JPH03175386A - Measuring apparatus for reflecting cross-sectional area of radar - Google Patents

Measuring apparatus for reflecting cross-sectional area of radar

Info

Publication number
JPH03175386A
JPH03175386A JP1314537A JP31453789A JPH03175386A JP H03175386 A JPH03175386 A JP H03175386A JP 1314537 A JP1314537 A JP 1314537A JP 31453789 A JP31453789 A JP 31453789A JP H03175386 A JPH03175386 A JP H03175386A
Authority
JP
Japan
Prior art keywords
measured
deltaf
reflection
frequency
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1314537A
Other languages
Japanese (ja)
Other versions
JPH065276B2 (en
Inventor
Osamu Hashimoto
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP1314537A priority Critical patent/JPH065276B2/en
Publication of JPH03175386A publication Critical patent/JPH03175386A/en
Publication of JPH065276B2 publication Critical patent/JPH065276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To measure the quantity of reflection from each part of an object to be measured by rotating the object to be measured and subjecting Doppler frequency deviation to fast Fourier transform processing. CONSTITUTION:The CW wave of 1MHz generated from an oscillator 11 is upwardly converted to be set to the frequency of an X-band or Kw-band by the first mixer 12 using a local oscillator 15 and amplifier by an amplifier 13 to be transmitted to an object to be measured from a transmission antenna 14. Since the object to be measured is mounted on the mounting table 31 integrally rotated along with a turntable 30, the reflected wave from the object to be measured becomes one wherein Doppler frequency deviation DELTAf is contained in transmission frequency to be received by a receiving antenna 16. The local oscillator 15 used in upward conversion is again used to accurately take out frequency of 1MHz+DELTAf. When the oscillator 15 is jointly used as mentioned above, the fluctuation of local frequency exerts no effect on DELTAf. Next, the reflected wave is passed through a filter 19 with respect to 1MHz+DELTAf and, further, only DELTAf is taken out by the third mixer 20. Finally, DELTAf is subjected to FFT processing in a fast Fourier transform (FFT) part 21.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電波を反射する被測定物についてのレーダ反
射断面積の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring a radar reflection cross section of an object to be measured that reflects radio waves.

(発明の概要) 本発明は、レーダ反射断面積の測定において、被測定物
を回転させ、該被測定物に電波を送信し反射してきた反
射波を受信し、受信した信号がら被測定物の回転により
生じたドツプラー周波数偏移を検出し、これを高速フー
リエ変換処理することにより、被測定物の各部からの反
射量を求めることを可能にしたものである。
(Summary of the Invention) In the measurement of a radar reflection cross section, the present invention rotates an object to be measured, transmits radio waves to the object, receives the reflected waves, and uses the received signal to determine the object to be measured. By detecting the Doppler frequency shift caused by rotation and subjecting it to fast Fourier transform processing, it is possible to determine the amount of reflection from each part of the object to be measured.

(従来の技術) 従来、レーダ反射断面積(以下、RC5と称す、)の測
定においては、パルス法、位相干渉法等、種々の測定法
が確立されている。
(Prior Art) Conventionally, various measurement methods such as the pulse method and the phase interferometry have been established for measuring the radar reflection cross section (hereinafter referred to as RC5).

(発明が解決しようとする課題) ところで、前述した従来の種々のRC3の測定法は、被
測定物全体がらの反射量(反射電波の強さ)をもとに、
そのRC3を測定するものであり、被測定物のある部分
からどの程度の反射量があるのかについては測定できな
い欠点があった。このため、例えば物体のRC3を効率
よく低減させる等の研究を行う場合、どの部分を表面の
形状効果または電波吸収体の装着効果等で改良すべきか
研究段階において評価できない問題があった。
(Problems to be Solved by the Invention) By the way, the various conventional RC3 measurement methods described above are based on the amount of reflection (intensity of reflected radio waves) from the entire object to be measured.
This method measures the RC3, and has the drawback that it cannot measure the amount of reflection from a certain part of the object to be measured. For this reason, when conducting research to efficiently reduce the RC3 of an object, for example, there was a problem in which it was not possible to evaluate at the research stage which parts should be improved by the effect of surface shape or the effect of installing a radio wave absorber.

本発明は、上記の点に鑑み、RC3を測定する際、被測
定物を回転させ、そのドツプラー周波数偏移を高速フー
リエ変換することにより、比較的簡単な測定系で被測定
物の各部からの反射量を測定できるレーダ反射断面積測
定装置を提供することを目的とする。
In view of the above points, the present invention, when measuring RC3, rotates the object to be measured and fast Fourier transforms the Doppler frequency deviation, thereby measuring the RC3 from each part of the object using a relatively simple measurement system. It is an object of the present invention to provide a radar reflection cross section measurement device that can measure the amount of reflection.

(課題を解決するための手段) 上記目的を達成するために、本発明のレーダ反射断面積
測定装置では、前記被測定物を設置し回転させる回転部
と、被測定物に電波を送信する送信部と、前記被測定物
からの反射波を受信する受信部と、この受信部で受信し
た信号から前記被測定物の回転により生じたドツプラー
周波数偏移を検出する検出部と、前記被測定物の回転時
間を小区間に区切り、該小区間で前記検出部のデータを
取得し高速フーリエ変換する変換部とを具備した構成と
している。
(Means for Solving the Problems) In order to achieve the above object, the radar reflection cross section measurement device of the present invention includes a rotating section for installing and rotating the object to be measured, and a transmitter for transmitting radio waves to the object to be measured. a receiver that receives reflected waves from the object to be measured; a detector that detects a Doppler frequency shift caused by rotation of the object from the signal received by the receiver; and an object to be measured. The rotation time of the sensor is divided into small sections, and the converting section acquires the data of the detecting section in the small sections and performs fast Fourier transform on the data.

(作用) まず、本発明の詳細な説明であるが、本発明のレーダ反
射断面積測定装置においては、被測定物を回転させてお
り、このため被測定物に向けて送信した電波の反射波は
ドツプラー周波数偏移を受ける。その際、回転中心に近
い部分からの反射波は、ドツプラー周波数偏移は少なく
、回転中心から遠くなるのに従いドツプラー周波数偏移
は大きくなる。従って、被測定物がらの反射波に含まれ
るドツプラー周波数偏移を検出して高速フーリエ変換(
以下、F F T (Fast Fourier Tr
ansform )と称す。)処理することにより、被
測定物の各部からの反射量を正確に測定することができ
る。
(Function) First, a detailed explanation of the present invention will be explained. In the radar reflection cross section measurement device of the present invention, the object to be measured is rotated, and therefore the reflected wave of the radio wave transmitted toward the object to be measured is undergoes a Doppler frequency shift. At this time, the Doppler frequency deviation of the reflected wave from a portion close to the rotation center is small, and the Doppler frequency deviation increases as the distance from the rotation center increases. Therefore, the Doppler frequency shift included in the reflected wave from the object under test is detected and fast Fourier transform (
Hereinafter, F F T (Fast Fourier Tr
ansform). ), the amount of reflection from each part of the object to be measured can be accurately measured.

すなわち、第4図に示すように、X軸上の原点に長さし
、角速度Ωで回転している棒状の物体に距離りだけ離れ
たアンテナより電波が到来した場合、この物体からの反
射量(反射電波の強さ)V (t)は次のようになる。
In other words, as shown in Figure 4, when a radio wave arrives from an antenna a distance away from a rod-shaped object that is located at the origin on the X-axis and is rotating at an angular velocity Ω, the amount of reflection from this object is (Intensity of reflected radio waves) V (t) is as follows.

V (t) = U (t)expUΩt)     
  −(1)ここで 但し、tは時間、Xは棒状物体の回転中心からの距離、
W(×)は物体の各部の反射量が異なる場合にその量を
示す重み関数、kは自由空間の波数、及びCは任意の比
例係数である。そしてこのU (t)を時間軸で観察す
ると、電波の到来方向に対して真横を向いた状態を回転
角θ=0゛とすれば、概略的に第5図のようになる。そ
こでこれを小区間T o Ivで区切り、フーリエ変換
し、周波数軸上で観察すると各部の反射量を知ることが
できる。
V (t) = U (t)expUΩt)
-(1) Here, t is time, X is the distance from the center of rotation of the rod-shaped object,
W(x) is a weighting function that indicates the amount of reflection when each part of the object differs, k is the wave number of free space, and C is an arbitrary proportionality coefficient. When observing this U (t) on the time axis, if the rotation angle θ = 0° when the rotation angle is θ = 0゜ when facing directly sideways to the direction of arrival of the radio waves, it becomes roughly as shown in Fig. 5. Therefore, by dividing this into small sections T o Iv, Fourier transforming it, and observing it on the frequency axis, it is possible to know the amount of reflection at each part.

なお、フーリエ変換に際して、観察される周波数fは回
転角速度Ωとの関係で f1≦ LΩ/λ        ・・・(2)(但し
、λ:測測定る電波の波長) であり、最大の周波数をf sexとすると、この帯域
をカバーするためのサンプリング間隔ΔtはΔt≦1/
2fo、=λ/(2LΩ)   、、13)でなければ
ならない。したがって時間を小区間で分割した場合の時
間T D + Vと、サンプリング数Nとの関係は次の
ようになる。
In addition, during Fourier transformation, the frequency f observed in relation to the rotational angular velocity Ω is f1≦LΩ/λ (2) (where λ is the wavelength of the radio wave to be measured), and the maximum frequency is f. sex, the sampling interval Δt to cover this band is Δt≦1/
2fo, = λ/(2LΩ), 13). Therefore, the relationship between the time T D + V when the time is divided into small sections and the number of samplings N is as follows.

N≧TDIv/Δt=2T、、vLΩ/′λ  ・(4
)また、このときの被測定物の距離分解能ΔXはFFT
処理の周波数レンジをFとし、及び上記サンプリング数
Nを用いて、 Δx=LΔF/(2f、、、)    ・ (5)(但
し、ΔF=2F/N) で表すことができる。
N≧TDIv/Δt=2T,,vLΩ/′λ ・(4
) Also, the distance resolution ΔX of the object to be measured at this time is FFT
Letting the frequency range of processing be F and using the above sampling number N, it can be expressed as Δx=LΔF/(2f,...) (5) (where ΔF=2F/N).

(実施例) 次に、本発明に係るレーダ反射断面積測定装置の構成に
ついて、その基本構成の概略ブロック図を第1図、実施
例のブロック図を第2図に示し、さらに被測定物の取付
台の構造を第3図に示し、以下層を追ってその測定法に
ついて説明する。
(Example) Next, regarding the configuration of a radar reflection cross section measuring device according to the present invention, a schematic block diagram of its basic configuration is shown in FIG. 1, a block diagram of an example is shown in FIG. The structure of the mount is shown in FIG. 3, and the measurement method will be explained below layer by layer.

第1図において、1は送信部であり、被測定物に電波(
送信波)を送信する。2は前記被測定物からの反射波(
受信波)を受信する受信部、3は前記受信部で受信した
反射波信号から被測定物の回転により生じたドツプラー
周波数偏移を検出する検出部、4は被測定物の回転時間
を小区間に区切り、この小区間で取得した前記検出部の
データをFFT処理する変換部、5は回転部であって被
測定物を設置し回転させている。
In Fig. 1, 1 is a transmitter, which sends radio waves (
transmit waves). 2 is the reflected wave from the object to be measured (
3 is a detection unit that detects the Doppler frequency shift caused by the rotation of the object to be measured from the reflected wave signal received by the receiver, and 4 is a small section of rotation time of the object to be measured. A conversion section performs FFT processing on the data of the detection section acquired in this small section, and 5 is a rotation section in which the object to be measured is installed and rotated.

第2図は第1図の概略ブロック図をさらに詳細に示した
ものであり、この第2図において、11は発振器、12
は第1のミキサー、13は増幅器、14は送信アンテナ
、15はローカルオシレータであり、これらで前述の送
信部を構成している。
FIG. 2 shows the schematic block diagram of FIG. 1 in more detail, and in this FIG. 2, 11 is an oscillator, 12
13 is a first mixer, 13 is an amplifier, 14 is a transmitting antenna, and 15 is a local oscillator, which constitute the above-mentioned transmitter.

16は受信アンテナ、17は増幅器であり、これらで前
述の受信部を構成している。18は第2のミキサー、1
9はフィルター、20は第3のミキサーであり、これら
とローカルオシレータとして用いる前記発振器11とロ
ーカルオシレータ15とで前述の検出部を構成している
。21はFFT変換部である。また、30は回転台、3
1は回転台により定速で回転駆動される被測定物取付台
であり、これらは前述した回転部を構成している。
16 is a receiving antenna, and 17 is an amplifier, which constitute the above-mentioned receiving section. 18 is the second mixer, 1
9 is a filter, 20 is a third mixer, and these together with the oscillator 11 and local oscillator 15 used as local oscillators constitute the above-mentioned detection section. 21 is an FFT conversion section. Also, 30 is a turntable, 3
Reference numeral 1 denotes a measuring object mounting table which is rotated at a constant speed by a rotary table, and constitutes the above-mentioned rotating section.

第3図に示すように、水平方向の長さ1.2mの棒状の
取付台31(木製で断面積約4es+X4cm)は、回
転台30上に固着され、この取付台上に被測定5S40
が取り付けられる。また、取付台31の全表面には取付
台自体からの反射を出来るだけ少なくするために電波吸
収体32が装着されている。
As shown in FIG. 3, a rod-shaped mounting base 31 (made of wood with a cross-sectional area of approximately 4 es + x 4 cm) having a horizontal length of 1.2 m is fixed on the rotary base 30, and the 5S40 to be measured is mounted on the rotating base 30.
can be installed. Furthermore, a radio wave absorber 32 is attached to the entire surface of the mounting base 31 in order to reduce reflection from the mounting base itself as much as possible.

以上の構成において、発振器11で発生したIMHzの
CW波は、ローカルオシレータ15を用い、第1のミキ
サー12でX帯またはKu帯の周波数f、にアップコン
バートされ、増幅器13で0.5W程度に増幅されてア
ンテナ14から被測。
In the above configuration, the IMHz CW wave generated by the oscillator 11 is up-converted to a frequency f of the X band or Ku band by the first mixer 12 using the local oscillator 15, and then converted to approximately 0.5 W by the amplifier 13. It is amplified and measured from the antenna 14.

元糊40に向けて送信される。ここで被測定物40は、
第3図に示したように、周期25.0secで回転する
回転台30と一体になって回転する取付台31の上に取
り付けられているので、被測定物40からの反射波は、
送信周波数f、にドツプラー周波数偏移Δfが含まれた
ものとなる。その反射波は、受信アンテナ16で受信さ
れ、受信信号は増幅器17で増幅される。
It is transmitted toward Motonori 40. Here, the object to be measured 40 is
As shown in FIG. 3, since it is mounted on a mounting table 31 that rotates together with a rotary table 30 that rotates at a period of 25.0 seconds, the reflected wave from the object to be measured 40 is
The transmission frequency f includes the Doppler frequency shift Δf. The reflected wave is received by the receiving antenna 16, and the received signal is amplified by the amplifier 17.

ここで、本測定装置においては、このΔfを精度よく測
定する必要があるので、ダウンコンバートする際に第2
のミキサー18のローカルオシレータとしてアップコン
バートに使用したローカルオシレータ15を再度使用し
、IMHz+Δfの周波数を精度よく取り出している。
Here, in this measuring device, it is necessary to measure this Δf with high accuracy, so when down-converting, the second
The local oscillator 15 used for up-conversion is used again as the local oscillator of the mixer 18, and the frequency of IMHz+Δf is extracted with high accuracy.

このように、ローカルオシレータ15を共用することに
より、ローカル周波数の変動がΔfに影響を与えなくな
る利点がある。
In this way, by sharing the local oscillator 15, there is an advantage that fluctuations in the local frequency do not affect Δf.

次に、このIMHz+Δfに対して、周波数の変換で生
じた高調波成分等の不要な周波数成分をフィルター19
で除去した後、さらに第3のミキサー20でΔrのみを
取り出す。なお、ここでも前述した場合と同様に発振器
11をローカルオシレータとして使用し、精度よくΔf
を取り出すようにしている。
Next, for this IMHz+Δf, a filter 19 removes unnecessary frequency components such as harmonic components generated by frequency conversion.
After removing Δr, the third mixer 20 extracts only Δr. Note that here, as in the case described above, the oscillator 11 is used as a local oscillator, and Δf is accurately adjusted.
I'm trying to take it out.

最後に、このΔfをFFT変換部21でFFT処理をす
ることにより、前述したように周波数ドメインに変換し
て被測定物40の各部からの反射量を求める。ここで、
被測定物40の回転中心に近い部分からの反射波は、ド
ツプラー周波数偏移が少なく、回転中心から遠くなるの
に従いド・ノブラー周波数偏移は大きくなるから、各部
の回転中心からの距離及び反射量を周波数ドメインにお
いて区別して認識することができる。
Finally, this Δf is subjected to FFT processing in the FFT conversion unit 21 to convert it into the frequency domain as described above, and the amount of reflection from each part of the object to be measured 40 is determined. here,
The reflected waves from the parts near the center of rotation of the object to be measured 40 have a small Doppler frequency shift, and the further away from the center of rotation, the larger the de Knobler frequency shift. Therefore, the distance from the center of rotation of each part and the reflection Quantities can be distinguished and recognized in the frequency domain.

また、本測定においては、前述した1、2mの棒状の取
付台31に大きさの異なる2種類のコーナーリフレクタ
(以下、小さい方を反射体A、大きい方を反射体Bと称
す。)を回転中心からの位置を変化させて取付け、その
位置及び反射レベルの相対量が正確に測定されているか
について検討した。ここで、使用周波数には15GHz
を選択し、またここで使用した2種類のコーナーリフレ
クタA、Hの上記周波数での寸法及びRC8の理論計算
値を次の表1に示す。
In addition, in this measurement, two types of corner reflectors of different sizes (hereinafter, the smaller one will be referred to as reflector A and the larger one will be referred to as reflector B) are rotated on the rod-shaped mount 31 of 1 or 2 m as described above. We installed it at different positions from the center and examined whether the relative amount of reflection level and the position could be measured accurately. Here, the frequency used is 15 GHz.
The dimensions of the two types of corner reflectors A and H used here at the above frequency and the theoretically calculated value of RC8 are shown in Table 1 below.

表1 なお、ここでのRC3の計算値は、実際の測定において
コーナーリフレクタの取付は方を入射電波がコーナーリ
フレクタの対称軸に平行に、つまり開口面に垂直に入射
するようにして行ったもので、その状態での計算結果で
ある。
Table 1 The calculated value of RC3 here is based on the fact that in actual measurements, the corner reflector was mounted so that the incident radio waves were incident parallel to the axis of symmetry of the corner reflector, that is, perpendicular to the aperture surface. Here are the calculation results in that state.

また、ここで使用したFFT変換部21は、周波数レン
ジが500Hzでそのサンプリング周期が1+msであ
り、800ポイントをサンプリングしFFT処理してい
る。そのためFFT処理に0.8secの時間を要し、
被測定物の回転周期が25.0secであることを考慮
するとFFT処理のため回転角度に変換して11.8°
を要することになる。このため、本測定においては被測
定物が送受信アンテナに対して真横の状態での各部の反
射量を測定しているが、厳密には真横の状態を0°とし
た場合、本測定では±5.9°の平均的な反射量を測定
していることになる。ただし、ここでの測定は、被測定
物としてコーナーリフレクタを使用しているので、±5
.9°程度の入射角の変化に対しては、はとんどそのR
CSの変化は無視できる。
Further, the FFT conversion unit 21 used here has a frequency range of 500 Hz and a sampling period of 1+ms, and samples 800 points and performs FFT processing. Therefore, it takes 0.8 seconds for FFT processing,
Considering that the rotation period of the object to be measured is 25.0 seconds, the rotation angle is converted to 11.8° for FFT processing.
It will require. For this reason, in this measurement, the amount of reflection from each part is measured when the object to be measured is directly horizontal to the transmitting and receiving antenna, but strictly speaking, if the directly horizontal state is 0°, in this measurement, the amount of reflection is ±5 This means that the average amount of reflection of .9° is being measured. However, since the measurement here uses a corner reflector as the object to be measured, ±5
.. For a change in the angle of incidence of about 9°, the R
Changes in CS can be ignored.

次に、本測定装置を用いた実測結果を示すがその前に、
まず上記の(2)〜(5)式を用いて理論的に本測定法
の距離分解能ΔX及び周波数分解能ΔFを計算した。即
ち、本測定においては、N=800、F=500Hz、
L/2=1.2mであるので、Δx=4.98cn+ど
なる。また、この場合のドツプラー周波数偏移の最大値
f、、、=30.144Hzとなり、これよりΔFは1
.25Hzとなる。さらに、FFT処理した後のドツプ
ラー周波数偏移Δfと回転中心からの距離Rとの関係は
R(cm) −3,981・Δf (Hz)  =−(
6)となり、これより中心からの距離が計算できる。
Next, we will show the actual measurement results using this measuring device, but before that,
First, the distance resolution ΔX and frequency resolution ΔF of this measurement method were theoretically calculated using the above equations (2) to (5). That is, in this measurement, N=800, F=500Hz,
Since L/2 = 1.2m, Δx = 4.98cn + roar. In addition, the maximum value of the Doppler frequency shift in this case f,...=30.144Hz, and from this, ΔF is 1
.. It becomes 25Hz. Furthermore, the relationship between the Doppler frequency shift Δf after FFT processing and the distance R from the center of rotation is R (cm) −3,981・Δf (Hz) = −(
6), from which the distance from the center can be calculated.

このような基礎的事項を考慮して、本測定においては、
大きな反射体Bを距離R=40cmに固定し、小さい反
射体Aの距離R(以下、R1と称す、)を70c−〜1
10cmまでの範囲で10c輪間隔で変化させ、それぞ
れの場合の反射量及び距離R1を測定した。また、本測
定法におけるRCSの測定限界を知るために反射体A、
Bを取り付けずに、取付台のみからの反射量も測定した
。これらの結果を第6図の(a)〜(c)に示す、同図
(a)は被測定物無しの場合の取付台31の反射レベル
を示し、また同図(b)はR,−80c鵠の場合、同図
(c)はR+ ” 110cmmの場合であって、それ
ぞれ大きな反射体Bによる反射レベルのピークと小さな
反射体Aによるピークとが異なる周波数で現れている。
Considering these basic matters, in this measurement,
The distance R of the large reflector B is fixed at 40 cm, and the distance R of the small reflector A (hereinafter referred to as R1) is set to 70c-~1.
The distance was changed at intervals of 10c within a range up to 10cm, and the amount of reflection and distance R1 in each case were measured. In addition, in order to know the measurement limit of RCS in this measurement method, reflector A,
The amount of reflection from only the mounting base was also measured without attaching B. These results are shown in FIGS. 6(a) to 6(c). FIG. 6(a) shows the reflection level of the mount 31 when there is no object to be measured, and FIG. 6(b) shows the reflection level of R, - In the case of the 80c mouse, the figure (c) shows the case where R+'' is 110 cm, and the peak of the reflection level due to the large reflector B and the peak due to the small reflector A appear at different frequencies.

これらの図から反射体Aの現れる周波数及びこの周波数
から(6)式を用いて変換した測定距離R1(反射体A
の回転中心からの距離)、さらにそのときの反射体Bと
の反射レベル差の測定結果をそれぞれ次の表2にまとめ
て示す。
From these figures, we can see the frequency at which reflector A appears and the measurement distance R1 (reflector A) converted from this frequency using equation (6).
(distance from the center of rotation) and the measurement results of the difference in reflection level with reflector B at that time are summarized in Table 2 below.

表2 この結果、まず第6図(a)は取付台31のみからの反
射量を示しているが、このレベルが本測定のバックグラ
ンドノイズレベルであり、このレベルが本測定系で測定
できる最小のRCSを決定する。そこで、このパターン
を観察すると、本測定においては、反射体A及びBの反
射レベルから考えて、10dBcm”程度のRCSの測
定ができると考えられる。
Table 2 As a result, first of all, Figure 6(a) shows the amount of reflection from only the mounting base 31, but this level is the background noise level of this measurement, and this level is the minimum that can be measured with this measurement system. Determine the RCS of Therefore, observing this pattern, it is thought that in this measurement, an RCS of about 10 dBcm'' can be measured, considering the reflection levels of reflectors A and B.

ただし、このバックグランドノイズレベルは、被測定物
の取付台31を発泡スチロール等の電波的に無反射なも
ので製作することにより、さらに低下させることができ
ると考えられ、この場合本測定系以上に小さいRCSの
測定が可能になると思われる。
However, it is believed that this background noise level can be further reduced by making the mounting base 31 of the object to be measured made of a material that does not reflect radio waves, such as polystyrene foam. It seems possible to measure small RCS.

また、このパターンを観察すると0〜約30Hzまでの
反射レベルがほぼ平坦になっており、また約30Hzの
ところで反射レベルが急激に低下しており、棒状の取付
台31の形状が正確に観察されているのがわかる。
Furthermore, when observing this pattern, the reflection level from 0 to approximately 30 Hz becomes almost flat, and the reflection level rapidly decreases at approximately 30 Hz, indicating that the shape of the rod-shaped mount 31 can be observed accurately. I can see that it is.

次に、第6図(b)、 (c)は、この取付台31に反
射体A及びBを取り付けた場合の測定結果を示したもの
である。この結果、測定されたパターンを観察すると、
回転中心から取付台31を示す平坦な部分、反射体A及
びBの位置する反射レベルの高くなった部分、さらには
取付台の長さ1.2mより先の空間の部分で反射レベル
が急激に低下している部分がそれぞれの図において正確
に測定されている。なお、これらの図を詳細に観察する
と、表2に示したように測定の距離誤差は最大で約2c
m、また反射レベルの測定誤差は2つの反射体の相対レ
ベル差についての表1より求めた理論値(10、6dB
cm2)と比較すると約4 dBc++2であることが
確かめられた。
Next, FIGS. 6(b) and 6(c) show the measurement results when reflectors A and B are attached to this mounting base 31. As a result, when observing the measured pattern,
The reflection level suddenly increases from the center of rotation to the flat part indicating the mounting base 31, the part where the reflection level is high where reflectors A and B are located, and furthermore, the part of the space beyond the length of the mounting base of 1.2 m. The area of decline is precisely measured in each figure. In addition, when observing these figures in detail, as shown in Table 2, the distance error in measurement is approximately 2 c at maximum.
m, and the measurement error of the reflection level is the theoretical value (10.6 dB) obtained from Table 1 regarding the relative level difference between the two reflectors.
cm2), it was confirmed that it was approximately 4 dBc++2.

なお、距離R1が大きくなるにつれて測定距離及び反射
レベルの測定誤差が大きくなっているが、この理由は測
定に使用したアンテナのビーム幅が比較的狭く回転中心
から横方向に遠ざかるにつれて反射体に均一に平面波が
到達していないためと考えられる。
Note that as the distance R1 increases, the measurement errors in the measurement distance and reflection level increase; the reason for this is that the beam width of the antenna used for measurement is relatively narrow and as it moves away from the center of rotation in the horizontal direction, the beam width becomes uniform across the reflector. This is thought to be because the plane wave did not reach the area.

また、被測定物となるコーナーリフレクタ以外の試料を
測定する場合、予め理論値が既知のコーナーリフレクタ
を用いて反射量(反射波の強さ)の基準レベルを検出し
、次に試料となる被測定物を同一測定条件で測定するこ
とにより、試料の端金の反射レベルを知ることができる
In addition, when measuring a sample other than the corner reflector that is the object to be measured, first detect the reference level of the amount of reflection (strength of reflected waves) using a corner reflector whose theoretical value is known, and then By measuring the object to be measured under the same measurement conditions, it is possible to know the reflection level of the end metal of the sample.

(発明の効果) 以上説明したように、本発明のレーダ反射断面積測定装
置によれば、被測定物を回転させ、そのドツプラー周波
数偏移をFFT処理することにより、比較的的簡単な測
定系で被測定物の各部からの反射量の測定を行うことが
可能になる。
(Effects of the Invention) As explained above, according to the radar reflection cross section measuring device of the present invention, a relatively simple measurement system can be achieved by rotating the object to be measured and subjecting the Doppler frequency shift to FFT processing. This makes it possible to measure the amount of reflection from each part of the object to be measured.

この結果、本装置を使用した測定法においては、例えば
被測定物の距離を誤差約2cm以内で正確に測定可能で
、また反射レベルについても10dBcm2程度のRC
3まで測定誤差的4 die鴎2で測定できることが確
認でき、被測定物の部分的なレーダ反射断面積の測定装
置が実現できる。
As a result, in the measurement method using this device, it is possible to accurately measure the distance of the object to be measured, for example, within an error of about 2 cm, and the reflection level can be measured with an RC of about 10 dBcm2.
It can be confirmed that measurements can be made with a measurement error of 4 to 3, and a device for measuring a partial radar reflection cross section of an object to be measured can be realized.

なお、本発明においては、FFT処理のサンプリング周
期の関係から距離分解能が制約されたが今後さらに高速
なFFT変換部を用いれば、より高精度な距離分解能の
測定ができると考えられる。
In the present invention, the distance resolution is limited due to the sampling period of the FFT process, but it is believed that if a faster FFT conversion unit is used in the future, it will be possible to measure the distance resolution with higher accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るレーダ反射断面積測定装置の基本
構成を示すブロック図、第2図は本発明の一実施例にお
けるブロック図、第3図は本発明の一実施例における被
測定物取付台及び被測定物としてのコーナーリフレクタ
の取付を示す正面図、第4図は解析モデルを示す説明図
、第5図は反射波の概略図、第6図は本発明の一実施例
における測定結果の一例を示す説明図である。 1・・・送信部、2・・・受信部、3・・・検出部、4
・・・変換部、5・・・回転部、11・・発振器、12
・・・第1のミキサー、13・・増幅器、14・・・送
信アンテナ、15・・・ローカルオシレータ、16・・
受信アンテナ、17・・・増幅器、18・・・第2のミ
キサー、19・・・フィルター、20・・第3のミキサ
ー、21・・・FFT変換部、30・・回転台、31・
・・被測定物取付台、40・・被測定物。
FIG. 1 is a block diagram showing the basic configuration of a radar cross-sectional area measuring device according to the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a block diagram of an object to be measured in an embodiment of the present invention. A front view showing the installation of a mounting base and a corner reflector as an object to be measured, FIG. 4 is an explanatory diagram showing an analytical model, FIG. 5 is a schematic diagram of reflected waves, and FIG. 6 is a measurement in an embodiment of the present invention. It is an explanatory diagram showing an example of a result. 1... Transmitting section, 2... Receiving section, 3... Detecting section, 4
... Conversion section, 5... Rotating section, 11... Oscillator, 12
...first mixer, 13...amplifier, 14...transmission antenna, 15...local oscillator, 16...
Receiving antenna, 17... Amplifier, 18... Second mixer, 19... Filter, 20... Third mixer, 21... FFT converter, 30... Rotating table, 31...
...Measurement object mounting base, 40...Measurement object.

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物を設置し回転させる回転部と、前記被測
定物に電波を送信する送信部と、前記被測定物からの反
射波を受信する受信部と、この受信部で受信した信号か
ら前記被測定物の回転により生じたドップラー周波数偏
移を検出する検出部と、前記被測定物の回転時間を小区
間に区切り、該小区間で前記検出部のデータを取得し高
速フーリエ変換する変換部とを具備したことを特徴とす
るレーダ反射断面積測定装置。
(1) A rotating part that installs and rotates the object to be measured, a transmitting part that transmits radio waves to the object to be measured, a receiving part that receives reflected waves from the object to be measured, and a signal received by the receiving part. a detection unit that detects a Doppler frequency shift caused by the rotation of the object to be measured; and a detection unit that divides the rotation time of the object to be measured into small intervals, and acquires data from the detection unit in the small intervals and performs fast Fourier transform on the rotation time of the object to be measured. A radar reflection cross-sectional area measuring device characterized by comprising a converting section.
(2)前記被測定物としてコーナーリフレクタを用いる
ことにより前記反射波の基準レベルを検出する請求項1
記載のレーダ反射断面積測定装置。
(2) Claim 1, wherein the reference level of the reflected wave is detected by using a corner reflector as the object to be measured.
The radar reflection cross section measurement device described.
JP1314537A 1989-12-04 1989-12-04 Radar reflection cross section measuring device Expired - Lifetime JPH065276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314537A JPH065276B2 (en) 1989-12-04 1989-12-04 Radar reflection cross section measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314537A JPH065276B2 (en) 1989-12-04 1989-12-04 Radar reflection cross section measuring device

Publications (2)

Publication Number Publication Date
JPH03175386A true JPH03175386A (en) 1991-07-30
JPH065276B2 JPH065276B2 (en) 1994-01-19

Family

ID=18054487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314537A Expired - Lifetime JPH065276B2 (en) 1989-12-04 1989-12-04 Radar reflection cross section measuring device

Country Status (1)

Country Link
JP (1) JPH065276B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322260A (en) * 2006-06-01 2007-12-13 Mitsubishi Electric Corp Multi-frequency oscillation device
CN109405955A (en) * 2018-10-18 2019-03-01 哈尔滨工程大学 A kind of Doppler shift measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180064951A (en) * 2016-12-06 2018-06-15 주식회사 비트센싱 Linear virtual fence system using radar and reflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322260A (en) * 2006-06-01 2007-12-13 Mitsubishi Electric Corp Multi-frequency oscillation device
CN109405955A (en) * 2018-10-18 2019-03-01 哈尔滨工程大学 A kind of Doppler shift measurement method

Also Published As

Publication number Publication date
JPH065276B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JP3971573B2 (en) Radar distance measuring device
Woods et al. A high accuracy microwave ranging system for industrial applications
US5859535A (en) System for determining size and location of defects in material by use of microwave radiation
US3889533A (en) Acoustic wind sensor
US4268828A (en) Swept frequency radar system employing phaseless averaging
JP5202844B2 (en) Improved process for phase-derived range measurement
JP2008525796A (en) Radar level gauge system
JPH063453B2 (en) Measuring method and device for altitude distribution of wind direction, wind speed, and temperature
JP2001502425A (en) Method for eliminating interference of FMCW type radar device
Piotrowsky et al. Spatially resolved fast-time vibrometry using ultrawideband FMCW radar systems
CN113302459B (en) Non-invasive open channel flowmeter
US8342027B2 (en) Determining physical properties of objects or fluids in multi-path clutter environments
US10761205B2 (en) Systems for determining target direction and methods therefor
JPH03175386A (en) Measuring apparatus for reflecting cross-sectional area of radar
Ruser et al. Sweep linearization of a microwave FMCW Doppler sensor by an ultrasonic reference
RU2399888C1 (en) Method of measuring level of material in reservoir
Stolle et al. Multiple-target frequency-modulated continuous-wave ranging by evaluation of the impulse response phase
JPH0949860A (en) Antenna measuring apparatus
JPH0646219B2 (en) Bottom and side detectors for continuous unloader
Yan et al. Range and DOA Estimation of Micro-Doppler Target Using A LFMCW Radar
Kinoshita et al. Vibration disturbance cancellation method for estimation of target displacement by CW Doppler radar
Ruser et al. A low-cost ultrasonic-microwave multisensor for robust sensing of velocity and range
JP3282777B2 (en) Phased Array Doppler Soda
SU1332242A1 (en) Device for measuring the reflection factor
Okubo et al. Experimental verification of measurement principle in standing wave radar capable of measuring distances down to zero meters

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term