference in thermal expansion coefficients (33) remains.
さらに、収縮を伴う降温過程では、昇温過程とは逆に熱
膨張係数の差により、ファンネル内壁面(32)には引
張り応力(42)が働くが、この引張り応力(42)は
定温過程で残った圧縮歪(41〉を解放するのに使われ
るため、ガラスを破壊するまでには至らない。Furthermore, in the cooling process accompanied by contraction, tensile stress (42) acts on the funnel inner wall surface (32) due to the difference in thermal expansion coefficients, contrary to the heating process, but this tensile stress (42) does not occur in the constant temperature process. Since it is used to release the remaining compressive strain (41〉), it does not destroy the glass.
以上のように、ガラス外囲器表面に低熱膨張係数を有す
る被覆層形成することにより、ガラス外囲器表面に圧縮
応力を与え高温処理工程中に生じる引張り応力を効果的
に緩和し、ガラスの強度を向上させることができる。As described above, by forming a coating layer with a low coefficient of thermal expansion on the surface of the glass envelope, compressive stress is applied to the surface of the glass envelope, effectively relieving the tensile stress generated during the high-temperature treatment process. Strength can be improved.
(実施例)
以下、図面を参照してこの発明を実施例に基づいて説明
する。第1図に、この発明の一実施例であるインライン
型カラー陰極線管装置を示す。(Example) Hereinafter, the present invention will be described based on an example with reference to the drawings. FIG. 1 shows an in-line color cathode ray tube device which is an embodiment of the present invention.
このカラー陰極線管装置は、パネル(10)およびこの
パネル(10)に低融点ガラス(23)を介して一体に
接合されたファンネル(11)から成るガラス外囲器を
有している。前記パネル(10)内面には、青、緑。This color cathode ray tube device has a glass envelope consisting of a panel (10) and a funnel (11) integrally joined to the panel (10) via a low melting point glass (23). The inner surface of the panel (10) is colored blue and green.
赤に発光する3色蛍光体層からなる蛍光面(12)が形
成され、この蛍光面(12)に対向して、その内側に多
数の電子ビーム通過孔が形成された色選別電極となるシ
ャドウマスク(13)が装着されている。A phosphor screen (12) consisting of a three-color phosphor layer that emits red light is formed, and a shadow serving as a color selection electrode is formed opposite to this phosphor screen (12) and has a large number of electron beam passing holes formed inside the phosphor screen (12). A mask (13) is worn.
また、ファンネル(11)のネック(14)内に、同一
水平面上を通るセンタービーム(8G)および一対のサ
イドビーム(8B)、 (8R)からなる−列配置の3
電子ビームを放出する電子銃(15)が配設されている
。In addition, in the neck (14) of the funnel (11), there is a center beam (8G) passing on the same horizontal plane and a pair of side beams (8B), (8R) arranged in three rows.
An electron gun (15) that emits an electron beam is provided.
さらに、ファンネル(11)のコーン部(24)とネッ
ク(14)との境界部外側には、この電子銃(15)か
ら放出される3電子ビームを偏向する偏向装置(18)
が装着されている。Further, on the outside of the boundary between the cone portion (24) and the neck (14) of the funnel (11), there is a deflection device (18) for deflecting the three electron beams emitted from the electron gun (15).
is installed.
さらに、本実施例のカラー陰極線管装置のファンネル内
壁面(32)には、ファンネル(11〉のネック(14
)部から、ファンネル(11)とパネル(lO)の接合
面(23)付近までパネル(lO)およびファンネル(
11)からガラス外囲器を威すガラスの熱膨張係数(α
g)より小さい熱膨張係数(α。)を有する内部導電性
被膜(33)が形成されている。この内部導電性被膜(
33)は、ファンネル(11)に埋設されたアノードボ
タン(26)を介して外部から印加される高電圧をバル
ブスペーサーコンタクト(27)を通して電子銃構体(
15)へ、またコンタクトスプリング(28)を通して
シャドウマスク(13)に供給する機能、およびシャド
ウマスク(13)などから発生した2次電子を吸収して
、2次電子が蛍光面(12)に射突して起こる色純度の
劣化を防止する機能などを有する。Further, the funnel inner wall surface (32) of the color cathode ray tube device of this embodiment has a neck (14) of the funnel (11>).
) from the panel (lO) and the funnel (lO) to the vicinity of the joint surface (23) of the funnel (11) and the panel (lO).
11), the thermal expansion coefficient (α
g) An internal conductive coating (33) is formed which has a smaller coefficient of thermal expansion (α.). This internal conductive coating (
33) passes a high voltage applied from the outside via an anode button (26) buried in the funnel (11) to the electron gun structure (27) through a valve spacer contact (27).
15) and to the shadow mask (13) through the contact spring (28), and absorbs secondary electrons generated from the shadow mask (13), etc., and the secondary electrons are emitted onto the phosphor screen (12). It has the function of preventing sudden deterioration of color purity.
本実施例では、このガラス外囲器を成すガラスの熱膨張
係数(αg)より小さい熱膨張係数(α。)を有する内
部導電性被膜(33)を形成する物質の一例として導電
物質である酸化すず(SnO□)および酸化アンチモン
(sbzoz)を有する鉛はう酸塩ガラスを選んだ。In this example, oxidation, which is a conductive material, is used as an example of a material forming the internal conductive coating (33) having a coefficient of thermal expansion (α.) smaller than the coefficient of thermal expansion (αg) of the glass constituting the glass envelope. A lead borate glass with tin (SnO□) and antimony oxide (sbzoz) was chosen.
その具体的な組成は以下の通りである。Its specific composition is as follows.
mA・鉛はう酸塩ガラス; 70wt%PbO: 74
.9
B、0. : 8.6
ZnO: 12.6
Sin2 : 2.0
口ao : L、9
導電物質 ; 30wt%
SnO3: 95.0
Sb20.: 5.0
パネル(10)およびファンネル(11)を處すガラス
の熱膨張係数(αg)が約10 X 10−’deg−
’に対し1本実施例の鉛はう酸塩ガラスの熱膨張係数は
約7.7×to−’deg−”である。但し、釦はう酸
塩ガラス中の酸化すず(SnO□)の含有量の増加に伴
い熱膨張係数および比抵抗は減少するため、含有量を調
整することにより所望する特性を持つ内部導電性被膜が
得られる。mA/lead borate glass; 70wt%PbO: 74
.. 9 B, 0. : 8.6 ZnO: 12.6 Sin2: 2.0 ao: L, 9 conductive material; 30wt% SnO3: 95.0 Sb20. : 5.0 The coefficient of thermal expansion (αg) of the glass covering the panel (10) and funnel (11) is approximately 10 x 10-'deg-
The coefficient of thermal expansion of the lead borate glass in this example is approximately 7.7×to-'deg-''. Since the thermal expansion coefficient and specific resistance decrease as the content increases, an internal conductive coating with desired properties can be obtained by adjusting the content.
このような内部導電性被膜(33)は、弗化水素などの
洗浄剤により洗浄されたファンネル部内壁(32)に、
上記組成の低熱膨張係数(αg)を有する物質を含むス
ラリーを、スプレー法などにより塗布することにより形
成される。その後、この内壁部導電性被膜(33)は、
パネル(10)とファンネル(11)を低融点ガラス(
23)で接合する封着工程の昇温過程において、焼結し
、ファンネルガラス内壁(32)に結合される。この被
膜は、同じ熱膨張係数でも厚さにより効果は異なる。但
し、ある程度以上の厚さになると効果は飽和する。本実
施例の場合は、5〜20μsぐらいが適当である。従来
の内部導電性被膜のように、粉体の量が多く、被膜内部
に空隙が存在する場合の熱膨張係数は定義も測定も難し
いが、本実施例のように、ガラスが主成分の場合には空
隙はあまり存在しないと考えられるため、焼結後の熱膨
張係数はおよそ8.OX 1(1’″6deg−1 と
予想される。焼結した低熱膨張係数を有する内部導電被
膜(33)は、その後の昇温過程においてファンネルガ
ラス内壁(32)に圧縮応力(36)を与え、ファンネ
ルガラス内外の温度差によってファンネルガラス内Q
(32)に生じる引張り応力(34)を打消す働きをし
、微小クラックの生成、成長を抑制し、ガラス外囲器の
機械的破壊に対する耐力を向上させる。さらに、定温過
程では、ファンネル内壁面に圧縮歪(41)が残り、そ
の後の降温過程では上記の圧縮歪(41)を解放してい
くため、高温工程の全過程で有効に作用する。さらに、
この効果は、陰極線管内を高温で高真空に排気し、ガラ
ス外囲器内外の気圧差による応力が加わる排気工程にも
適応する。Such an internal conductive coating (33) is applied to the inner wall (32) of the funnel portion which has been cleaned with a cleaning agent such as hydrogen fluoride.
It is formed by applying a slurry containing a substance having the above composition having a low coefficient of thermal expansion (αg) by a spray method or the like. After that, this inner wall conductive coating (33) is
The panel (10) and funnel (11) are made of low melting point glass (
In the temperature raising process of the sealing step 23), it is sintered and bonded to the funnel glass inner wall (32). This coating has different effects depending on its thickness even if the coefficient of thermal expansion is the same. However, the effect becomes saturated when the thickness exceeds a certain level. In the case of this embodiment, about 5 to 20 μs is appropriate. The coefficient of thermal expansion is difficult to define and measure when there is a large amount of powder and voids inside the coating, as in the case of conventional internal conductive coatings, but when glass is the main component, as in this example, it is difficult to define and measure the coefficient of thermal expansion. Since it is thought that there are not many voids in , the coefficient of thermal expansion after sintering is approximately 8. OX 1 (1'''6deg-1 is expected. The sintered internal conductive coating (33) with a low coefficient of thermal expansion applies compressive stress (36) to the funnel glass inner wall (32) during the subsequent temperature increase process. , Q inside the funnel glass due to the temperature difference inside and outside the funnel glass.
(32) acts to cancel the tensile stress (34) generated in the glass envelope, suppresses the generation and growth of microcracks, and improves the resistance of the glass envelope against mechanical breakage. Further, in the constant temperature process, compressive strain (41) remains on the inner wall surface of the funnel, and in the subsequent temperature cooling process, the compressive strain (41) is released, so that it acts effectively in the entire process of the high temperature process. moreover,
This effect is also applicable to the evacuation process, in which the inside of the cathode ray tube is evacuated to high vacuum at high temperature, and stress is added due to the pressure difference between the inside and outside of the glass envelope.
この作用効果についてさらに詳述する。This action and effect will be explained in more detail.
ガラス外囲器に酸化物、金属その他の粉体とガラスより
なる物質を被着させた場合で、ガラスの転位点以上に昇
温しない場合に、高温状態で応力を働かせ、熱処理中の
バルブの破壊を防止する効果が期待できる。When a glass envelope is coated with a substance made of oxide, metal, or other powder and glass, and the temperature does not rise above the transposition point of the glass, stress is applied at high temperatures to prevent the bulb from heating during heat treatment. It can be expected to have the effect of preventing destruction.
このような物質を塗布し、昇温した場合には、昇温過程
で塗布物中のガラスは拡散し、粉体粒子とガラス外囲器
を焼結させる。続く熱処理で塗布物の熱膨張係数がガラ
ス外囲器のそれより小さければ、熱膨張量の差からガラ
ス外囲器表面には圧縮応力が働き、表面に存在する微小
クラックに集中する引張り応力を緩和する効果を持つ。When such a substance is applied and the temperature is raised, the glass in the applied material is diffused during the heating process, sintering the powder particles and the glass envelope. If the coefficient of thermal expansion of the coated material is smaller than that of the glass envelope in the subsequent heat treatment, compressive stress will act on the surface of the glass envelope due to the difference in thermal expansion, and tensile stress will be concentrated on the micro cracks existing on the surface. It has a soothing effect.
但し、温度を塗布物中のガラスのガラス転位温度以上に
上げた場合には、ガラスが流動性を持ち粒子が再配列さ
れてしまい、圧縮応力は緩和されてしまう、従って、こ
のようなタイプでは、ガラス転位温度以上に昇温しでは
いけない。熱処理後の冷却過程では、逆に、ガラス表面
に引張り応力が働くが、これは高温で生じた圧縮歪を解
放するのに使われるため問題にならない。However, if the temperature is raised above the glass transition temperature of the glass in the coated material, the glass will have fluidity and the particles will be rearranged, and the compressive stress will be relaxed. , the temperature should not be raised above the glass transition temperature. Conversely, during the cooling process after heat treatment, tensile stress is applied to the glass surface, but this is not a problem because it is used to release the compressive strain generated at high temperatures.
但し、冷却中に引張り応力がかかるような場所には、被
着させない方が良いため、ガラス外面にはこのような被
覆層は適当でない。今後、このように高温状態で応力を
働かせ、熱処理中のバルブの破壊を防止するものを「第
1の被覆層」と呼ぶことにする。However, such a coating layer is not suitable for the outer surface of the glass, as it is better not to deposit it in areas where tensile stress is applied during cooling. From now on, the layer that exerts stress under high temperature conditions to prevent the bulb from breaking during heat treatment will be referred to as the "first coating layer."
本実施例では、内部導電性被膜を形成する物質に含有さ
れる導電性物質として酸化すず(SnO□)。In this example, tin oxide (SnO□) is used as the conductive substance contained in the substance forming the internal conductive film.
酸化アンチモン(sb2o、)を選んだが、特にこの物
質に限定されるものではなく、例えば酸化レニウム(R
eOi )−酸化ニッケル(NiO) 、 酸化バナ
ジウム(v203)なども使用することが可能である。Although antimony oxide (sb2o,) was selected, it is not limited to this substance; for example, rhenium oxide (R
eOi)-nickel oxide (NiO), vanadium oxide (v203), etc. can also be used.
次に、本実施例の他の実施例について説明する。Next, another example of this example will be described.
ガラス外囲器が高温状態の時被着させて、常温で応力を
与え外囲器の静耐気圧特性を向上させる被膜として第2
の被覆層を形成する場合について説明する。A second coating that is applied when the glass envelope is in a high temperature state, applies stress at room temperature, and improves the static pressure resistance characteristics of the envelope.
The case of forming the coating layer will be explained.
これはガラス外囲器に、このガラス外囲器よりも熱膨張
係数が小さい低融点ガラスを被着させて、ガラス転位温
度以上に昇温し、低融点ガラスに流動性を持たせた状態
で5〜20−の厚さに被覆するものである。この場合、
高温状態では応力はかからない。This is done by coating a glass envelope with a low-melting glass whose coefficient of thermal expansion is smaller than that of the glass envelope, raising the temperature above the glass transition temperature, and making the low-melting glass have fluidity. The coating is applied to a thickness of 5 to 20 mm. in this case,
No stress is applied at high temperatures.
これを冷却した場合に、被覆層の熱膨張係数がガラス外
囲器のそれよりも小さいため、被覆層とガラス外囲器の
ガラス外囲器側界面には収縮量の差から引張り応力が働
き、被覆層側に圧縮応力が働く。但し、この場合には、
被覆層とガラス外囲器界面が均一に接着されているので
、表面の微小クラックが問題になるのは被覆層の表面に
なる。When this is cooled, the thermal expansion coefficient of the coating layer is smaller than that of the glass envelope, so tensile stress acts on the interface between the coating layer and the glass envelope on the glass envelope side due to the difference in the amount of shrinkage. , compressive stress acts on the coating layer side. However, in this case,
Since the interface between the coating layer and the glass envelope is uniformly bonded, microcracks on the surface become a problem on the surface of the coating layer.
この場合、被覆層の厚さはあまり厚くない方がよい。In this case, the thickness of the coating layer should not be too thick.
常温にまで冷却された後は、被覆層の表面がガラスの表
面になり、この部分に圧縮応力が働くため、静耐気圧特
性を上げる効果を持つ。After being cooled to room temperature, the surface of the coating layer becomes a glass surface, and compressive stress acts on this area, which has the effect of increasing static pressure resistance.
この場合には、製造工程中の熱処理以前に、別の熱処理
を施してガラス外囲器に被着させておき、前もって圧縮
応力を与えておく方が良い。In this case, it is better to apply a separate heat treatment to the glass envelope and apply compressive stress in advance before the heat treatment during the manufacturing process.
このような第2の被覆層をガラス外囲器に被着した例を
第6図(c)および第7図を用いて説明する。すなわち
、第6図(c)に示すように、ガラス外囲器、特にパネ
ル外面の周辺部には、排気炉中の降温過程で強い引張り
応力(F3)が働く。この部分、すなわち第7図に示す
パネル(10)の外周辺部に全周に亘って、前記第2の
被覆層(60)を被着形成する。第7図において、 (
33)は前記第1の被覆層で、製造工程中の熱処理で被
覆される。前記第2の被覆層(60)は、一部パネル前
面にかかるため、透明な低融点ガラスが望ましく、封着
、排気などの製造工程中の熱処理の前に、熱処理を加え
ることにより予め強い固着力で被覆させておくことが望
ましい。An example in which such a second coating layer is applied to a glass envelope will be described with reference to FIGS. 6(c) and 7. That is, as shown in FIG. 6(c), a strong tensile stress (F3) acts on the glass envelope, especially around the outer surface of the panel, during the cooling process in the exhaust furnace. The second coating layer (60) is formed over the entire circumference of this portion, that is, the outer peripheral portion of the panel (10) shown in FIG. In Figure 7, (
33) is the first coating layer, which is coated by heat treatment during the manufacturing process. Since the second coating layer (60) partially covers the front surface of the panel, it is preferable to use transparent low-melting glass, and the second coating layer (60) is preferably made of transparent low-melting glass, and is made to have a strong hardness by applying heat treatment before heat treatment during manufacturing processes such as sealing and exhaust. It is desirable to cover it with adhesive strength.
また、ファンネル(11)の外面には、封着炉の降温過
程で、引張り応力が働くので、前記第1の被覆層と同タ
イプのものは好ましくなく、あえて被覆させるならば、
前記第2の被覆層と同タイプを形成するのが良い。In addition, since tensile stress acts on the outer surface of the funnel (11) during the cooling process of the sealing furnace, it is not preferable to use the same type of coating layer as the first coating layer.
It is preferable to form the same type as the second covering layer.
さらにパネル内面センターでは、前記第1の被覆層のタ
イプを用いても良いが、透明であるという条件が必要で
あるため、透明な低融点ガラスを前もって被着させてお
くのが良い。Furthermore, at the center of the inner surface of the panel, the type of first coating layer described above may be used, but it must be transparent, so it is preferable to coat it with transparent low-melting point glass in advance.
さらに、他の例としては、従来の内部導電性膜を利用す
るもので、この膜を構成する物質の中に低熱膨張のガラ
スフリット粉末を混入したものや、鉛はう酸塩ガラス以
外の低融点ガラスに導電物質を混入したものをガラス外
囲器に被着し、熱処理することにより強い固着力で被覆
しても良い。Still other examples include those that utilize a conventional internal conductive membrane with low thermal expansion glass frit powder mixed into the material that makes up the membrane, or lead-based materials with low thermal expansion other than borate glass. The glass envelope may be coated with melting point glass mixed with a conductive substance and heat treated to provide a strong adhesive force.
本発明により、近年のカラー陰極線管の大型化に伴い問
題となっているガラス外囲器の機械的強度を、ガラスの
肉厚を特に大きくすることなしに、また比較的簡単な方
法で向上させることができる。The present invention improves the mechanical strength of the glass envelope, which has become a problem as color cathode ray tubes have become larger in recent years, without particularly increasing the wall thickness of the glass, and by a relatively simple method. be able to.
第1図は本発明の詳細な説明図であるカラー陰極線管装
置の構成を示す断面図、第2図乃至第5図は本発明の実
施例の作用を説明するための部分断面図であり、第2図
は高温工程の昇温過程で働く応力を示す図、第3図は高
温工程の定温過程で働く応力と歪を示すための図、第4
図は高温工程の降温過程で働く応力を示す図、第5図は
ガラス表面に発生する微小クラックと応力集中を示すた
めの何、第6図(a )、(b )、(c )はガラス
外囲器に働く応力を説明する図であり、第6図(a)は
高温工程の昇温過程、第6図(b)は降温過程、第6図
(c)は排気炉中の外囲器の概略断面図であり、第7図
は本発明の他の実施例を説明する概略断面図である。FIG. 1 is a cross-sectional view showing the configuration of a color cathode ray tube device, which is a detailed illustration of the present invention, and FIGS. 2 to 5 are partial cross-sectional views for explaining the operation of the embodiment of the present invention. Figure 2 is a diagram showing the stress acting in the temperature rising process of the high temperature process, Figure 3 is a diagram showing the stress and strain acting in the constant temperature process of the high temperature process, and Figure 4 is a diagram showing the stress and strain acting in the constant temperature process of the high temperature process.
The figure shows the stress acting during the cooling process in a high-temperature process. Figure 5 shows the micro-cracks and stress concentration that occur on the glass surface. Figure 6 (a), (b), and (c) show the glass surface. FIG. 6(a) is a diagram illustrating the stress acting on the envelope; FIG. 6(a) shows the temperature rising process in the high-temperature process, FIG. 6(b) shows the temperature decreasing process, and FIG. 6(c) shows the outer envelope in the exhaust furnace. FIG. 7 is a schematic sectional view illustrating another embodiment of the present invention.
Claims (1)
この外囲器内に形成される蛍光面と、この蛍光面に対向
する位置に電子を放出し蛍光面を発光させる電子銃を具
備してなる陰極線管において、前記ガラス外囲器に、外
囲器との熱膨張係数の差によって応力歪を発生させる被
覆層を有することを特徴とする陰極線管。(1) A vacuum envelope made of glass and evacuated at high temperature;
In a cathode ray tube comprising a phosphor screen formed within the envelope and an electron gun that emits electrons at a position opposite to the phosphor screen to cause the phosphor screen to emit light, the glass envelope includes an outer A cathode ray tube characterized by having a coating layer that generates stress strain due to a difference in thermal expansion coefficient between the cathode ray tube and the cathode ray tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26515589A JPH03129647A (en) | 1989-10-13 | 1989-10-13 | Cathode-ray tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26515589A JPH03129647A (en) | 1989-10-13 | 1989-10-13 | Cathode-ray tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03129647A true JPH03129647A (en) | 1991-06-03 |
Family
ID=17413391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26515589A Pending JPH03129647A (en) | 1989-10-13 | 1989-10-13 | Cathode-ray tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03129647A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007132016A (en) * | 2005-11-08 | 2007-05-31 | Nippon Steel & Sumikin Metal Products Co Ltd | Ledger frame with floor, and framework scaffolding |
-
1989
- 1989-10-13 JP JP26515589A patent/JPH03129647A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007132016A (en) * | 2005-11-08 | 2007-05-31 | Nippon Steel & Sumikin Metal Products Co Ltd | Ledger frame with floor, and framework scaffolding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4810927A (en) | Color display tube with shadow mask and fabricating method thereof | |
US5017830A (en) | Color cathode ray tube having a shadow mask covered with a porous layer | |
JPH03129647A (en) | Cathode-ray tube | |
JP3272764B2 (en) | Cathode ray tube and method of manufacturing cathode ray tube | |
US3041127A (en) | Method of fabricating a cathode ray tube | |
JPH0512812B2 (en) | ||
KR950002429B1 (en) | Crt device | |
JPH03230459A (en) | Cathode-ray tube | |
JPS6091534A (en) | Manufacture of color picture tube | |
JPH0775147B2 (en) | Color picture tube | |
JPS62100934A (en) | Color picture tube | |
JPH0685304B2 (en) | Color picture tube | |
JPS60157140A (en) | Color picture tube | |
JPS61281437A (en) | Color picture tube | |
JPS60124333A (en) | Cathode ray tube and its manufacturing method | |
JPS6059625A (en) | Manufacture of color picture tube | |
JPH05258670A (en) | Manufacture of cathode-ray tube | |
JPH07105853A (en) | Manufacture of cathode-ray tube | |
JP2000106109A (en) | Color cathode-ray tube | |
JPS60225337A (en) | Color picture tube | |
JPS60148036A (en) | Color picture tube | |
JP2004022271A (en) | Cathode-ray tube | |
JP2007528582A (en) | Lightweight and high deflection angle cathode ray tube and method of manufacturing the same | |
JPH03176939A (en) | Manufacture of cathode-ray tube | |
JPH04332B2 (en) |