JPH03175326A - Method and apparatus for measuring emissivity and surface temperature - Google Patents

Method and apparatus for measuring emissivity and surface temperature

Info

Publication number
JPH03175326A
JPH03175326A JP31505589A JP31505589A JPH03175326A JP H03175326 A JPH03175326 A JP H03175326A JP 31505589 A JP31505589 A JP 31505589A JP 31505589 A JP31505589 A JP 31505589A JP H03175326 A JPH03175326 A JP H03175326A
Authority
JP
Japan
Prior art keywords
measured
light
emissivity
radiometer
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31505589A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamamoto
俊行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31505589A priority Critical patent/JPH03175326A/en
Publication of JPH03175326A publication Critical patent/JPH03175326A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the surface temp. of an object to be measured by calculating emissivity on the basis of the reflectivity corrected on the basis of the measured value of the distance between the photoelectric conversion element of a quantity-of-light measuring radiometer and the object to be measured. CONSTITUTION:When wide parallel luminous flux is emitted to the surface of an object 2 to be measured from a light emitted source 15, the quantity I0 of the parallel luminous flux is measured by a photodetector 21 and the quantity I1 of the light from the surface of the object 2 to be measured is measured by a radiometer 13. Next, when the surface of the object 2 to be measured is not irradiated with the luminous flux, the quantity I2 of the light from the object 2 to be measured is measured by a radiometer 23. Further, approximate semisphere reflectivity is calculated from a predetermined formula using the measured value of the distance (l) between the photoelectric conversion element of the radiometer 18 and the object 2 to be measured and the emissivity epsilon of the object 2 to be measured is obtained. Furthermore, the accurate surface temp. of the object 2 to be measured is calculated on the basis of the outputs V0 of a thermometer calculated based on the quantity I0 of light only of emitted light and the emissivity epsilon.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、被測定物に接触することなく該被測定物の
放射率と表面温度を同時に測定する方法、並びにそのた
めの装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for simultaneously measuring the emissivity and surface temperature of an object to be measured without contacting the object, and an apparatus therefor. .

〈従来技術とその課題〉 被測定物からの放射光及び被測定物の放射率を基にその
温度を測定する“放射式温度測定法”は、被測定物に接
触することなく迅速に測温することが可能であることか
ら、現在では、例えば各種鋼材の製造プロセスにおける
品質管理や操業性改善等に欠くことのできない手段の1
つとなっている。
<Prior art and its problems> The radiation temperature measurement method, which measures the temperature of an object based on the emitted light from the object and the emissivity of the object, can quickly measure temperature without touching the object. Because of its ability to
It is one.

ただ、この放射式温度測定法によって温度測定を行う場
合には、周囲熱源からの外乱(7ノイズ光)の除去と被
測定物の正確な放射率の把握が極めて重要な要件とされ
ていた。しかし、温度測定のために正確な把握が望まれ
る“物体の放射率”は、温度や材質等により大きく変動
するばかりか、その物体が比較的鏡面性の冷延板等であ
る場合には反射率に比べて極めて小さい値を示すと言う
特性があり、そのため非測定物からの光を検出してもそ
の大部分が反射光である場合も少なく、はなかった。従
って、物体の放射率を放射光から直接測定することは非
常に困難であり、そのため“放射式温度測定法”では測
定精度の向上が大きな課題となっていた。
However, when measuring temperature using this radiation temperature measurement method, it is extremely important to remove disturbances from ambient heat sources (noise light) and to accurately determine the emissivity of the object to be measured. However, the emissivity of an object, which is desired to be accurately determined for temperature measurement, not only fluctuates greatly depending on temperature and material, but also reflects light when the object is a relatively specular cold-rolled plate. It has the characteristic that it exhibits an extremely small value compared to the rate of measurement, so even when light is detected from a non-measurable object, most of it is rarely reflected light. Therefore, it is extremely difficult to directly measure the emissivity of an object from synchrotron radiation, and therefore, improving measurement accuracy has been a major challenge in the "radiant temperature measurement method."

そこで、放射式温度測定法に指摘される上記問題点を解
消すべく、次のような提案がなされた。
Therefore, in order to solve the above-mentioned problems pointed out in the radiation temperature measurement method, the following proposal was made.

即ち、第4図に示すのば[計測自動制御学会論文集”第
16巻第2号(昭55)jに掲載された温度測定手段で
あり、鏡面反射を利用して測温精度を高めようと言うも
のである。
In other words, the temperature measurement means shown in Fig. 4 was published in the Proceedings of the Society of Instrument and Control Engineers, Vol. 16, No. 2 (1982), and uses specular reflection to improve temperature measurement accuracy. That is what it says.

この手段では、容器(1)内に置かれた鏡面を呈する被
測定物(2)表面の法線に対して角度θをもって鏡面対
称に黒体放射源(3)と放射計(4)とを配置すると共
に、黒体放射源(3)の前にモータ(5)で回転される
水冷の回転セクタ(6)(扇形の遮蔽板)を配して温度
測定がなされる。つまり、温度測定の際、回転セクタ(
6)が黒体放射源(3)を遮蔽しない角度位置にある時
には、放射計(4)は被測定物(2)表面で反射した黒
体放射8(3)からの光(反射光)と被測定物(2)自
体から発せられる放射光との両者を受け、これらを合わ
せた値として光強度を検出する。一方、回転セクタ(6
)が黒体放射源(3)を遮蔽する角度位置になると放射
計(4)は被測定物(2)自体から発せられる放射光の
みを受けることとなるので、その値を光強度として検出
する。
In this method, a blackbody radiation source (3) and a radiometer (4) are mirror-symmetrically arranged at an angle θ with respect to the normal to the surface of a mirror-surfaced object (2) placed in a container (1). At the same time, a water-cooled rotating sector (6) (fan-shaped shielding plate) rotated by a motor (5) is placed in front of the blackbody radiation source (3) to measure temperature. This means that when measuring temperature, the rotating sector (
6) is at an angular position that does not block the blackbody radiation source (3), the radiometer (4) detects the light (reflected light) from the blackbody radiation 8 (3) reflected from the surface of the object to be measured (2). It receives both the radiation light emitted from the object to be measured (2) itself, and detects the light intensity as the combined value. On the other hand, rotating sector (6
) is at an angular position that blocks the blackbody radiation source (3), the radiometer (4) receives only the radiation emitted from the object to be measured (2) itself, and this value is detected as the light intensity. .

従って、これら2つの光強度の差からまず反射光の光量
を求め、これに基づいて反射率を算出すれば「反射率と
放射率との和は一定」なる法則から被測定物(2)の放
射率が導かれる。更に、この放射率と上記“放射光のみ
を受けて検出された光強度”とから被測定物(2)の表
面温度が求まる訳である。
Therefore, by first determining the amount of reflected light from the difference between these two light intensities and calculating the reflectance based on this, the law that says "the sum of reflectance and emissivity is constant" indicates that the object to be measured (2) Emissivity is derived. Furthermore, the surface temperature of the object to be measured (2) is determined from this emissivity and the above-mentioned "light intensity detected by receiving only the emitted light".

また、同様に鏡面反射を利用した放射式温度測定法とし
て、第5図に示す如き手段が特開昭6186621号公
報に開示されている。
Further, as a radiation temperature measurement method that similarly utilizes specular reflection, a means as shown in FIG. 5 is disclosed in Japanese Patent Application Laid-Open No. 6186621.

第5図に示される手段は、発光源(マ)からの光をミラ
ー(8)によって被測定物(2)−法線方向から照射巳
、その反射光及び被測定物(2)自体から発せられる放
射光を ミラー(8)の上方に設けた集光レンズ(9)
で放射計(4)に集めて温度測定を行うものである。温
度測定に際しては、まず反射率ρが1である基準反射板
を被測定物(2)と置き換えてセットし、この状態で発
光源(7)からの光量L0を予め測定し2ておく。また
、反射率ρと放射率εとが既に知られている物体からρ
とεとの和Kを求めておく。次に、被測定物(2)に対
して発光源(7)からの光を照射し、この時の被測定物
表面からの光景L1を放射計(4)にて測定する。更に
、照射光力(被測定物り2)表面に当らない状態での被
測定物表面から発せられる光lLzをも放射計(4)に
て測定する。そして、第1段階として、これら測定値か
ら法線方向の被測定物表面の反射率ρを式1式% によって求め、更に式 ε=に一ρ(但し7、鏡面に対してはに=1)により被
測定物表面の放射率εを求める。続いて、第2段階とし
て、放射光のみの光景である“光量L!″′より求めた
輝度T、と上記放射率εとから、式 Ts=A・εT(但し、Aは比例定数)に基づいて被測
定物(2)表面の正確な温度Tを求める訳である。
The means shown in FIG. 5 emits light from a light emitting source (Ma) by a mirror (8) in the normal direction to the object to be measured (2), the reflected light, and the object to be measured (2) itself. A condensing lens (9) installed above the mirror (8)
The temperature is measured by collecting it in a radiometer (4). When measuring the temperature, first, a reference reflector having a reflectance ρ of 1 is set in place of the object to be measured (2), and in this state, the amount of light L0 from the light emitting source (7) is measured in advance. Also, from an object whose reflectance ρ and emissivity ε are already known, ρ
Find the sum K of and ε. Next, the object to be measured (2) is irradiated with light from the light emitting source (7), and the scene L1 from the surface of the object at this time is measured by the radiometer (4). Furthermore, the radiation meter (4) also measures the light lLz emitted from the surface of the object to be measured in a state where the irradiation light power (object to be measured 2) does not hit the surface. Then, in the first step, the reflectance ρ of the surface of the object to be measured in the normal direction is determined from these measured values using the formula 1, and then the formula ε = 1 ρ (where 7, for a mirror surface, ρ = 1 ) to determine the emissivity ε of the surface of the object to be measured. Next, in the second step, the equation Ts = A εT (where A is a constant of proportionality) is obtained from the luminance T obtained from the "light amount L!"', which is a scene of only synchrotron radiation, and the emissivity ε. Based on this, the accurate temperature T of the surface of the object to be measured (2) is determined.

しかしながら、これら何れの手段も、被測定物表面が鏡
面反射性の場合は周囲(例えば容器壁面等)からのノイ
ズ光が放射計に入射することが無いので精度の良い放射
率及び温度の測定が可能であるが、被測定物表面が拡散
反射性であると周囲からの熱放射が被測定物表面で拡散
反射して放射計に入射することとなり、放射率と温度の
測定誤差が大きくなると言う不都合があった。また、被
測定物表面が鏡面以外の場合には特定方向の放射率εと
反射率ρとの間に「ε+ρ=1」 と言う関係が成立し
ないので、材料の拡散反射特性を表わすパラメータPを
導入して[ρ−P(1−ε)] とし測定対象の反射率
が補正されるが、このPは被測定物の材質1表面粗さ、
酸化の度合等により種々変化するため、この点からも精
度の良い測定が困難であるとの問題があった。
However, with any of these methods, if the surface of the object to be measured is specularly reflective, noise light from the surroundings (for example, the wall of the container, etc.) will not enter the radiometer, making it difficult to measure emissivity and temperature with high precision. This is possible, but if the surface of the object to be measured is diffusely reflective, thermal radiation from the surroundings will be diffusely reflected on the surface of the object and enter the radiometer, increasing measurement errors in emissivity and temperature. There was an inconvenience. In addition, if the surface of the object to be measured is other than a mirror surface, the relationship "ε + ρ = 1" does not hold between the emissivity ε and the reflectance ρ in a specific direction, so the parameter P that represents the diffuse reflection characteristics of the material is The reflectance of the measured object is corrected by introducing [ρ-P(1-ε)], but this P is the material 1 surface roughness of the measured object,
Since it varies depending on the degree of oxidation, etc., there has been a problem that accurate measurement is difficult from this point of view as well.

一方、これらとは別に、[“鉄と鋼”、第65巻第1号
(1979年)」及び「特公昭52−7954号公報」
には高反射率円筒を用いて測温精度を高めようとの提案
が掲載されている。
On the other hand, apart from these, ["Tetsu to Hagane", Vol. 65, No. 1 (1979)] and "Special Publication No. 7954 of 1979"
published a proposal to improve temperature measurement accuracy using a highly reflective cylinder.

第6図は該手段の概要説明図であるが、温度測定に当っ
ては第6図Ta)に示す如き装置が使用される。即ち、
被測定物(2)と放射計(4)との間の被測定物(2)
に接近させた位置に内面が高反射性の円筒(10)が設
置され、この円筒(10)と放射計(4)との間に第6
図(blに示すような2つの開口部(11)を有する回
転セクタ(12)が配置された装置である。
FIG. 6 is a schematic explanatory diagram of the means, and for temperature measurement, an apparatus as shown in FIG. 6 (Ta) is used. That is,
Object to be measured (2) between the object to be measured (2) and the radiometer (4)
A cylinder (10) with a highly reflective inner surface is installed at a position close to the radiometer (4), and a sixth
This is a device in which a rotating sector (12) having two openings (11) as shown in Figure (bl) is arranged.

なお、上記回転セクタ(12)はモータ(13)によっ
て回転されるが、開口部(11)の位置は円筒(10)
の中心軸(14)と一致しており、また放射計(4)の
入射口も中心軸(14)上に置かれている。
The rotating sector (12) is rotated by the motor (13), but the opening (11) is located at the cylinder (10).
The entrance of the radiometer (4) is also placed on the central axis (14).

上記装置において、回転セクタ(12)が円筒(10)
と放射計(4)との間に割り込まない角度位置の時には
、被測定物(2)からの放射光は中心軸(14)上の光
路をたどるものしか放射計(4)に入射しない。
In the above device, the rotating sector (12) is a cylinder (10).
When the angular position is such that it does not come between the object to be measured (2) and the radiometer (4), only the light emitted from the object to be measured (2) that follows the optical path on the central axis (14) enters the radiometer (4).

つまり、この時には円筒(10)が存在しないのと同じ
状態が実現できるが、その際の被測定物の表面温度、放
射率並びに放射エネルギをそれぞれT。
That is, at this time, the same state as if the cylinder (10) did not exist can be realized, but the surface temperature, emissivity, and radiant energy of the object to be measured at that time are T, respectively.

ε及びE、とすると、放射計(4)により検出される放
射エネルギE、は式 %式%() で表わされる。一方、回転セクタ(12)が円筒(10
)と放射計(4)との間に割り込んだ角度位置の時には
、被測定物(2)からの放射光は円筒(10)の内面。
Let ε and E be, the radiant energy E detected by the radiometer (4) is expressed by the formula %. On the other hand, the rotating sector (12) is a cylinder (10
) and the radiometer (4), the emitted light from the object to be measured (2) is emitted from the inner surface of the cylinder (10).

回転セクタ(12)の下面及び被測定物(2)の表面と
で様々に反射し、中心軸(14)上の光路をたどる放射
光以外の放射光も回転セクタ(12)の開口部(11)
を通って放射計(4)に入射する。従って、この時に放
射計(4)により検出される放射エネルギE2は放射率
が増大した形となり、式 %式%() で表わされることとなる。ここで、前記g(ε)とεと
の関係は予め知ることができるので、上記2つの式を連
立方程式として解くことにより被測定物の放射率ε及び
表面温度Tを求めることができる訳である。
Radiant light other than the radiant light that is variously reflected on the lower surface of the rotating sector (12) and the surface of the object to be measured (2) and follows the optical path on the central axis (14) also passes through the opening (11) of the rotating sector (12). )
and enters the radiometer (4). Therefore, the radiant energy E2 detected by the radiometer (4) at this time has an increased emissivity, and is expressed by the formula %. Here, since the relationship between g(ε) and ε can be known in advance, the emissivity ε and surface temperature T of the object to be measured can be determined by solving the above two equations as simultaneous equations. be.

この手段も、円筒(10)により周囲の光が放射計(4
)に混入するのが防止されるのでノイズ光が放射計(4
)に入射するこ去がな(、精度の良い測定が可能ではあ
ったが、内面反射性の高い円筒(10)を出来るだけ被
測定物(2)に接近させて配設すると言う困難な平文て
を講じる必要がある上、円筒内面の汚れによる反射率の
低下が避けられないことから、この方法はオンライン製
造プロセスには定常的に適用することが難しいとの問題
があった。
This means also uses a cylinder (10) to direct ambient light to a radiometer (4).
), noise light is prevented from entering the radiometer (4).
), it was possible to measure with high accuracy, but it was difficult to place the cylinder (10) with high internal reflection as close to the object to be measured (2) as possible. This method has the problem that it is difficult to regularly apply it to online manufacturing processes because it is necessary to take precautionary measures, and a decrease in reflectance due to contamination on the inner surface of the cylinder is unavoidable.

そのため、本発明者は先に、前記円筒部材のような適正
設置が困難な補助部材を必要とせず、しかも被測定物表
面が拡散反射性であっても的確な測定が可能で、かつ被
測定物が変わって放射率が変動してもその都度の補正を
要することなく放射率と表面温度との同時測定が行える
次のような手段を提案した(特願昭63−75670号
)。
Therefore, the present inventor first discovered that there is no need for an auxiliary member such as the cylindrical member, which is difficult to properly install, and that accurate measurement is possible even if the surface of the object to be measured is diffusely reflective. The following method was proposed (Japanese Patent Application No. 75,670/1982) that allows simultaneous measurement of emissivity and surface temperature without requiring correction each time the emissivity changes due to changes in the object.

即ち、本発明者による先の提案は、第7図に示すように
、まず、半導体レーザ等の発光fi (15)からの光
をレンズ(16)によって“所定の広がりと均一な強度
分布を持つ平行光束”に変え、これをハーフミラ−(1
7)を介して被測定物(2)の表面にその法線方向から
照射すると共に、該照射面からの近似反射光量と被測定
物自体が放射する放射光量との総和を放射計(18)で
、またその時の平行光束の光量をミラー(19)、集光
レンズ(20)を介して光検出器(21)でそれぞれ検
出し、一方、発光m (15)をシャッターで遮ったり
発光源(15)の光出力をゼロとしたりして照射光が被
測定物表面に当らない状態の時の光量(被測定物自体が
放射する放射光量ンをもハーフミラ−(22)を介して
放射計(23)で測定する。そして、“放射計(18)
の測定値と放射計(23)の測定値との差として算出さ
れる近似反射光量”と“光検出器(21)で検出された
平行光束の光量”から被測定物の近似反射率を求め、更
に反射率と放射率との間に成立する関係式より被測定物
の放射率を算出してから、算出された放射率と放射計(
23)の測定値に基づいて得られた“被測定物の放射エ
ネルギ”を基に被測定物の表面温度を求めると言うもの
である。
That is, as shown in FIG. 7, the previous proposal by the present inventor was to first convert the light from the light emitting fi (15) of a semiconductor laser or the like into a lens (16) with a predetermined spread and uniform intensity distribution. Parallel light flux” and convert it into a half mirror (1
7) to the surface of the object to be measured (2) from its normal direction, and a radiometer (18) measures the sum of the approximate amount of reflected light from the irradiated surface and the amount of radiation emitted by the object to be measured itself. The amount of parallel light flux at that time is detected by a photodetector (21) via a mirror (19) and a condensing lens (20), while the light emitted m (15) is blocked by a shutter or the light source ( 15) when the light output is set to zero so that the irradiated light does not hit the surface of the object to be measured (the amount of radiation emitted by the object to be measured itself) is measured by the radiometer (22) via the half mirror (22). 23).Then, “Radiometer (18)
The approximate reflectance of the object to be measured is determined from the approximate amount of reflected light calculated as the difference between the measured value of and the measured value of the radiometer (23) and the amount of parallel light detected by the photodetector (21). , Furthermore, after calculating the emissivity of the object to be measured from the relational expression that holds between reflectance and emissivity, the calculated emissivity and radiometer (
23) The surface temperature of the object to be measured is determined based on the "radiant energy of the object to be measured" obtained based on the measured value.

そして、このような手段によると、被測定物(2)の表
面が拡散反射性であって周囲光源からのノイズ光が放射
計(18)に入射するとしても、そのノイズ光は発光源
(15)からの照射光に比較して圧倒的に少ない極微量
に過ぎないため、正確な放射率及び反射率の測定が行わ
れ、従って精度の良い温度測定が可能となる訳である。
According to such means, even if the surface of the object to be measured (2) is diffusely reflective and noise light from the ambient light source is incident on the radiometer (18), the noise light is transmitted to the light emitting source (15). Since the amount of light emitted by the irradiated light is extremely small compared to the irradiated light from the irradiated light source, the emissivity and reflectance can be measured accurately, and therefore the temperature can be measured with high precision.

ところが、その後も続けられた本発明者の検討により、
上記先の提案(特願昭63−75670号)になる放射
率、温度の測定手段にも、温度計(放射計)と被測定物
との距離を長く取ろうとするとそれに比例して照射する
反射率測定用の参照光の光束を広げる必要があり、その
ためには装置類を大型化しなければならないとの不都合
を伴うので、実際上は被測定物と温度計との間を余り離
すことができないと言う問題の存在することが明らかと
なった。
However, as a result of the inventor's continued studies,
The method for measuring emissivity and temperature proposed above (Japanese Patent Application No. 63-75670) also uses reflections that emit light in proportion to the distance between the thermometer (radiometer) and the object to be measured. It is necessary to widen the luminous flux of the reference light for rate measurement, and this requires the inconvenience of increasing the size of the equipment, so in practice it is not possible to place the object to be measured and the thermometer very far apart. It became clear that there was a problem.

このようなことから、本発明の目的は、先の提案(特願
昭63−75670号)になる放射率、温度の測定手段
に認められる上記問題点を解消し、装置類の大型化を要
することなく、自在な距離位置に温度計(放射計)を設
置して被測定物の放射率と表面温度を非接触で精度良く
測定し得る手段を提供することに置かれた。
Therefore, an object of the present invention is to solve the above-mentioned problems observed in the emissivity and temperature measuring means proposed earlier (Japanese Patent Application No. 63-75670), and to eliminate the need for larger devices. The aim was to provide a means to accurately measure the emissivity and surface temperature of an object without contact, by installing a thermometer (radiometer) at a position at a flexible distance.

く課題を解決するための手段〉 そこで、本発明者は上記目的を達成すべ(鋭意研究を重
ね、次のような知見を得たのである。
Means for Solving the Problems> Therefore, the inventor of the present invention aimed to achieve the above object (he conducted extensive research and obtained the following findings).

即ち、先の提案(特願昭63−75670号)になる放
射率、温度の測定手段では、“被測定物と温度計(放射
計)との距離で決まる所定の広がり“と均一な強度分布
を持つ平行光束を被測定物の表面に対しその法線に沿っ
て照射する訳であるが、この場合、被測定物と温度計(
放射計)との距離が決まれば投射する光束の必要最低限
の広がりが決まり、それ以上の光束径で光を投射する必
要が出て来る。しかしながら、上記先の提案になる手段
にて放射率。
In other words, the emissivity and temperature measuring means proposed earlier (Japanese Patent Application No. 63-75670) requires a uniform intensity distribution with a "predetermined spread determined by the distance between the object to be measured and the thermometer (radiometer)". In this case, the object to be measured and the thermometer (
Once the distance to the projector (radiometer) is determined, the minimum necessary spread of the projected luminous flux is determined, and it becomes necessary to project light with a luminous flux diameter larger than that. However, the emissivity is reduced by the means proposed above.

温度の測定を行うに当って、光束を広げる代わりに被測
定物と温度計(放射針)との距離を測定し、これに基づ
いて算出された“反射率の積分効率f(0〈f≦1)″
を用いると共に、被測定面が完全拡散面であるとの仮定
に基づいて反射率の補正を行えば、被測定物と温度計(
放射計)との距離調整を要することなく放射率の適正な
測定が可能であるとの事実を見出した。
When measuring temperature, instead of spreading the luminous flux, the distance between the object to be measured and the thermometer (radiation needle) is measured, and based on this, the "integral efficiency of reflectance f (0 < f ≦ 1)"
, and correct the reflectance based on the assumption that the surface to be measured is a completely diffusive surface.
We have discovered that it is possible to properly measure emissivity without having to adjust the distance to a radiometer.

本発明は、上記知見事項等に基づいてなされたものであ
り、 「所定の広がりと均一な強度分布を持つ平行光束を被測
定物の表面に法線方向から照射すると共に、咳法線とほ
ぼ同じ方向における前記被測定物表面からの放射光量及
び反射光量を測定し、この測定値を基に被測定物の反射
率を求め、かつ該反射率と放射率との間の関係から被測
定物の放射率を算出し、更に算出された放射率と被測定
物からの放射エネルギに基づいて被測定物表面の温度を
求める方法において、放射率の算出を、光量測定放射計
の光電変換素子と前記被測定物との距離の測定値を基に
補正した反射率に基づいて行うことにより、被測定物と
放射計との距離調整を要することなく被測定物の適正な
放射率と表面温度とを測定し得るようにした点」 に特徴を有し、更には、 「被測定物の放射率と表面温度の測定装置を、発光源と
、該発光源からの光を所定の広がりと均一強度分布を持
つ平行光束に変換するレンズ系と、前記平行光束を反射
して被測定物表面にその法線方向から案内するが被測定
物表面からの光は透過するハーフミラ−と、前記所定の
広がりと均一強度分布を持つ平行光束の光強度を測定す
る手段と、前記被測定物表面からの法線方向の光を受け
る放射計と、被測定物表面からの放射光の強度を測定す
る手段と、放射計の充電変換素子と被測定物表面との距
離を測定する手段を具備する如くに構成した点」 をも特徴とするものである。
The present invention has been made based on the above-mentioned findings and the like. The amount of emitted light and the amount of reflected light from the surface of the object to be measured in the same direction are measured, the reflectance of the object to be measured is determined based on the measured values, and the reflectance of the object to be measured is determined from the relationship between the reflectance and emissivity. In this method, the temperature of the surface of the measured object is calculated based on the calculated emissivity and the radiant energy from the measured object. By performing the correction based on the reflectance corrected based on the measured value of the distance to the object to be measured, it is possible to obtain the appropriate emissivity and surface temperature of the object to be measured without having to adjust the distance between the object to be measured and the radiometer. It is characterized by the fact that it is capable of measuring the emissivity and surface temperature of an object to be measured. a lens system that converts the parallel light beam into a parallel light beam having a distribution, a half mirror that reflects the parallel light beam and guides it to the surface of the object to be measured from the normal direction thereof but transmits light from the surface of the object to be measured, and the predetermined spread. a means for measuring the light intensity of a parallel light beam having a uniform intensity distribution; a radiometer for receiving light in the normal direction from the surface of the object to be measured; and a means for measuring the intensity of the emitted light from the surface of the object to be measured. The present invention is also characterized in that it is configured to include means for measuring the distance between the charge conversion element of the radiometer and the surface of the object to be measured.

ここで、所定の広がりと均一な強度を持つ平行光束とし
てはできれば単一波長の光であることが好ましく、放射
計も同一波長に対して受光感度を持っているものを使用
するのが望ましい。
Here, it is preferable that the parallel light beam having a predetermined spread and uniform intensity be light of a single wavelength, and it is also desirable to use a radiometer that has light reception sensitivity for the same wavelength.

また、発光源からの光は、“所定の広がりと均一な強度
分布を持つ平行光束で常時照射されるべきではなく、好
ましくはシャッター等によって間歇的に出力されるのが
良い。また、別の方法として発光源が発生する光を強度
変調したものとしても良い。
In addition, the light from the light source should not be constantly irradiated as a parallel light beam with a predetermined spread and uniform intensity distribution, but should preferably be output intermittently by a shutter, etc. As a method, the light emitted by the light source may be intensity-modulated.

続いて、本発明手段たよって被測定物の放射率と表面温
度を測定できる理由を説明する。
Next, the reason why the emissivity and surface temperature of the object to be measured can be measured by means of the present invention will be explained.

く作用〉 物体表面へ光が入射する場合における入射光。Effect〉 Incident light when light is incident on the surface of an object.

反射光、吸収光の間にはエネルギ保存則が成立し、入射
光のエネルギをIO+反射率をρ、吸収率をα。
The law of conservation of energy holds true between reflected light and absorbed light, where the energy of the incident light is IO + the reflectance is ρ, and the absorption rate is α.

透過率をβとすると、エネルギ保存則より式1式%(1
) が成立する。
If the transmittance is β, then according to the law of conservation of energy, Equation 1 % (1
) holds true.

また、キルヒホッフの法則から、放射率をεとすると次
式が成立する。
Furthermore, from Kirchhoff's law, the following equation holds true, where ε is the emissivity.

ε=α              ・・・(2)とこ
ろで、第1図falは平面Aへの入射光と反射光の方向
を説明したものである。今、光が平面A上の0点にBO
力方向ら入射し、これがOC方向に反射した場合におけ
る平面A上の直線OX及び法線ONを基準として、光の
入射角を(θ、φ)。
ε=α (2) By the way, FIG. 1 fal explains the directions of incident light and reflected light on plane A. Now, the light is BO at the 0 point on the plane A
The incident angle of light is (θ, φ) with respect to the straight line OX and normal ON on the plane A when the light is incident from the force direction and reflected in the OC direction.

反射角を(θ′、φ′)とし、不透明な平面の物体表面
に波長λの光が入射角(θ、φ)を持って入射すると共
に反射角(θ′、φ′)を持って反射する場合を想定す
ると、物体が不透明であることから「β=OJ が、ま
た物体表面が平面であることから半球反射率をρtえと
すると[ρ=ρzrCJがそれぞれ成立し、また放射率
1反射率が波長λと入射角(θ、φ)の関数であること
をも考慮すれば、(11式及び(2)式から式 ε(λ:θ、φ)=1−ρ21(λ:θ、φ)・・・(
3)が成立する。
Let the reflection angle be (θ', φ'), and light of wavelength λ is incident on the surface of an opaque plane object with an incident angle (θ, φ) and is reflected with a reflection angle (θ', φ'). Assuming that, since the object is opaque, β = OJ, and since the surface of the object is flat, if the hemispherical reflectance is ρt, then [ρ = ρzrCJ, and emissivity 1 reflectance Considering that is a function of the wavelength λ and the incident angle (θ, φ), (from equations 11 and (2) )...(
3) holds true.

ここで、2話(λ:θ、φ)とは、波長λの光が(θ、
φ)方向から入射した場合に物体前面2π空間に反射さ
れる全反射率(半球反射率)であり、物体表面が完全拡
散反射面(ρ=ρ。cosθ)の場合にはこれら反射率
の関係は以下の如くになる。
Here, episode 2 (λ: θ, φ) means that light with wavelength λ is (θ,
It is the total reflectance (hemispherical reflectance) reflected in the 2π space in front of the object when it is incident from the direction of becomes as follows.

即ち、第1図(b)に示すように、強度I0で光束の直
径がDである光が物体(24)の表面に垂直に入射した
時に物体表面から距離lの位置Pで検出され先の提案(
特願昭63−75670号)になる放射率、温度の測定
手段においては、式(5)で求められる近似半球反射率
1が式(4)で求められる半球反射率ρ2工と近い値に
なるように“光束径D”と“放射計の光電変換素子と被
測定物との距離l”が調整されることが前提とされてい
たが、光束径りがある程度大きければ、この光束を適用
して測定された反射率1と、測定した前記距離l及び被
測定面が完全拡散反射面であるとの仮定に基づいた計算
にて求まる積分効率f とを用い、近似半球反射率γ21を次式で求めることが
できる。
That is, as shown in FIG. 1(b), when light with intensity I0 and beam diameter D is perpendicularly incident on the surface of the object (24), it is detected at a position P at a distance l from the object surface and suggestion(
In the emissivity and temperature measuring means (Japanese Patent Application No. 63-75670), the approximate hemispherical reflectance 1 determined by equation (5) becomes a value close to the hemispherical reflectance ρ2 calculated by equation (4). It was assumed that the "luminous flux diameter D" and "distance l between the photoelectric conversion element of the radiometer and the object to be measured" were adjusted as shown in the figure, but if the luminous flux diameter is large to some extent, this luminous flux can be applied. The approximate hemispherical reflectance γ21 is calculated using the following formula using the reflectance 1 measured at It can be found by

If)zに2j(λ:0.0) 十−(1−’i5”(λ :0.O))  ・・・(7
)上記(7)式は、見掛は上、近似半球反射率Tznが
前記距離lと反射法で測定される見掛けの反射率1との
関数であり、(7)式の近似半球反射率は完全拡散反射
面及び鏡面に対しては式(4)で求まる半球反射率とな
る。即ち、この事実が本発明の骨子となるものである。
If) 2j (λ: 0.0) 10-(1-'i5"(λ: 0.O)) ... (7
) The above equation (7) shows that the approximate hemispherical reflectance Tzn is a function of the distance l and the apparent reflectance 1 measured by the reflection method, and the approximate hemispherical reflectance in equation (7) is For a perfectly diffuse reflective surface and a mirror surface, the hemispherical reflectance is determined by equation (4). That is, this fact is the gist of the present invention.

一方、先の提案(特願昭63−75670号)になる放
射率、温度の測定手段では、lが大きい場合、即ちf≧
0.1の場合には反射率1が低いものであると誤差を生
じることが明らかである。
On the other hand, in the emissivity and temperature measuring means proposed earlier (Japanese Patent Application No. 63-75670), when l is large, that is, f≧
In the case of 0.1, it is clear that an error will occur if the reflectance 1 is low.

次いで、本発明を実施例に基づいてより具体的に説明す
る。
Next, the present invention will be explained more specifically based on Examples.

〈実施例〉 第2図は、本発明に係る“放射率1表面温度測定装置”
の1例を示す概略図である。
<Example> Fig. 2 shows the “emissivity 1 surface temperature measuring device” according to the present invention.
It is a schematic diagram showing an example.

第2図において、符号(2)は被測定物であるが、その
上方には発光源(15)からの光が被測定物(2)の表
面にその法線方向から照射されるようにノ\−フミラー
(17)が設けられている。そして、照射光が被測定物
(2)の表面で反射した反射光及び被測定物自体からの
放射光を検出するため、ノ\−フミラ−(1,7)の上
方位置に放射計(18)が配置されている。なお、この
放射計(18)は、ハーフミラ−(17)を介して被測
定物表面に照射される光束の中心軸(中心光軸)と同軸
関係に(従って被測定物表面への法線と放射計への入射
光路は同方向となる)設置される。
In Fig. 2, reference numeral (2) is the object to be measured, and above it there is a hole so that the light from the light emitting source (15) is irradiated onto the surface of the object to be measured (2) from the normal direction. A \-humirar (17) is provided. A radiometer (18) is placed above the nof mirror (1, 7) in order to detect the reflected light from the irradiated light reflected on the surface of the object to be measured (2) and the emitted light from the object to be measured itself. ) are placed. Note that this radiometer (18) is arranged coaxially with the central axis (center optical axis) of the light beam irradiated onto the surface of the object to be measured via the half mirror (17) (therefore, it is aligned with the normal to the surface of the object to be measured). The incident light path to the radiometer is in the same direction).

また、ハーフミラ−(17)と放射計(18)との間に
は、前記中心光軸の近傍(第2図の破線で示す部分)に
おける被測定物表面からの放射光を放射計(23)に導
くためのハーフミラ−(22)が配置されている。
Also, between the half mirror (17) and the radiometer (18), there is a radiometer (23) that transmits the emitted light from the surface of the object in the vicinity of the central optical axis (the part indicated by the broken line in Fig. 2). A half mirror (22) is arranged to guide the direction.

但し、この放射計(23)の役割は放射計(18)に代
替させることができるので、ハーフミラ−(22)及び
放射計(23)は必須のものではない。
However, the role of the radiometer (23) can be replaced by the radiometer (18), so the half mirror (22) and the radiometer (23) are not essential.

ところで、上述の発光源(15)は所定の広さと強度を
持つ平行光束の源になること、及び放射温度計(18)
の測定波長(例えばSi放射計では0.65stm又は
O09卿)乃至はこれに近似した波長の発光スペクトル
を含む発光がなされることを要し、通常はレザ光を発す
る半導体レーザ等が使用されるが、必ずしも単一波長光
源である必要はな(、)\ロゲンランブ等でも利用でき
る。
By the way, the above-mentioned light emitting source (15) is a source of parallel light flux having a predetermined width and intensity, and the radiation thermometer (18)
It is necessary to emit light that includes an emission spectrum at the measurement wavelength (for example, 0.65stm or O09 for a Si radiometer) or a wavelength similar to this, and usually a semiconductor laser that emits laser light is used. However, it does not necessarily have to be a single wavelength light source (,)\Rogen lamp etc. can also be used.

符号(16)は発光源(15)からの光を所定広さ(径
)の平行光束に変換する非球面レンズである。このレン
ズ(16)にて変換形成された平行光束は、被測定物(
2)自体の放射光を測定する際には被測定物(2)表面
に照射する必要がないため、発光源(15)は間歇作動
されるか、発光強度の変調が行えるか、或いは光出射口
前にチョッパー、シャ・ツタ−(25)光学スイッチ等
を設けて照射光が被測定物(2)に間歇的に照射される
ようにすべきである。なお、符号(26)はシャ・7タ
ー(25)駆動用のモータである。
Reference numeral (16) is an aspherical lens that converts the light from the light emitting source (15) into a parallel beam of predetermined width (diameter). The parallel light flux converted and formed by this lens (16) is transmitted to the object to be measured (
2) When measuring its own emitted light, it is not necessary to irradiate the surface of the object to be measured (2), so the light emitting source (15) must be operated intermittently, the emitted light intensity can be modulated, or the light emitted A chopper, shutter (25) optical switch, etc. should be provided in front of the mouth so that the irradiation light is intermittently irradiated onto the object to be measured (2). Note that the reference numeral (26) is a motor for driving the shutter (25).

光検出器(21)は、照射光の光量■。を測定するため
のもので、レンズ(16)によって形成された広い(径
の大きい)平行光束の」一端に設けられたミラ(19)
による反射光の光路と同軸上に配置される。
The photodetector (21) detects the amount of irradiated light. The mirror (19) is installed at one end of the wide (large diameter) parallel beam formed by the lens (16).
It is placed coaxially with the optical path of the reflected light.

また、光検出器(21)には集光レンズ(20)が前置
されている。なお、この参照用の光検出器(21)は、
ハーフミラ−(17)の背面に光源を向くように配置し
ても差し支えはない。
Further, a condensing lens (20) is placed in front of the photodetector (21). Note that this reference photodetector (21) is
There is no problem even if the half mirror (17) is placed on the back side so as to face the light source.

符号(27)は距離計であり (ここでは光三角法式を
採用している)、放射計(18)の光電変換素子と被測
定物(2)との距離を測定するためのものである。
Reference numeral (27) is a distance meter (here, an optical trigonometric method is adopted), which is used to measure the distance between the photoelectric conversion element of the radiometer (18) and the object to be measured (2).

以上のような装置による放射率と表面温度の測定は、次
のように実施される。
Measurement of emissivity and surface temperature using the above device is carried out as follows.

まず、被測定物(2)を第2図で示した位置に導き、発
光[(15)から広い平行光束が被測定物表面に照射さ
れている時の“平行光束の光量1.”を光検出器(21
)で測定すると共に、被測定物表面からの光量■、を放
射計(18)で測定する。この光量■1は、被測定物表
面での反射光の光量の大部分(前記反射光量の近似値”
i I o )と被測定物自体からの放射光量I2との
和である。
First, the object to be measured (2) is brought to the position shown in Fig. 2, and the light emission [(15) when a wide parallel beam of light is irradiated onto the surface of the object to be measured, ``the amount of parallel light beam 1'' is emitted. Detector (21
), and also measure the amount of light emitted from the surface of the object to be measured using a radiometer (18). This amount of light (1) is the majority of the amount of reflected light on the surface of the object to be measured (approximate value of the amount of reflected light described above).
i I o ) and the amount of emitted light I2 from the object to be measured itself.

次に、例えば「発光源(15)の前部をシャッタで遮蔽
する」又は[発光源(15)の光出力をゼロとする」等
により照射光が被測定物表面に当っていない時に、被測
定物表面からの光量■2を放射計(23)で測定する。
Next, when the irradiation light is not hitting the surface of the object to be measured, for example by "shielding the front part of the light emitting source (15) with a shutter" or "setting the light output of the light emitting source (15) to zero", The amount of light (2) from the surface of the object to be measured is measured with a radiometer (23).

勿論、放射計(23)に変えて、光量1zの測定も放射
計(18)で行って差し支えない。なお、この光量I2
は被測定物自体からの放射光のみである。従って、前記
近似反射光量71oはρ■。=It   Iz で表わされ、近似反射率ρは 0 によって求めることができる。更に、距離計(27)に
よる“放射計(18)の光電変換素子と被測定物(2)
との距離l”の測定値を使って式(7)より近似半球反
射率ρZltが求まり、前出の式 ε=1−ρ2□ により被測定物(2)の放射率εが得られ、更に放射光
のみの光量を示すIoにより求めた温度計出力V0と、
上記放射率εとが前出の式 V0−A・ε・T′′ (但し、A、nは定数)に基づ
いて被測定物(2)表面の正確な温度Tが求められる。
Of course, instead of using the radiometer (23), the measurement of the light intensity 1z may also be performed using the radiometer (18). Note that this light amount I2
is only the emitted light from the object to be measured itself. Therefore, the approximate amount of reflected light 71o is ρ■. = It Iz , and the approximate reflectance ρ can be determined by 0. Furthermore, the photoelectric conversion element of the radiometer (18) and the object to be measured (2) by the distance meter (27)
The approximate hemispherical reflectance ρZlt is obtained from equation (7) using the measured value of the distance l'' from Thermometer output V0 determined by Io indicating the amount of radiation only,
The accurate temperature T of the surface of the object to be measured (2) is determined based on the above-mentioned emissivity ε and the above-mentioned formula V0-A·ε·T″ (where A and n are constants).

ところで、このような測定において、被測定物(2)の
表面は拡散反射性であるため周囲光源からのノイズ光が
放射計(18)に入射する。しかし、その放射計(18
)に入射するノイズ光が発光源(15)からの照射光に
比較して圧倒的に少なくなるよう、被測定物と本温度計
との間に筒状の放射シールドを設置すれば問題はない。
By the way, in such a measurement, since the surface of the object to be measured (2) is diffusely reflective, noise light from an ambient light source enters the radiometer (18). However, the radiometer (18
) There will be no problem if a cylindrical radiation shield is installed between the object to be measured and this thermometer so that the noise light incident on the thermometer is far less than the light emitted from the light source (15). .

そのため、上記本発明法によれば、被測定物表面の法線
方向のみの放射率及び反射率の測定が精度良〈実施でき
る訳である。
Therefore, according to the method of the present invention, it is possible to measure the emissivity and reflectance only in the normal direction of the surface of the object to be measured with high accuracy.

更に、周囲の温度が被測定物(2)に比較して十分高い
場合には、必要に応じて冷却構造を持つ遮蔽板を設置す
ることによりノイズ光は無視できる程度にまで低減され
る。
Furthermore, if the ambient temperature is sufficiently high compared to the object to be measured (2), the noise light can be reduced to a negligible level by installing a shielding plate having a cooling structure as necessary.

なお、第2図で示す如き装置を使用した本発明法に従い
、測定波長:0.9uで高温物体の放射率と表面温度を
実測し、先の提案(特願昭63−75670号)になる
方法を適用した測定結果と比較したところ、次の如き結
果が得られた。即ち、測定温度が1000℃の場合、従
来の方法では放射率の変化0.6±0.1程度に対して
±17℃の測定温度誤差があったのに対して、本発明法
では放射率の変化に対して放射率を0.60±0.03
の精度で測定することができ、約±6℃の高精度で温度
測定を行えることが確認された。
In addition, according to the method of the present invention using the apparatus shown in Fig. 2, the emissivity and surface temperature of a high-temperature object were actually measured at a measurement wavelength of 0.9 u, resulting in the previous proposal (Japanese Patent Application No. 75,670/1982). When compared with the measurement results obtained by applying this method, the following results were obtained. That is, when the measurement temperature is 1000℃, the conventional method had a measurement temperature error of ±17℃ for a change in emissivity of about 0.6±0.1, whereas the method of the present invention The emissivity is 0.60±0.03 for the change in
It was confirmed that temperature can be measured with a high accuracy of approximately ±6°C.

第3図は、上記本発明法に従って合金化熱処理中の亜鉛
メツキ鋼板の表面温度を測定した際のデータ例であるが
、合金化熱処理によりメツキ部の亜鉛と母材の鉄とが拡
散し合金層を作り、その過程で被測定材の放射率が大き
く変化するが、第3図で示されるデータは、放射率の大
きな変化にも係わらず精度の高い温度測定がなされてい
ることを明瞭に示している。
Figure 3 shows an example of data obtained by measuring the surface temperature of a galvanized steel sheet undergoing alloying heat treatment according to the method of the present invention. The emissivity of the material to be measured changes greatly in the process of forming layers, but the data shown in Figure 3 clearly shows that highly accurate temperature measurements are being made despite the large changes in emissivity. It shows.

〈効果の総括〉 以上に説明した如く、この発明によれば、測定位置と被
測定物との距離に大きく影響されることなく放射率と表
面温度の正確な測定を行えるようになり、更には放射率
が種々変化するような材料であっても精度良い測定が可
能となるなど、産業上有用な効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, it is possible to accurately measure emissivity and surface temperature without being greatly affected by the distance between the measurement position and the object to be measured, and furthermore, Industrially useful effects are brought about, such as making it possible to measure with high precision even materials whose emissivity varies in various ways.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る放射率と温度測定法の説明図で
あり、第1図(alは入射光と反射光の方向の表示法を
、そして第1図(b)は測定原理をそれぞれ示している
。 第2図は、本発明に係る測定装置の1例を示す概略構成
図である。 第3図は、本発明法に従って合金化熱処理中の亜鉛メツ
キ銅板の表面温度を測定した際のデータ例である。 第4図は、従来の放射測温法に関する説明図である。 第5図は、従来の放射測温法の別個に関する説明図であ
る。 第6図は、従来の放射測温法の更に別の例に関する説明
図であり、第6図(a)は使用装置の全体構成を、第6
図(blは細部の構成をそれぞれ示している。 第7図は、先の提案になる放射率と温度測定手段の説明
図である。 図面において、 1・・・容器、       2・・・被測定物。 3・・・黒体放射源。 4、18.23・・・放射計、   5,13.26・
・・モータ。 6.12・・・回転セクタ、7.15・・・発光源。 8.19・・・ミラー、     9.20・・・集光
レンズ。 10・・・円筒、11・・・開口部。 14・・・円筒の中心軸、16・・・レンズ。 17、22・・・ハーフミラ−221・・・光検出器。 24・・・物体、25・・・シャソタ 27・・・距離計。
FIG. 1 is an explanatory diagram of the emissivity and temperature measurement method according to the present invention. Fig. 2 is a schematic configuration diagram showing an example of the measuring device according to the present invention. Fig. 3 shows the surface temperature of a galvanized copper plate undergoing alloying heat treatment according to the method of the present invention. Fig. 4 is an explanatory diagram of the conventional radiation thermometry method. Fig. 5 is an explanatory diagram of the conventional radiation thermometry method. Fig. 6 is an explanatory diagram of the conventional radiation thermometry method. FIG. 6(a) is an explanatory diagram regarding yet another example of the radiation thermometry method, and FIG. 6(a) shows the overall configuration of the device used.
Figure (BL shows the detailed structure of each. Figure 7 is an explanatory diagram of the emissivity and temperature measuring means proposed earlier. In the drawing, 1... Container, 2... Measured object Object. 3... Blackbody radiation source. 4, 18.23... Radiometer, 5, 13.26.
··motor. 6.12... Rotating sector, 7.15... Light emitting source. 8.19...Mirror, 9.20...Condensing lens. 10... Cylinder, 11... Opening. 14... Central axis of cylinder, 16... Lens. 17, 22... Half mirror 221... Photodetector. 24...Object, 25...Shasota 27...Distance meter.

Claims (2)

【特許請求の範囲】[Claims] (1)所定の広がりと均一な強度分布を持つ平行光束を
被測定物の表面に法線方向から照射すると共に、該法線
とほぼ同じ方向における前記被測定物表面からの放射光
量及び反射光量を測定し、この測定値を基に被測定物の
反射率を求め、かつ該反射率と放射率との間の関係から
被測定物の放射率を算出し、更に算出された放射率と被
測定物からの放射エネルギに基づいて被測定物表面の温
度を求める方法において、放射率の算出を、光量測定放
射計の光電変換素子と前記被測定物との距離の測定値を
基に補正した反射率に基づいて行うことを特徴とする、
放射率と表面温度の測定方法。
(1) A parallel beam of light with a predetermined spread and uniform intensity distribution is irradiated onto the surface of the object to be measured from the normal direction, and the amount of emitted light and reflected light from the surface of the object to be measured in approximately the same direction as the normal line. , calculate the reflectance of the object to be measured based on this measured value, calculate the emissivity of the object to be measured from the relationship between the reflectance and emissivity, and then calculate the emissivity of the object to be measured based on the measured value. In a method for determining the temperature of the surface of a measured object based on the radiant energy from the measured object, the calculation of emissivity is corrected based on the measured value of the distance between the photoelectric conversion element of the light intensity measuring radiometer and the measured object. It is characterized by being carried out based on reflectance,
How to measure emissivity and surface temperature.
(2)発光源と、該発光源からの光を所定の広がりと均
一強度分布を持つ平行光束に変換するレンズ系と、前記
平行光束を反射して被測定物表面にその法線方向から案
内するが被測定物表面からの光は透過するハーフミラー
と、前記所定の広がりと均一強度分布を持つ平行光束の
光強度を測定する手段と、前記被測定物表面からの法線
方向の光を受ける放射計と、被測定物表面からの放射光
の強度を測定する手段と、放射計の光電変換素子と被測
定物表面との距離を測定する手段を具備することを特徴
とする、放射率と表面温度の測定装置。
(2) A light emitting source, a lens system that converts the light from the light source into a parallel light beam with a predetermined spread and uniform intensity distribution, and a lens system that reflects the parallel light beam and guides it to the surface of the object to be measured from its normal direction. A half mirror that transmits the light from the surface of the object to be measured, a means for measuring the light intensity of the parallel light beam having the predetermined spread and uniform intensity distribution, and a means for measuring the light intensity of the parallel light beam having the predetermined spread and uniform intensity distribution, and a means for measuring the light intensity of the parallel light beam having the predetermined spread and uniform intensity distribution, and emissivity, characterized by comprising a radiometer that receives the emissivity, a means for measuring the intensity of emitted light from the surface of the object to be measured, and a means for measuring the distance between the photoelectric conversion element of the radiometer and the surface of the object to be measured. and surface temperature measuring device.
JP31505589A 1989-12-04 1989-12-04 Method and apparatus for measuring emissivity and surface temperature Pending JPH03175326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31505589A JPH03175326A (en) 1989-12-04 1989-12-04 Method and apparatus for measuring emissivity and surface temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31505589A JPH03175326A (en) 1989-12-04 1989-12-04 Method and apparatus for measuring emissivity and surface temperature

Publications (1)

Publication Number Publication Date
JPH03175326A true JPH03175326A (en) 1991-07-30

Family

ID=18060896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31505589A Pending JPH03175326A (en) 1989-12-04 1989-12-04 Method and apparatus for measuring emissivity and surface temperature

Country Status (1)

Country Link
JP (1) JPH03175326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286550A (en) * 2001-03-23 2002-10-03 Hioki Ee Corp Radiation thermometer
DE102011079484A1 (en) * 2011-07-20 2013-01-24 Siemens Aktiengesellschaft Method and system for determining emissivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286550A (en) * 2001-03-23 2002-10-03 Hioki Ee Corp Radiation thermometer
DE102011079484A1 (en) * 2011-07-20 2013-01-24 Siemens Aktiengesellschaft Method and system for determining emissivity

Similar Documents

Publication Publication Date Title
US5029117A (en) Method and apparatus for active pyrometry
JPH01202633A (en) Radiation thermometer
JPH08304282A (en) Gas analyzer
JPH04116433A (en) Radiation thermometer and temperature measuring method by the thermometer
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
EP0708318A1 (en) Radiance measurement by angular filtering for use in temperature determination of radiant object
JPH03175326A (en) Method and apparatus for measuring emissivity and surface temperature
JPS6186621A (en) Method and apparatus for simultaneously measuring emissivity and temperature
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JP2001281097A (en) Method and apparatus for measuring scattered light
JPS636428A (en) Measuring method for surface temperature of body
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
JPH01245125A (en) Method and device for measuring simultaneously emissivity and temperature
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
JPH0288929A (en) Infrared optical device
JP3324426B2 (en) Method and apparatus for measuring temperature of object
US20230069444A1 (en) Systems, methods, and apparatus for correcting thermal processing of substrates
JPS5987329A (en) Method for measuring temperature of steel
JPH0443222B2 (en)
JPH11101739A (en) Ellipsometry apparatus
JPH0563736B2 (en)
JP2003121116A (en) Vacuum ultraviolet optical film thickness monitor and vacuum film forming apparatus provided therewith
JPS6228606A (en) Film thickness measuring instrument
JPS6051654B2 (en) radiation thermometer
JPH0361822A (en) Photometric standard light receiver