JPH03175602A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH03175602A
JPH03175602A JP1314200A JP31420089A JPH03175602A JP H03175602 A JPH03175602 A JP H03175602A JP 1314200 A JP1314200 A JP 1314200A JP 31420089 A JP31420089 A JP 31420089A JP H03175602 A JPH03175602 A JP H03175602A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
ribbon
atmosphere
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1314200A
Other languages
Japanese (ja)
Inventor
Isao Sakai
勲 酒井
Akihiko Tsudai
津田井 昭彦
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1314200A priority Critical patent/JPH03175602A/en
Publication of JPH03175602A publication Critical patent/JPH03175602A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition

Abstract

PURPOSE:To obtain a permanent magnet characterized by high magnetic flux density, excellent square-shapedness and excellent oxidation resistance furthermore without necessarily requiring rare earth metal and B by heat-treating an alloy comprising Zr of specified atomic % and the substantial amount of Co for the remaining part. CONSTITUTION:An alloy comprising Zr of 20atom.% and the substantial amount of Co for the remaining part is heat-treated at 300-1,000 deg.C. For example, at first Zr and Co are compounded at the rare of 15% Zr and 85% Co in atomic fraction. Arc melting is performed by using a water-cooled copper boat in an Ar atmosphere. Then, the obtained alloy is cooled at a super quench speed by a single-roll method using a copper roll having the diameter of 300mm at a speed of 40m/sec in the Ar atmosphere. Thus the ribbon-shaped alloy which has the average grain diameter of 0.07mum in main phase and is cooled at the super quick speed is manufactured. Then the super quench ribbon-shaped alloy described above is heat-treated in vacuum at 700 deg.C for 10 minutes, and the ribbon-shaped permanent magnet is manufactured. Or the alloy is crushed and the alloy powder is obtained. Epoxy resin is added and mixed. Thereafter, the powder is compressed and molded, and curing is performed. Thus the bond magnet is manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、永久磁石の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a permanent magnet.

(従来の技術) 従来より高性能磁石として希土類金属−鉄系のちのが知
られている。この系の磁石の製造方法としては、粉末冶
金法(特開昭59−48008号)、超急伶法(特開昭
59−64739号)およびメカニカルアロイングa 
(L、5chultz et al、J、Appl、P
hys、(10)(198g) p5302等)がある
。しかしながら、かかる系の永久磁石では軽希土類金属
及び鉄を主成分とするため、耐食性が劣り、しかも比較
的高価な希土類金属を大量に使用しなければならないと
いう問題があった。
(Prior Art) Rare earth metal-iron based magnets have been known as high-performance magnets. Manufacturing methods for this type of magnet include the powder metallurgy method (Japanese Patent Application Laid-Open No. 59-48008), the ultra-fast metal method (Japanese Patent Application Laid-Open No. 59-64739), and mechanical alloying a.
(L, 5chultz et al, J, Appl, P
hys, (10) (198g) p5302, etc.). However, since the permanent magnets of this type mainly consist of light rare earth metals and iron, there are problems in that they have poor corrosion resistance and require the use of large amounts of relatively expensive rare earth metals.

一方、最近、Mitra Ghemawatらにより1
989竿にIEEE Trans、on Magn、M
AG−225p3312においてCogoZ r 16
B4及びC01lOz r 1gB2の組成の超急冷合
金が約3kOeの保磁力か得られることが報告されてい
る。しかしながら、これらの超急冷合金は超急冷のまま
では製造条件により磁気特性が大きく変化し、かつ角型
性に劣るという欠点を有し、安定した永久磁石を得るこ
とかできないという問題があった。
On the other hand, recently, Mitra Ghemawat et al.
989 rod with IEEE Trans, on Magn, M
CogoZ r 16 in AG-225p3312
It has been reported that ultra-quenched alloys with compositions of B4 and C011Oz r 1gB2 can obtain coercive forces of about 3 kOe. However, these super-quenched alloys have the disadvantage that their magnetic properties change greatly depending on the manufacturing conditions if they are left super-quenched, and their squareness is poor, making it impossible to obtain stable permanent magnets.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するfこめになされた
もので、必ずしも希土類金属やBを必要とせず、高磁束
密度で角型性が良好で、更に耐酸化性の優れた永久磁石
を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and does not necessarily require rare earth metals or B, has high magnetic flux density, good squareness, and The purpose is to provide a permanent magnet with excellent oxidation resistance.

[発明の構成コ (課題を解決するための手段) 本発明に係わる永久磁石の製造方法は、20 、”n(
子%以下のZr及び残部が実質的にCoか’:r :i
 ”。
[Configuration of the Invention (Means for Solving the Problems) The method for manufacturing a permanent magnet according to the present invention is as follows: 20, “n(
% or less of Zr and the remainder is substantially Co':r:i
”.

合金を300〜1000℃で熱処理することを特徴とす
るものである。
It is characterized by heat treating the alloy at 300 to 1000°C.

上記合金は、次のような方法により得る。The above alloy can be obtained by the following method.

■20原子%以下のZr及び残部が実質的にCoからな
る合金素材を超急冷することにより得られたものである
。この超急冷手段としては、例えば単ロール法、双ロー
ル法等の他にガスアトマイズ法、回転円板上に溶湯合金
を噴射させるRDP(Rotating Dlsk P
rocess )法等を採用し得る。
(2) It is obtained by ultra-quenching an alloy material consisting of 20 atomic % or less of Zr and the balance substantially of Co. Examples of this ultra-quenching method include, for example, a single roll method, a twin roll method, etc., a gas atomization method, and RDP (Rotating Dlsk P), which injects a molten alloy onto a rotating disk.
rocess) method etc. may be adopted.

かかる超急冷においては、主相の平均結晶粒径を0.0
1〜20μmの範囲なるように処理条件を制御する。ま
た、超急冷後の合金が非晶質状態を含むか、全部が非晶
質である場合には結晶化温度以上で熱処理して平均粒径
を制御することが望ましい。更に、超急冷に際しては酸
化防止及び磁気特性の向上の観点からA r SHe 
SN 2などの不活性ガス雰囲気もしくはフロー中で行
うことが望ましい。
In such ultra-rapid cooling, the average grain size of the main phase is set to 0.0.
The processing conditions are controlled so that the thickness is within the range of 1 to 20 μm. Furthermore, if the alloy after super-quenching contains an amorphous state or is entirely amorphous, it is desirable to control the average grain size by heat treatment at a temperature higher than the crystallization temperature. Furthermore, during ultra-quenching, A r SHe is used from the viewpoint of preventing oxidation and improving magnetic properties.
It is preferable to carry out in an inert gas atmosphere such as SN 2 or in a flow.

■15原子%以下のZr粉末と残部が実質的にCo粉末
とからなる混合粉末を固相反応させて合金化する。この
固相反応手段としては、例えば遊星ボールミル、回転式
ボールミル、アトライタ、振動ボールミル、スクリュー
式ボールミル等でメカニカルアロイングする方法を採用
し得る。かかる固相反応においては、主相の平均結晶粒
径を0.01〜20μmの範囲なるように処理条件を制
御する。また、固相反応後の合金が非晶質状態を含むか
、全部が非晶質である場合には結晶化温度以上で熱処理
して平均粒径を制御することが望ましい。
(2) A mixed powder consisting of 15 atomic % or less of Zr powder and the remainder being substantially Co powder is alloyed by solid phase reaction. As this solid phase reaction means, for example, a method of mechanical alloying using a planetary ball mill, a rotary ball mill, an attritor, a vibrating ball mill, a screw ball mill, etc. can be adopted. In such a solid phase reaction, treatment conditions are controlled so that the average crystal grain size of the main phase is in the range of 0.01 to 20 μm. Further, if the alloy after the solid phase reaction contains an amorphous state or is entirely amorphous, it is desirable to control the average grain size by heat treatment at a temperature higher than the crystallization temperature.

更に、固相反応に際しては酸化防止及び磁気特性の向上
の観点からAr5He、N2などの不活性ガス雰囲気も
しくは有機溶媒中等の大気と接触しない雰囲気で行うこ
とが望ましい。
Furthermore, from the viewpoint of preventing oxidation and improving magnetic properties, the solid phase reaction is preferably carried out in an atmosphere of an inert gas such as Ar5He or N2 or an atmosphere such as an organic solvent that does not come into contact with the atmosphere.

上記合金中の2「の量を限定した理由は、Zr量が20
原子%以上になると磁束密度が低下するからである。保
磁力を増大させる観点から、Zrの下限値については、
6原子%とすることが望ましい。なお、保磁力を向上さ
せる観点からZrの一部をHf % T を及び希土類
金属で置換したり、Coの一部をCSB、P、Ge、S
 i、AN 、V。
The reason for limiting the amount of Zr in the above alloy is that the amount of Zr is 20
This is because the magnetic flux density decreases when the amount exceeds atomic %. From the perspective of increasing coercive force, the lower limit of Zr is as follows:
It is desirable to set it to 6 atom%. In addition, from the viewpoint of improving coercive force, part of Zr is replaced with Hf % T and rare earth metal, and part of Co is replaced with CSB, P, Ge, S.
i, AN, V.

Cr s M n % N 1 、Cu SZ n S
G a % N b %MoSAg、Ta、W、P t
で置換してもよい。
Cr s M n % N 1 , Cu SZ n S
G a % N b % MoSAg, Ta, W, P t
You may replace it with

これら元素の置換量は数原子%以下にとどめることが望
ましい。また、Feは磁束密度の向上に有効であるが、
過剰なFeの含有は保磁力の劣化を招くため、Coの8
0%以下の両で置換することが望ましい。また、出発原
料としてCo 2 B %Co2 P、F e3 BS
F e3 C等の金属間化合物を使用してもよい。
It is desirable that the amount of substitution of these elements be kept at a few atomic percent or less. In addition, although Fe is effective in improving magnetic flux density,
Excessive Fe content causes deterioration of coercive force, so Co8
It is desirable to substitute 0% or less of both. In addition, as starting materials Co2B%Co2P, Fe3BS
Intermetallic compounds such as Fe3C may also be used.

上記熱処理温度を限定した理由は、その温度を300℃
未満にすると保磁力等の磁気特性の向上化を達成できず
、一方1000℃を越えると結晶粒が粗大化し、保磁力
等の磁気特性が劣化する。より好ましい熱処理温度は、
400〜900℃の範囲である。
The reason for limiting the above heat treatment temperature is to set the temperature to 300°C.
If the temperature is less than 1,000° C., the magnetic properties such as coercive force cannot be improved, whereas if the temperature exceeds 1000° C., the crystal grains become coarse and the magnetic properties such as coercive force deteriorate. A more preferable heat treatment temperature is
It is in the range of 400 to 900°C.

熱処理時間は、0,1〜100時間とすることが望まし
い。このような熱処理をホットプレスにより行ってもよ
い。このホットプレスに際しても、酸化防止及び磁気特
性の向上の観点からAr、He。
The heat treatment time is preferably 0.1 to 100 hours. Such heat treatment may be performed by hot pressing. Also during this hot pressing, Ar and He are used from the viewpoint of preventing oxidation and improving magnetic properties.

N2などの不活性ガス雰囲気で行うことが望ましい。熱
処理をホットプレスにより行うことによって、前記■の
超急冷法により得た合金、前記■の固相反応により得た
合金を一体化できる利点を有する。なお、ホットプレス
後に磁気特性を向上するために更に前記温度で熱処理を
施してもよい。
It is preferable to perform this in an inert gas atmosphere such as N2. By carrying out the heat treatment by hot pressing, there is an advantage that the alloy obtained by the ultra-quenching method (2) above and the alloy obtained by the solid phase reaction (2) above can be integrated. Note that, after hot pressing, heat treatment may be further performed at the above temperature in order to improve magnetic properties.

また、圧力を加えて塑性加工を施すことにより磁気的配
向を得ることができる。
Moreover, magnetic orientation can be obtained by applying pressure and performing plastic working.

なお、上記熱処理後の合金からボンド磁石を製造するに
は粉末状の合金をエポキシ樹脂、ナイロン系などの樹脂
と混合した後、成型する方法が採用される。戊型広とし
ては、樹脂がエポキシ系の熱硬化性樹脂である場合、圧
縮成形後100〜2(10℃の温度でキュア処理を施し
、ナイロン系の熱可塑性樹脂の場合、射出成型を用いれ
ばよい。
In order to manufacture a bonded magnet from the heat-treated alloy, a method is employed in which a powdered alloy is mixed with an epoxy resin, a nylon resin, or the like, and then molded. When the resin is an epoxy-based thermosetting resin, it is cured at a temperature of 100 to 2 (10°C) after compression molding, and when the resin is a nylon-based thermoplastic resin, injection molding is used. good.

(作用) 本発明によれば、20原子%以下のZr及び残部が実質
的にCoからなる合金、特に主相の平均結晶粒径を0.
01〜20μmの合金を特定の温度範囲で熱処理するこ
とによって、必すしも希土類金、属やBを必要とせず、
保磁力の増大、角型性が改善された優れた磁気特性を有
すると共に、耐酸化性の優れた永久磁石を製造すること
ができる。
(Function) According to the present invention, an alloy consisting of 20 atomic % or less of Zr and the balance substantially of Co, particularly an alloy having an average crystal grain size of the main phase of 0.
By heat-treating the 01-20 μm alloy at a specific temperature range, rare earth metals, metals, and B are not necessarily required.
It is possible to produce a permanent magnet that has excellent magnetic properties such as increased coercive force and improved squareness, and also has excellent oxidation resistance.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 まず、Zr及びCoを原子分率でZrが15%、COが
85%となるように配合し、Ar雰囲気中で水冷銅ボー
トを用いてアーク溶解した。得られた合金をAr雰囲気
中で速度40m / seeの直径300II1mlの
銅ロールを用いた単ロール法により超急冷を行って超急
冷リボン状合金を作製した。この合金をT E M及び
S E Mで観察したところ、主右目の平均粒径が00
.7μmであることが確認された。
Example 1 First, Zr and Co were mixed so that the atomic fractions were 15% for Zr and 85% for CO, and arc melted using a water-cooled copper boat in an Ar atmosphere. The obtained alloy was super-quenched in an Ar atmosphere at a speed of 40 m/see by a single roll method using a copper roll with a diameter of 300 II 1 ml to produce an ultra-quenched ribbon-like alloy. When this alloy was observed by TEM and SEM, the average grain size of the main right eye was 00
.. It was confirmed that it was 7 μm.

次いで、前記超急冷リボン状合金を真空中で700℃、
10分間の熱処理を施してリボン状の永久磁石を製造し
た。
Next, the ultra-quenched ribbon-like alloy was heated at 700°C in vacuum.
A ribbon-shaped permanent magnet was manufactured by performing heat treatment for 10 minutes.

本実施例1の永久磁石及び前記超急冷後のリボン状合金
からなる永久磁石(比較例1)について、保磁力を振動
試料型磁力計で測定した測定した。
The coercive force of the permanent magnet of Example 1 and the permanent magnet made of the ultra-quenched ribbon-shaped alloy (Comparative Example 1) was measured using a vibrating sample magnetometer.

その結果、本実施例1の永久磁石は2.2k Oe 。As a result, the permanent magnet of Example 1 was 2.2k Oe.

比較例1の永久磁石は0.8kOeの値を示し、本実施
例1の永久磁石は高い保磁力を有していることが確認さ
れた。
The permanent magnet of Comparative Example 1 showed a value of 0.8 kOe, and it was confirmed that the permanent magnet of Example 1 had a high coercive force.

実施例2 まず、Zr、Co及びBを原子分率でZrが15%、C
oが81%、Bが4%となるように配会し、A「雰囲気
中で水冷銅ボートを用いてアーク溶解した。得られた合
金をAr雰囲気中で速度20m/seeの直径300+
nmの真鍮ロールを用いた単ロールル法により超急冷を
行って超急冷リボン状合金を作製した。この合金をTE
M及びS E Mで観察したところ、主相の平均粒径が
0.1μmであることが確認された。
Example 2 First, Zr, Co and B were mixed in atomic fractions such that Zr was 15% and C
The alloy was arranged so that O was 81% and B was 4%, and arc melted using a water-cooled copper boat in an atmosphere of A.
An ultra-quenched ribbon-like alloy was produced by super-quenching by a single roll method using a brass roll of 100 nm. This alloy is TE
When observed with M and SEM, it was confirmed that the average particle size of the main phase was 0.1 μm.

次いで、前記超急冷リボン状合金を真空中で500℃、
10分間の熱処理を施してリボン状の永久磁石を製造し
た。
Next, the ultra-quenched ribbon-like alloy was heated at 500°C in vacuum.
A ribbon-shaped permanent magnet was manufactured by performing heat treatment for 10 minutes.

本実施例2の永久磁石及び前記超急冷後のリボン状合金
からなる永久磁石(比較例2)について、磁気特性を振
動試料型磁力計を用いて測定した測定した。その結果、
第1図に示す。
The magnetic properties of the permanent magnet of Example 2 and the permanent magnet made of the ultra-quenched ribbon-like alloy (Comparative Example 2) were measured using a vibrating sample magnetometer. the result,
Shown in Figure 1.

第1図から明らかなように本実施例2の永久磁石は、比
較例2の永久磁石に比べて角型性が太きく向上し、しか
も保磁力も増大していることかわかる。
As is clear from FIG. 1, the permanent magnet of Example 2 has significantly improved squareness and coercive force compared to the permanent magnet of Comparative Example 2.

実施例3−1〜3−8 実施例1と同様な超急冷法、真空中での500〜700
℃、10分間の熱処理を施す方法により下記第1表に示
す組成のリボン状合金を作製し、これら合金を平均粒径
60μmまで粉砕して合金粉末とした。つづいて、これ
ら合金粉末をエポキシ樹脂にそれぞれ2.5重量%添加
し、混合した後、圧縮成型し、更に 120℃で1,5
時間キュア処理を施して8種のボンド磁石を製造した。
Examples 3-1 to 3-8 Ultra-quenching method similar to Example 1, 500 to 700 in vacuum
Ribbon-shaped alloys having the compositions shown in Table 1 below were prepared by heat treatment at .degree. C. for 10 minutes, and these alloys were ground to an average particle size of 60 .mu.m to obtain alloy powder. Next, 2.5% by weight of each of these alloy powders was added to the epoxy resin, mixed, compression molded, and further heated to 1.5% by weight at 120°C.
Eight types of bonded magnets were manufactured by subjecting them to time curing treatment.

本実施例3−1〜3−8のボンド磁石について、合金粉
末の主相の平均結晶粒径、並びに残留磁束密度[Br]
、保磁力[IHc]  最大エネルギー積[(BH)I
Ilax]を測定した。その結果を同第1表に併記した
Regarding the bonded magnets of Examples 3-1 to 3-8, the average crystal grain size of the main phase of the alloy powder and the residual magnetic flux density [Br]
, Coercive force [IHc] Maximum energy product [(BH)I
Ilax] was measured. The results are also listed in Table 1.

実施例4 まず、Zr及びCoを原子分率でZrが15%、Coが
85%となるように配合し、Ar雰囲気中で水冷鋼ボー
トを用いてアーク溶解した。得られた合金をAr雰囲気
中で速度40m / seeの直径300amの銅ロー
ルを用いた単ロール法により超急冷を行って超急冷リボ
ン状合金を作製した。つづいて、このリボン状合金を1
00μm程度まで粉砕して粉末とした後、Ar雰囲気中
で800℃、1.2 ton/cω2の条件でホットプ
レスを施し、体化して永久磁石を製造した。
Example 4 First, Zr and Co were mixed so that the atomic fractions were 15% for Zr and 85% for Co, and arc melted using a water-cooled steel boat in an Ar atmosphere. The obtained alloy was ultra-quenched in an Ar atmosphere at a speed of 40 m/see by a single roll method using a copper roll with a diameter of 300 am to produce an ultra-quenched ribbon-like alloy. Next, this ribbon-shaped alloy is
After pulverizing the powder to about 00 μm, it was hot pressed in an Ar atmosphere at 800° C. and 1.2 ton/cω2 to form a permanent magnet.

本実施例4の永久磁石について、残留磁束密度[Brl
、保磁力[IHcコ、最大エネルギー積((3H)ma
wコを自動自己磁束計を用いて測定した。その結果、B
rはl1lkGSiHcは2.7k Oe 、 (BH
)mawは10.2M G Oeの値を得た。また、T
EM及びSEMで観察したところ、主相の平均粒径が0
.06μmであることが確認された。
Regarding the permanent magnet of Example 4, the residual magnetic flux density [Brl
, coercive force [IHc, maximum energy product ((3H)ma
w was measured using an automatic self-magnetometer. As a result, B
r is l1lkGSiHc is 2.7k Oe, (BH
) maw obtained a value of 10.2 M G Oe. Also, T
When observed by EM and SEM, the average particle size of the main phase was 0.
.. It was confirmed that the thickness was 0.06 μm.

実施例5−1〜5−9 実施例4と同様な超急冷広、Ar雰囲気中、800℃、
1.2 ton/a112の条件てのホットプレスを施
す方法により下記第2表に示す組成の9種の永久磁石を
製造した。
Examples 5-1 to 5-9 Super rapid cooling similar to Example 4, 800°C in Ar atmosphere,
Nine types of permanent magnets having the compositions shown in Table 2 below were manufactured by hot pressing under the conditions of 1.2 ton/a112.

本実施例5−1〜5−9の永久磁石について、残留磁束
密度[Brl、保磁力[iHc] 、最大エネルギー積
[(BH)maxlを自動自己磁束計を用いて測定した
For the permanent magnets of Examples 5-1 to 5-9, the residual magnetic flux density [Brl, coercive force [iHc], and maximum energy product [(BH)maxl] were measured using an automatic self-magnetometer.

その結果を同第2表に併記した。The results are also listed in Table 2.

実施例6 まず、純度99.8%、粒径45μm以下のZr粉末と
純度99.9%、粒径100μm以下のCO粉末を用意
し、これら粉末を原子分率でZrか(5%、Coが85
%となるように配合し、遊星型ボールミルでミリングを
70時間行った。なお、かかる工程ではステンレス製の
容器及びボールを用い、かつ雰囲気はArガスとした。
Example 6 First, a Zr powder with a purity of 99.8% and a particle size of 45 μm or less and a CO powder with a purity of 99.9% and a particle size of 100 μm or less were prepared. is 85
%, and milling was performed for 70 hours using a planetary ball mill. In this step, a stainless steel container and a ball were used, and the atmosphere was Ar gas.

つづいて、得られた合金粉末を真空中で700℃、20
分間の熱処理を施して永久磁石を製造した。
Subsequently, the obtained alloy powder was heated at 700°C for 20
A permanent magnet was produced by heat treatment for 1 minute.

本実施例6の永久磁石及び前記固相反応後の合金粉末か
らなる永久磁石(比較例3)について、保磁力を振動試
料型磁力計で測定した測定した。
The coercive force of the permanent magnet of Example 6 and the permanent magnet (Comparative Example 3) made of the alloy powder after the solid phase reaction was measured using a vibrating sample magnetometer.

その結果、本実施例6の永久磁石は2.5kOe、比較
例3の永久磁石は0.1kOeO値を示し、本実施例6
の永久磁石は高い保磁力を有していることが確認された
。また、本実施例6の永久磁石をT E M及びS E
 Mで観察したところ、主)目の平均粒径が0.15μ
mであることか確認された。
As a result, the permanent magnet of Example 6 showed a value of 2.5 kOe, and the permanent magnet of Comparative Example 3 showed a value of 0.1 kOeO.
It was confirmed that this permanent magnet has a high coercive force. In addition, the permanent magnet of Example 6 was T E M and S E
When observed with M, the average grain size of the main) eyes was 0.15μ
It was confirmed that it was m.

実施例7−(〜7−11 実施例1と同様な固相反応、真空中での700’Co2
0分間の熱処理を施す方法により下記第3表に示す組成
の合金粉末を作製し、これら合金粉末をエポキシ樹脂に
それぞれ2.5重量%添加し、混合した後、圧縮成型し
、更に120℃で1.5時間キュア処理を施して11種
のボンド磁石を製造した。
Example 7-(~7-11 Solid phase reaction similar to Example 1, 700'Co2 in vacuo
Alloy powders having the composition shown in Table 3 below were prepared by a method of heat treatment for 0 minutes, and 2.5% by weight of each of these alloy powders was added to epoxy resin, mixed, compression molded, and further heated at 120°C. A curing treatment was performed for 1.5 hours to produce 11 types of bonded magnets.

本実施例7−1〜7−11のボンド磁石について、残留
磁束密度[B11、保磁力[jHcl 、最大エネルギ
ー積[(BH)maxlを測定した。その結果を同第3
表に併記した。
For the bonded magnets of Examples 7-1 to 7-11, residual magnetic flux density [B11, coercive force [jHcl], and maximum energy product [(BH)maxl] were measured. The results are shown in the same third column.
Also listed in the table.

実施例8 まず、純度99.8%、粒径45μm以下のZr粉末と
純度99.9%、粒径10f]μm以下のCo粉末を用
意し、これら粉末を原子分率でZrが15%、COが8
5%となるように配合し、遊星型ボールミルでミリング
を70時間行った。なお、かかる工程ではステンレス製
の容器及びボールを用い、かつ雰囲気はArガスとした
。つづいて、得られた合金粉末をAr雰囲気中で800
℃、1.2 ton/cm2の条件でホットプレスを施
し、一体化して永久磁石を製造した。
Example 8 First, a Zr powder with a purity of 99.8% and a particle size of 45 μm or less and a Co powder with a purity of 99.9% and a particle size of 10 μm or less were prepared, and these powders had an atomic fraction of Zr of 15%, CO is 8
The mixture was blended at a concentration of 5% and milled for 70 hours using a planetary ball mill. In this step, a stainless steel container and a ball were used, and the atmosphere was Ar gas. Subsequently, the obtained alloy powder was heated to 800°C in an Ar atmosphere.
C. and 1.2 ton/cm2 to produce a permanent magnet.

本実施例8の永久磁石について、残留磁束密度[B「]
  保磁力[jHcl  最大エネルギー積[(BH)
maxlを自動自己磁束計を用いて測定した。
Regarding the permanent magnet of Example 8, the residual magnetic flux density [B'']
Coercive force [jHcl Maximum energy product [(BH)
maxl was measured using an automatic self-magnetometer.

その結果、Brは7.8kG 、 iHcは 2.8k
Oe。
As a result, Br is 7.8kG, iHc is 2.8k
Oe.

(BH)waxは 9.8MGOeの値を得た。また、
TEM及びS E Mで観察したところ、主用の平均粒
径が0.07μmであることが確認された。
(BH) wax obtained a value of 9.8 MGOe. Also,
When observed by TEM and SEM, it was confirmed that the average particle size of the main particles was 0.07 μm.

実施例9−1〜9−11 実施例4と同様な固相反応、Ar雰囲気中、800℃、
1.2 ton/ cll12の条件でのホットプレス
を施す方法により下記第4表に示す組成の11種の永久
磁石を製造した。
Examples 9-1 to 9-11 Solid phase reaction similar to Example 4, 800°C in Ar atmosphere,
Eleven types of permanent magnets having the compositions shown in Table 4 below were manufactured by hot pressing under the conditions of 1.2 ton/cll12.

本実施例9−1〜9−11の永久磁石について、残留磁
束密度[B11、保磁力[1tlc] 、最大エネルギ
ー積[(B)l)maxlを自動自己磁束計を用いて測
定した。
For the permanent magnets of Examples 9-1 to 9-11, the residual magnetic flux density [B11], coercive force [1tlc], and maximum energy product [(B)l)maxl were measured using an automatic self-magnetometer.

その結果を同第4表に併記した。The results are also listed in Table 4.

[発明の効果] 以上詳述した如く、本発明によれば20原子%以下のZ
r及び残部が実質的にCOからなる合金、特に主相の平
均結晶粒径を0.01〜20μmの合金を特定の温度範
囲で熱処理することによって、必ずしも希土類金属やB
を必要とせず、保磁力の増大、角型性が改善された優れ
た磁気特性を有すると共に、耐酸化性の優れた永久磁石
の製造方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, Z of 20 atomic % or less
By heat treating an alloy in which the main phase has an average crystal grain size of 0.01 to 20 μm in a specific temperature range, it is possible to remove rare earth metals and B.
It is possible to provide a method for producing a permanent magnet that does not require a magnet, has excellent magnetic properties such as increased coercive force and improved squareness, and has excellent oxidation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例2及び比較例2の永久磁石の磁気特性
を示す線図である。
FIG. 1 is a diagram showing the magnetic characteristics of the permanent magnets of Example 2 and Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] 20原子%以下のZr及び残部が実質的にCoからなる
合金を300〜1000℃で熱処理することを特徴とす
る永久磁石の製造方法。
A method for producing a permanent magnet, which comprises heat treating an alloy consisting of 20 atomic % or less of Zr and the remainder substantially of Co at 300 to 1000°C.
JP1314200A 1989-12-05 1989-12-05 Manufacture of permanent magnet Pending JPH03175602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314200A JPH03175602A (en) 1989-12-05 1989-12-05 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314200A JPH03175602A (en) 1989-12-05 1989-12-05 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH03175602A true JPH03175602A (en) 1991-07-30

Family

ID=18050473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314200A Pending JPH03175602A (en) 1989-12-05 1989-12-05 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH03175602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025280A1 (en) * 1996-12-04 1998-06-11 Tdk Corporation Process for the production of magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025280A1 (en) * 1996-12-04 1998-06-11 Tdk Corporation Process for the production of magnet
US5916376A (en) * 1996-12-04 1999-06-29 Tdk Corporation Preparation of magnet
CN1104014C (en) * 1996-12-04 2003-03-26 Tdk株式会社 Process for production of magnet

Similar Documents

Publication Publication Date Title
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0974006A (en) Magnetic material and bonded magnet
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JPH01703A (en) Permanent magnet and its manufacturing method
JPH02298003A (en) Manufacture of rare-earth permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS6017905A (en) Permanent magnet alloy powder
JP3779404B2 (en) Permanent magnet materials, bonded magnets and motors
JP3003979B2 (en) Permanent magnet and method for manufacturing the same
JPH01100242A (en) Permanent magnetic material
JPH03175602A (en) Manufacture of permanent magnet
JP3072742B2 (en) permanent magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS6373502A (en) Manufacture of rare earth magnet
JPH044386B2 (en)
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JPH0521216A (en) Permanent magnet alloy and its production
JPH01105502A (en) Rare earth permanent magnet exhibiting high resistance to oxidation and manufacture thereof
JPS62291903A (en) Permanent magnet and manufacture of the same
JPS63252403A (en) Liquisol quenching alloy composite type rare earth permanent magnet and manufacture thereof
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH04338607A (en) Manufacture of rare earth-transition metal magnet
JPH03175601A (en) Permanent magnet