JPH03175604A - High-temperature superconductive permanent magnet - Google Patents

High-temperature superconductive permanent magnet

Info

Publication number
JPH03175604A
JPH03175604A JP31602989A JP31602989A JPH03175604A JP H03175604 A JPH03175604 A JP H03175604A JP 31602989 A JP31602989 A JP 31602989A JP 31602989 A JP31602989 A JP 31602989A JP H03175604 A JPH03175604 A JP H03175604A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
critical
permanent magnet
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31602989A
Other languages
Japanese (ja)
Inventor
Shoichi Yokoyama
彰一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31602989A priority Critical patent/JPH03175604A/en
Publication of JPH03175604A publication Critical patent/JPH03175604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an arbitrary magnetic-field distribution by one exciting operation without the requirement for a permanent current switch by cooling a high-temperature superconductive permanent magnet, thereafter applying an external magnetic field which is twice or more the critical magnetic field, and exciting the magnet under the critical state. CONSTITUTION:A high-temperature superconductive permanent magnet 1 is molded as a unitary body or formed in an arbitrary shape in a divided type. An external magnetic field (b) which is twice a critical magnetic field is applied on the permanent magnet after the high-temperature superconductive permanent magnet 1 is cooled. Thus, the magnet is excited in the critical state. For example, the superconductive magnet 1 comprising an oxide superconductor is cooled to the critical temperature or lower. Thereafter, an external magnetic field (b) from an exciting magnet 4 is increased to a value higher than J. Then, the magnetic flux starts intrusion into the inside of the superconductive magnet 1 at the critical magnetic field Be1:K. Then, the magnetic field is further increased. The entire superconductor becomes the critical state at Be2:L which is about twice the Be1. Then a uniform superconducting current flows. Even if the external magnetic field is decreased to zero from this state, the magnetic flux intruded into the inside of the superconductive magnet 1 is hardly decreased but confined (N).

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は高温超電導永久磁石、例えば磁気共鳴イメー
ジング等に用いられる高温超電導永久磁石に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a high temperature superconducting permanent magnet, for example, a high temperature superconducting permanent magnet used for magnetic resonance imaging and the like.

[従来の技術] 第3図は、例えば特開昭61−49403号公報に示さ
れた従来の超電導磁石を示す断面図であり、図において
(1)は超電導磁石、(2)は永久電流スイッチ、(3
)は電流リードである。
[Prior Art] Fig. 3 is a sectional view showing a conventional superconducting magnet disclosed in, for example, Japanese Patent Application Laid-Open No. 61-49403, in which (1) is a superconducting magnet and (2) is a persistent current switch. ,(3
) is the current lead.

超電導永久磁石は永久電流スイッチを用い、外部電源よ
り所定の磁界まで励磁している。しかし、永久電流スイ
ッチを用いる場合、超電導線端部に、超電導接続が必要
であり、また、任意の磁界分布を得るために超電導線を
種々の形状に巻線し、それぞれに永久電流スイッチを設
け、個々に励磁する必要がある。
Superconducting permanent magnets use persistent current switches and are excited to a predetermined magnetic field by an external power source. However, when using a persistent current switch, a superconducting connection is required at the end of the superconducting wire, and in order to obtain an arbitrary magnetic field distribution, the superconducting wire is wound into various shapes, and a persistent current switch is attached to each. , must be individually excited.

[発明が解決しようとする課題] 従来の超電導永久磁石は、以上のように永久電流スイッ
チを用い、外部電源より所定の磁界まで励磁していたの
で、超電導線端部において、超電導接続が必要であり、
また、任意の磁界分布を得るために超電導線を種々の形
状に巻線し、それぞれに永久電流スイッチを設け、個々
に励磁をするため複雑な作業を必要とするという課題が
あった。
[Problem to be solved by the invention] Conventional superconducting permanent magnets use persistent current switches as described above and are excited to a predetermined magnetic field from an external power supply, so superconducting connections are required at the ends of superconducting wires. can be,
Another problem was that in order to obtain an arbitrary magnetic field distribution, superconducting wires were wound into various shapes, each with a persistent current switch, and complicated work required to excite each one individually.

この発明は、上記のような課題を解決するためになされ
たもので、永久電流スイッチを必要とせず、−度の励磁
作業で任意の磁界分布を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to obtain an arbitrary magnetic field distribution with -degree excitation work without requiring a persistent current switch.

[課題を解決するための手段] この発明に係る高温M電導永久磁石は、高温超電導永久
磁石を冷却後に臨界磁界の2倍以上の外部磁界を印加す
ることにより、臨界状態で励磁するようにしたものであ
る。
[Means for Solving the Problems] The high-temperature superconducting permanent magnet according to the present invention is made to be excited in a critical state by applying an external magnetic field that is twice or more of the critical magnetic field after cooling the high-temperature superconducting permanent magnet. It is something.

[作用] この発明における高温超電導永久磁石は、磁石が任意形
状に一体化成形されているため、巻線工程が無くなり超
電導接続が不要である。また、臨界状態で励磁するため
、臨界磁界の2倍以上の外部磁界を印加するだけの単純
な作業でよく、高温超電導体内はほぼ均一な電流分布を
有するので、任意形状に加工することにより任意の磁界
分布を得ることができる。
[Function] In the high temperature superconducting permanent magnet of the present invention, since the magnet is integrally molded into an arbitrary shape, there is no need for a winding process and no superconducting connection is required. In addition, since the magnetization is carried out in a critical state, it is only necessary to apply an external magnetic field that is twice or more than the critical magnetic field, and since the high-temperature superconductor has a nearly uniform current distribution, it can be processed into any desired shape. magnetic field distribution can be obtained.

[実施例ゴ 以下、この発明の一実施例を図について説明する。[Example Go An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す断面図であり、図に
おいて、(1)は例えばイツトリウム系酸化物超電導体
からなる超電導磁石、(4)は励磁用磁石である。
FIG. 1 is a sectional view showing one embodiment of the present invention, in which (1) is a superconducting magnet made of, for example, a yttrium-based oxide superconductor, and (4) is an excitation magnet.

次に具体的な実施例の励磁方法について説明する。先ず
、超電導磁石を臨界温度(例えばイツトリウム系酸化物
の場合95K)以下に冷却したのち、第2図のように外
部磁界をJより増加させると臨界磁界Bel:により超
電導磁石内部に磁束が侵入しはじめる。さらに磁界を増
加させBelの約2倍Be2: L”’Q超電導体全体
が臨界状態になり、均一な超電導電流が流れている。こ
の状態より外部磁界をゼロまで減少させても、超電1f
fQ石内部に侵入した磁束はほとんど減少せずに閉じ込
められる(N)。また、第2図に示すように、Be2を
越える外部磁界を印加しても、同じ効果が得られること
から、励磁時の外部磁界は精度の無いものでも良い。ま
た、外部磁界がゼロになった状態で励磁用の磁石(4)
は取り外しても良い。
Next, the excitation method of a specific example will be explained. First, after cooling the superconducting magnet to below the critical temperature (for example, 95 K in the case of yttrium oxide), when the external magnetic field is increased from J as shown in Figure 2, magnetic flux invades the inside of the superconducting magnet due to the critical magnetic field Bel:. Start. By further increasing the magnetic field, the entire Be2:L"'Q superconductor enters a critical state, which is about twice as high as Bel, and a uniform superconducting current flows. Even if the external magnetic field is reduced from this state to zero, the superconductor 1f
The magnetic flux that has entered the inside of the fQ stone is confined with almost no reduction (N). Further, as shown in FIG. 2, the same effect can be obtained even if an external magnetic field exceeding Be2 is applied, so the external magnetic field during excitation may not be accurate. Also, when the external magnetic field is zero, the excitation magnet (4)
may be removed.

なお、この発明に係る高温超電導体はイツトリウム系に
限らず、例えばビスマス系、タリウム系などの他の酸化
物超電導体、または、ニオブ系の金属系超電導体であっ
てもよく、上記実施例と同様の効果を奏する。
The high-temperature superconductor according to the present invention is not limited to yttrium-based superconductors, but may be other oxide superconductors such as bismuth-based or thallium-based, or niobium-based metal superconductors. It has a similar effect.

また、励磁方法として磁界をかけた状態で超電導磁石を
冷却し磁束を閉じ込める方法を用いてもよく、上記実施
例と同様の効果を奏する。
Further, as an excitation method, a method may be used in which the superconducting magnet is cooled while a magnetic field is applied to confine the magnetic flux, and the same effect as in the above embodiment can be obtained.

[発明の効果コ 以上のように、この発明によれば、超電導永久磁石を一
体化成形したので、任意の形状を容易に得ることができ
、励磁作業及び装置が簡単になる効果がある。
[Effects of the Invention] As described above, according to the present invention, since the superconducting permanent magnet is integrally molded, any shape can be easily obtained, and the excitation work and device are simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による高温超電導永久磁石
を示す断面図、第2図はこの発明の一実施例の励磁方法
を説明するための外部磁界−磁石内部磁界特性を示す特
性図、第3図は従来の超電導永久磁石を示す断面図であ
る。 図において、(1)は超電導磁石、(2)は永久電流ス
イ゛ツチ、(3)は電流リード、(4)は励磁用磁石で
ある。 なお、各図中、同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing a high-temperature superconducting permanent magnet according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing external magnetic field-magnet internal magnetic field characteristics for explaining the excitation method of an embodiment of the present invention. FIG. 3 is a sectional view showing a conventional superconducting permanent magnet. In the figure, (1) is a superconducting magnet, (2) is a persistent current switch, (3) is a current lead, and (4) is an excitation magnet. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 一体化成形、または分割型で任意の形状に形成された高
温超電導永久磁石において、この高温超電導永久磁石を
冷却後に、臨界磁界の2倍以上の外部磁界を印加するこ
とにより、臨界状態で励磁することを特徴とする高温超
電導永久磁石。
In a high-temperature superconducting permanent magnet formed into an arbitrary shape by integral molding or split molding, the high-temperature superconducting permanent magnet is excited in a critical state by applying an external magnetic field more than twice the critical magnetic field after cooling. A high-temperature superconducting permanent magnet characterized by:
JP31602989A 1989-12-04 1989-12-04 High-temperature superconductive permanent magnet Pending JPH03175604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31602989A JPH03175604A (en) 1989-12-04 1989-12-04 High-temperature superconductive permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31602989A JPH03175604A (en) 1989-12-04 1989-12-04 High-temperature superconductive permanent magnet

Publications (1)

Publication Number Publication Date
JPH03175604A true JPH03175604A (en) 1991-07-30

Family

ID=18072460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31602989A Pending JPH03175604A (en) 1989-12-04 1989-12-04 High-temperature superconductive permanent magnet

Country Status (1)

Country Link
JP (1) JPH03175604A (en)

Similar Documents

Publication Publication Date Title
US20100210468A1 (en) Method for joining second-generation high-temperature superconducting wires by melting diffusion
US3198994A (en) Superconductive magnetic-fieldtrapping device
EP0874376A3 (en) Method of manufacturing oxide superconducting magnet system, oxide superconducting magnet system, and superconductive magnetic field generating apparatus
US6809618B2 (en) Switching device for superconducting technology
US4894360A (en) Method of using a ferromagnet material having a high permeability and saturation magnetization at low temperatures
ATE160656T1 (en) SUPERCONDUCTIVE MOTOR
JPH03175604A (en) High-temperature superconductive permanent magnet
US5306701A (en) Superconducting magnet and fabrication method
JPS63268204A (en) Superconducting magnet
JPH10116721A (en) Superconducting bulk body magnet
JPH11340533A (en) High-temperature superconducting coil persistent current switch
JP3540969B2 (en) Magnetization method of superconductor
JPH0812820B2 (en) Superconducting magnet
JP3172893B2 (en) Superconducting current lead
JPH01144602A (en) Superconducting magnet
JP3332148B2 (en) Superconducting bulk material and superconducting bulk magnet
JPS63318724A (en) Inductance variable coil
WO1988010501A1 (en) Superconducting electromagnet and method of magnetization
JPH01102821A (en) Permanent current switch
JPH06275875A (en) Conduction cooling-type superconducting electromagnet device
JPH11265816A (en) Superconducting device
JPH01206607A (en) Magnet for generating uniform magnetic field
JPH04335503A (en) Superconducting coil
JPS62169312A (en) Superconductive electromagnet
JPH0456102A (en) Oxide superconductive magnet and its manufacture