JPH0317598A - Removal system for residual heat of nuclear reacter - Google Patents

Removal system for residual heat of nuclear reacter

Info

Publication number
JPH0317598A
JPH0317598A JP1150462A JP15046289A JPH0317598A JP H0317598 A JPH0317598 A JP H0317598A JP 1150462 A JP1150462 A JP 1150462A JP 15046289 A JP15046289 A JP 15046289A JP H0317598 A JPH0317598 A JP H0317598A
Authority
JP
Japan
Prior art keywords
pressure
reactor
pressure suppression
containment vessel
suppression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1150462A
Other languages
Japanese (ja)
Inventor
Tsugio Mori
森 次雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1150462A priority Critical patent/JPH0317598A/en
Publication of JPH0317598A publication Critical patent/JPH0317598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To decrease operators' load and to enable keeping an integrity of both a pressure suppression room and a containment vessel by actuating automatically a nuclear reactor water injection mode by a signal of a containment vessel pressure high or a nuclear reactor water level low. CONSTITUTION:Although a nuclear water injection is automatically actuated by a signal of a pressure suppression room pressure high D or a pressure suppression room temperature high E, a water injection mode A is predominantly actuated when a demand signal for a nuclear reactor water injection mode A is indicated. Moreover, to not-allow-when-an-subsignal-exists F, a signal of a containment vessel pressure high B or a nuclear reactor water level low C is fed as a subsignal. Then, in case of the pressure high B or the water level low C, the water injection mode A functions. However, in case that the pressure high D or the temperature high E occurs by whatever reasons, a pressure suppression room cooling down mode G is automatically actuated and the pressure suppression room can be quickly cooled down. In this way, for a cooling down of a reactor core, whole conventional functions are reserved and for a cooling down of a pressure suppression pool, an automatic cooling down can be performed.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は原子炉停止時の炉心の崩壊熱,顕熱を除去する
ための原子炉残留熱除去系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to a nuclear reactor residual heat removal system for removing decay heat and sensible heat from a reactor core when the reactor is shut down.

(従来の技術) 原子炉残留熱除去系は原子炉の運転を停止した後、運転
中に核分裂によって生じた核分裂生成物の放射性崩壊熱
を炉心から除去するための系統である。
(Prior Art) A nuclear reactor residual heat removal system is a system for removing radioactive decay heat of fission products generated by nuclear fission during operation from the reactor core after the operation of the nuclear reactor is stopped.

従来の原子炉残留熱除去系は原子炉注水モードと格納容
器冷却モードとの両方モードを兼ねている。第3図に示
したように原子炉注水モードAは格納容器圧力高Bまた
は原子炉水位低のCの信号によって自動起動する。格納
容器冷却モードは手動起動であり、運転員が炉水位の回
復などを確認してから格納容器冷却モードに切り替える
手順となっており、運転員への負担となっている。格納
容器冷却モードは格納容器スプレイと圧力抑制室冷却と
の二つに分かれている。格納容器スプレイについては格
納容器内の機器,電気品に水滴がかかる恐れがあり、慎
重に判断して手動で作動させなければならない。
Conventional reactor residual heat removal systems serve both reactor water injection mode and containment vessel cooling mode. As shown in FIG. 3, reactor water injection mode A is automatically activated by a signal C indicating high containment vessel pressure B or low reactor water level. Containment vessel cooling mode is activated manually, and operators must confirm that the reactor water level has recovered before switching to containment vessel cooling mode, which places a burden on operators. The containment vessel cooling mode is divided into two: containment vessel spray and pressure suppression chamber cooling. Regarding containment vessel spray, there is a risk of water droplets splashing onto the equipment and electrical components inside the containment vessel, so careful judgment must be made when operating it manually.

圧力抑制室冷却はこの圧力抑制室内には冷却水がかかっ
て問題となる機器などがないため、自動化することは容
易である。実際に圧力抑制室圧力高信号で圧力抑制室ス
プレイを作動させる原子炉残留熱除去系は例えば実開昭
56−48095号公報に開示された原子炉格納容器ス
プレイ装置が知られている。
Cooling of the pressure suppression chamber is easy to automate because there are no devices in the pressure suppression chamber that would be exposed to cooling water. As a reactor residual heat removal system that actually operates the pressure suppression chamber spray in response to a pressure suppression chamber pressure high signal, for example, a reactor containment vessel spray device disclosed in Japanese Utility Model Application Publication No. 56-48095 is known.

従来の原子炉残留熱除去系を第4図から第7図を参照し
ながら説明する。第4図は原子炉残留熱除去系の系統図
を示している。
A conventional nuclear reactor residual heat removal system will be explained with reference to FIGS. 4 to 7. Figure 4 shows a system diagram of the reactor residual heat removal system.

第4図において、原子炉1は格納容器2内に格納されて
おり、格納容器2内の下部には圧力抑制室3が設けられ
、圧力抑制室3にはプール水中にベント管4の先端開口
が没入されて設けられている。格納納容器2内には格納
容器スプレイスパージャ5が、圧力抑制室3内には圧力
抑制室スプレイスパージャ6がそれぞれ設けられている
。圧力抑制室3の下部にはポンプ7および熱交換器8を
有する格納容器スプレイライン9の一端が接続されてお
り、この格納容器スプレイライン9の他端は格納容器ス
プレイスパージャ5に接続している。
In FIG. 4, a nuclear reactor 1 is housed in a containment vessel 2, and a pressure suppression chamber 3 is provided in the lower part of the containment vessel 2. In the pressure suppression chamber 3, the tip of a vent pipe 4 is opened in pool water. is immersed in it. A containment vessel spray sparger 5 is provided in the containment vessel 2, and a pressure suppression chamber spray sparger 6 is provided in the pressure suppression chamber 3. One end of a containment spray line 9 having a pump 7 and a heat exchanger 8 is connected to the lower part of the pressure suppression chamber 3, and the other end of the containment spray line 9 is connected to a containment spray sparger 5. .

また、格納容器スプレイライン9から分岐して原子炉注
水ラインの一端が接続され、この原子炉注水ライン10
の他端は原子炉1に接続している。
Further, one end of the reactor water injection line is connected to the reactor water injection line branched from the containment vessel spray line 9, and this reactor water injection line 10
The other end is connected to the reactor 1.

圧力抑制室スプレイスパージャ6には圧力抑制室スプレ
イライン11の一端が接続され、圧力抑制室スプレイラ
イン1lの他端は格納容器スプレイライン9に接続して
いる。
One end of a pressure suppression chamber spray line 11 is connected to the pressure suppression chamber spray sparger 6 , and the other end of the pressure suppression chamber spray line 1 l is connected to a containment vessel spray line 9 .

また、圧力抑制室3内と格納容器スプレイライン9との
間に圧力抑制室戻りライン12が接続されている。なお
、図中符号I3は真空破壊弁. 14は逃がし安全弁,
15は格納容器圧力計. +6は圧力抑制室圧力計, 
17は圧力抑制室温度計をそれぞれ示している。
Further, a pressure suppression chamber return line 12 is connected between the inside of the pressure suppression chamber 3 and the containment vessel spray line 9. In addition, the symbol I3 in the figure is a vacuum breaker valve. 14 is a relief safety valve,
15 is the containment vessel pressure gauge. +6 is the pressure suppression chamber pressure gauge,
17 indicates a pressure suppression chamber thermometer.

しかして、原子炉の冷却材喪失事故時に第3図に示した
格納容器圧力高Bまたは原子炉水位低Cの信号で起動す
る原子炉注水モードAによって第5図に太線で記した系
路に沿って残留熱除去系は作動する。原子炉の水位が回
復された後は運転員の判断によって第6図の太線で記し
た系路で格納容器スプレイモードに手動で切り替えられ
る。
Therefore, in the event of a reactor loss of coolant accident, reactor water injection mode A, which is activated by a signal of high containment vessel pressure B or low reactor water level C shown in FIG. 3, will cause the system shown in bold lines in FIG. The residual heat removal system operates accordingly. After the water level in the reactor has been restored, the operator can manually switch to the containment vessel spray mode using the route shown in bold line in Figure 6 at the operator's discretion.

原子炉の冷却材喪失事故時以外で炉内蒸気が直接圧力抑
制室の空間部に流入し圧力抑制室圧力高または温度高が
発生した場合には第7図に示したように圧力抑制室の圧
力計16または温度計17からの信号によって圧力抑制
室冷却モードで自動起動することが提案されている。
If reactor steam directly flows into the suppression chamber space and high pressure or temperature occurs in the suppression chamber other than during a reactor loss of coolant accident, as shown in Figure 7, It has been proposed to automatically start in the suppression chamber cooling mode by a signal from the pressure gauge 16 or the thermometer 17.

(発明が解決しようとする課題) しかしながら、原子炉残留熱除去系は原子炉(炉心)注
水機能と格納容器冷却機能とを兼ね備えているので炉心
の冷却が必要な場合には炉心注水機能を優先して作動さ
せる必要がある。したがって、上記2つの機能を使いわ
けて有効に作動させることが必要である。前述した引用
公報には後者のみに着目しており、炉心の注水機能が優
先されるようには開示されていない。
(Problem to be solved by the invention) However, since the reactor residual heat removal system has both a reactor (core) water injection function and a containment vessel cooling function, when core cooling is required, priority is given to the core water injection function. need to be activated. Therefore, it is necessary to use the two functions described above to operate effectively. The cited publication mentioned above focuses only on the latter, and does not disclose that priority is given to the water injection function of the reactor core.

従来の原子炉残留熱除去系は前述1,たように運転員の
負荷増があるとともに圧力抑制室および格納容器の健全
性に難点がある課題があった。
Conventional nuclear reactor residual heat removal systems have the problem of increased workload on operators as described in 1 above, as well as problems with the integrity of the pressure suppression chamber and containment vessel.

本発明は上記点に鑑みてなされたもので、原子炉残留熱
除去系の機能を最大限自動化することとし、格納容器冷
却うち、圧力抑制室冷却を自動起動とし、かつ炉心冷却
を優先して、運転員の負荷を低減するとともに圧力抑制
室および格納容器の健全性を保つことができる原子炉残
留熱除去系を提供することにある。
The present invention has been made in view of the above points, and aims to automate the functions of the reactor residual heat removal system to the maximum extent possible, automatically start the pressure suppression chamber cooling among the containment vessel cooling, and give priority to the core cooling. An object of the present invention is to provide a nuclear reactor residual heat removal system that can reduce the load on operators and maintain the integrity of a pressure suppression chamber and a containment vessel.

[発明の構成] (課題を解決するための手段) 本発明は、沸騰水型原子炉の炉心注水機能と原子炉圧力
抑制室を有する原子炉格納容器の格納容器冷却機能とを
兼ね備えた原子炉残留熱除去系において、前記圧力抑制
室の圧力高信号または温度高信号が発生した場合、前記
圧力抑制室が冷却モードで自動起動し、原子炉水の水位
低信号が発生した場合、炉心への注水モードを優先して
自動起動するか、または前記原子炉格納容器の圧力高信
号で前記圧力抑制室の冷却モードを自動起動するように
構或したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a nuclear reactor that combines the core water injection function of a boiling water reactor and the containment vessel cooling function of a reactor containment vessel having a reactor pressure suppression chamber. In the residual heat removal system, when a high pressure signal or a high temperature signal in the pressure suppression chamber occurs, the pressure suppression chamber automatically starts in cooling mode, and when a low water level signal in the reactor water occurs, the pressure suppression chamber automatically starts up in cooling mode. The present invention is characterized in that the water injection mode is automatically started with priority, or the cooling mode of the pressure suppression chamber is automatically started in response to a high pressure signal of the reactor containment vessel.

(作 用) 本発明の原子炉残留熱除去系は格納容器圧力高または原
子炉水位低の信号により原子炉注水モードとして自動的
に作動する。また、圧力抑制室圧力高または圧力抑制室
温度高によって圧力抑制室冷却モードで自動的に作動す
る。しかし、仮に同時に両方のモード要求の信号が出た
場合には炉心の冷却を優先する。即ち、原子炉注水モー
ドとして作動する。さらに、圧力抑制室で何らかの原因
で圧力ないしは温度が上った場合には、速やかに圧力抑
制室冷却モードで自動的に作動し、圧力抑制室の冷却を
行なうことができる。
(Function) The reactor residual heat removal system of the present invention automatically operates in reactor water injection mode in response to a signal indicating high containment vessel pressure or low reactor water level. In addition, it automatically operates in the suppression chamber cooling mode depending on the pressure in the suppression chamber or the temperature in the pressure suppression chamber. However, if both mode request signals are issued at the same time, priority is given to core cooling. That is, it operates as a reactor water injection mode. Furthermore, if the pressure or temperature rises in the pressure suppression chamber for some reason, the pressure suppression chamber cooling mode can be automatically activated to cool the pressure suppression chamber.

(実施例) 第1図の起動回路図を参照しながら本発明に係る原子炉
残留熱除去系の第1の実施例について説明する。なお、
本実施例においては従来例と同一部分の説明を省略し、
その要点のみ説明する。
(Embodiment) A first embodiment of the nuclear reactor residual heat removal system according to the present invention will be described with reference to the startup circuit diagram of FIG. In addition,
In this example, explanation of the same parts as the conventional example is omitted,
I will only explain the main points.

また、原子炉格納容器および原子炉周辺における配管系
統も第4図に示したものと同様なのでその説明も省略す
る。
Further, the reactor containment vessel and the piping system around the reactor are also similar to those shown in FIG. 4, so their description will be omitted.

第1図において、圧力抑制室圧力高Dまたは圧力抑制室
温度高Eの信号で自動起動させるが、原子炉注水モード
Aの要求信号が出ている場合には原子炉注水モードAを
優先作動させる。
In Fig. 1, it is automatically activated by a signal of pressure suppression chamber pressure high D or pressure suppression chamber temperature high E, but if a request signal for reactor water injection mode A is issued, reactor water injection mode A is activated with priority. .

なお、図中Fは補助信号存在時不許可を、Gは圧力抑制
室冷却モードを示しており、補助信号存在時不許可Fに
は格納容器圧力高Bまたは原子炉水位低Cの信号が補助
信号として入力する。
In the figure, F indicates disallowance when an auxiliary signal is present, and G indicates the suppression chamber cooling mode, and F indicates disallowance when an auxiliary signal is present. Input as a signal.

しかして、この実施例では格納容器圧力高Bまたは原子
炉水位低Cの信号の場合には従来と同様に原子炉注水モ
ードAとして機能する。しかし、何らかの原因によって
圧力抑制室圧力高Dまたは温度高Eが発生した場合には
圧力抑制室冷却モードGとして自動的に起動し、圧力抑
制室を速やかに冷却できる。
Therefore, in this embodiment, when the containment vessel pressure is high B or the reactor water level is low C, the reactor water injection mode A functions as in the conventional case. However, if a high pressure D or a high temperature E in the pressure suppression chamber occurs for some reason, the pressure suppression chamber cooling mode G is automatically activated, and the pressure suppression chamber can be quickly cooled.

このようにして炉心の冷却に関しては従来と同様の機能
を確保し、圧力抑制プール冷却に関しては自動で冷却で
きるので、運転員への負担を低減しかつ原子炉および格
納容器の健全性を保つことができる。第2図は本発明の
第2の実施例を示したもので、第■図と同一部分には同
一符号を付して重複する部分の説明を省略する。
In this way, the same function as before for core cooling is ensured, and the pressure suppression pool can be cooled automatically, reducing the burden on operators and maintaining the integrity of the reactor and containment vessel. I can do it. FIG. 2 shows a second embodiment of the present invention, and the same parts as in FIG.

第2図は格納容器圧力高B信号で圧力抑制室冷却モード
Gを自動作動させ、また原子炉水位低C信号で原子炉注
水モードAを自動作動させる。両方のモードG, Aが
同時に要求される場合には原子炉注水モードAが優先さ
れる。この実施例で冷却材喪失事故時に原子炉注水モー
ドAで起動することは従来と同様である。また、仮に圧
力抑制室圧力が上昇した場合、圧力は第7図に示した真
空破壊弁13を開とし格納容器内に流入するので速やか
に格納容器圧力高Bの信号がでるものと予想される。こ
れによって圧力抑制室冷却モードGが自動作動し、圧力
抑制室の健全性を保つことができる。
In FIG. 2, the pressure suppression chamber cooling mode G is automatically activated in response to a high containment vessel pressure B signal, and the reactor water injection mode A is automatically activated in response to a low reactor water level C signal. If both modes G and A are required at the same time, reactor water injection mode A takes priority. In this embodiment, starting in reactor water injection mode A in the event of a loss of coolant accident is the same as in the conventional case. Furthermore, if the pressure in the pressure suppression chamber were to rise, the pressure would open the vacuum breaker valve 13 shown in Figure 7 and flow into the containment vessel, so it is expected that a signal indicating high pressure B in the containment vessel would be issued immediately. . As a result, the pressure suppression chamber cooling mode G is automatically activated, and the health of the pressure suppression chamber can be maintained.

[発明の効果] 本発明によれば、原子炉の冷却材喪失事故時には従来と
同様原子炉注水モードとして作動し、原子炉の健全性を
保つことができる。
[Effects of the Invention] According to the present invention, in the event of a loss of coolant accident in a nuclear reactor, the reactor water injection mode can be operated in the same manner as in the past, and the integrity of the nuclear reactor can be maintained.

また、圧力抑制室の圧力が上昇するような事象に関して
は圧力抑制室冷却モードとして作動し、圧力抑制室の健
全性を保つことができる。
Further, in the case of an event in which the pressure in the pressure suppression chamber increases, the pressure suppression chamber cooling mode is activated, and the health of the pressure suppression chamber can be maintained.

したがって、これらと相俟って運転員の負荷を低減して
原子炉の健全性と圧力抑制室,格納容器の健全性を保つ
ことができる。
Therefore, together with these factors, the load on the operators can be reduced and the health of the reactor, the suppression chamber, and the containment vessel can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係る原子炉残留熱除去系
の第1および第2の実施例をそれぞれ示す起動回路図、
第3図は従来の原子炉残留熱除去系を示す起動回路図、
第4図から第7図は従来の原子炉残留熱除去系を説明す
るための図で、第4図は基本構成系統図、第5図は原子
炉注水モードとしての作動時を示す系統図、第6図は格
納容器スプレイモードとしての作動時を示す系統図、第
7図は圧力抑制室冷却モードとしての作動時を示す系統
図である。 ■・・・原子炉 2・・・格納容器 3・・・圧力抑制室 4・・・ベント管 5・・・格納容器スプレイスパージャ 6・・・圧力抑制室スプレイスパージャ7・・・ポンプ 8・・・熱交換器 9・・・格納容器スプレイライン 0・・・原子炉注水ライン 1・・・圧力抑制室スプレイライン 2・・・圧力抑制室戻りライン 3・・・真空破壊弁 4・・・逃し安全弁 5・・・格納容器圧力計 6・・・圧力抑制室圧力計 7・・・圧力抑制室温度計 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第 3 図 第 4 図
1 and 2 are start-up circuit diagrams respectively showing the first and second embodiments of the nuclear reactor residual heat removal system according to the present invention,
Figure 3 is a startup circuit diagram showing a conventional nuclear reactor residual heat removal system.
Figures 4 to 7 are diagrams for explaining the conventional nuclear reactor residual heat removal system, in which Figure 4 is a basic configuration diagram, Figure 5 is a diagram showing the operation in reactor water injection mode, FIG. 6 is a system diagram showing the operation in the containment vessel spray mode, and FIG. 7 is a system diagram showing the operation in the pressure suppression chamber cooling mode. ■ Reactor 2 Containment vessel 3 Suppression chamber 4 Vent pipe 5 Containment vessel spray sparger 6 Suppression chamber spray sparger 7 Pump 8・Heat exchanger 9... Containment vessel spray line 0... Reactor water injection line 1... Pressure suppression chamber spray line 2... Pressure suppression chamber return line 3... Vacuum breaker valve 4... Relief Safety valve 5...Containment vessel pressure gauge 6...Pressure suppression chamber pressure gauge 7...Pressure suppression chamber thermometer (8733) Agent: Yoshiaki Inomata, patent attorney (and others)
1 person) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 沸騰水型原子炉の炉心注水機能と原子炉圧力抑制室を有
する原子炉格納容器の格納容器冷却機能とを兼ね備えた
原子炉残留熱除去系において、前記圧力抑制室の圧力高
信号または温度高信号が発生した場合、前記圧力抑制室
が冷却モードで自動起動し、原子炉水の水位低信号が発
生した場合、炉心への注水モードを優先して自動起動す
るか、または前記原子炉格納容器の圧力高信号で前記圧
力抑制室の冷却モードを自動起動するように構成したこ
とを特徴とする原子炉残留熱除去系。
In a reactor residual heat removal system that has both a core water injection function of a boiling water reactor and a containment vessel cooling function of a reactor containment vessel having a reactor pressure suppression chamber, a high pressure signal or a high temperature signal of the pressure suppression chamber. If this occurs, the pressure suppression chamber automatically starts in cooling mode, and if a low reactor water level signal occurs, it automatically starts with priority given to water injection mode to the reactor core, or A nuclear reactor residual heat removal system, characterized in that the system is configured to automatically start the cooling mode of the pressure suppression chamber in response to a high pressure signal.
JP1150462A 1989-06-15 1989-06-15 Removal system for residual heat of nuclear reacter Pending JPH0317598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1150462A JPH0317598A (en) 1989-06-15 1989-06-15 Removal system for residual heat of nuclear reacter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1150462A JPH0317598A (en) 1989-06-15 1989-06-15 Removal system for residual heat of nuclear reacter

Publications (1)

Publication Number Publication Date
JPH0317598A true JPH0317598A (en) 1991-01-25

Family

ID=15497451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1150462A Pending JPH0317598A (en) 1989-06-15 1989-06-15 Removal system for residual heat of nuclear reacter

Country Status (1)

Country Link
JP (1) JPH0317598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036302A1 (en) * 1996-03-25 1997-10-02 Siemens Aktiengesellschaft Method and device for making safe the discharge of residual heat from a nuclear power plant reactor
KR100388544B1 (en) * 2000-11-10 2003-06-27 (주)동양환기 Pressure welding apparatus for blower casing forming machine
CN105469840A (en) * 2015-11-25 2016-04-06 中广核工程有限公司 Cooling method, device and system for loss-of-coolant accident of first loop of nuclear power station
JP2017120226A (en) * 2015-12-28 2017-07-06 株式会社東芝 Cooling installation and nuclear power plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036302A1 (en) * 1996-03-25 1997-10-02 Siemens Aktiengesellschaft Method and device for making safe the discharge of residual heat from a nuclear power plant reactor
US6026138A (en) * 1996-03-25 2000-02-15 Siemens Aktiengesellschaft Method and device for safeguarding the discharge of residual heat from a reactor of a nuclear power station
KR100388544B1 (en) * 2000-11-10 2003-06-27 (주)동양환기 Pressure welding apparatus for blower casing forming machine
CN105469840A (en) * 2015-11-25 2016-04-06 中广核工程有限公司 Cooling method, device and system for loss-of-coolant accident of first loop of nuclear power station
JP2017120226A (en) * 2015-12-28 2017-07-06 株式会社東芝 Cooling installation and nuclear power plant

Similar Documents

Publication Publication Date Title
JP5675256B2 (en) Nuclear facility control system
JPH0317598A (en) Removal system for residual heat of nuclear reacter
JP2003270374A (en) Containment spray control device
Parzer et al. Feed-and-bleed procedure mitigating the consequences of a steam generator tube rupture accident
JPH1090468A (en) Emergency core cooling system
JPS6346397B2 (en)
JPH08201561A (en) Safety system reactor container
CN112083643A (en) Thermal protection switching method and device for thermal power plant
US5145638A (en) Rpv housed atws poison tank
JP3130095B2 (en) Method and apparatus for removing decay heat of boiling water reactor
JPH01202694A (en) Emergency reactor core cooling system of nuclear reactor
JPH06201880A (en) Boric acid flowout prevention device
JPS58213290A (en) Partial container spray system at accident
JPH02222878A (en) Residual heat removal system of nuclear power plant
JPS5915898A (en) Device for controlling primary coolant temperature and water level of vapor generator in atomic power plant
JPS61243397A (en) Emergency core cooling device for nuclear reactor
JPS6388496A (en) Emergency leakage preventive device
JPS63247693A (en) Residual-heat removal device
JPS63171394A (en) Residual heat removal device
JPH04324396A (en) Vent command device for reactor containment
JP2523974B2 (en) Containment vessel
JPS6232440B2 (en)
JPH08233990A (en) Reactor safety system and its functioning state indication method
JPH0227295A (en) Reactor emergency core cooling system
JPS6247279B2 (en)