JPH03173100A - High-frequency multiple wire type accelerator - Google Patents

High-frequency multiple wire type accelerator

Info

Publication number
JPH03173100A
JPH03173100A JP31301089A JP31301089A JPH03173100A JP H03173100 A JPH03173100 A JP H03173100A JP 31301089 A JP31301089 A JP 31301089A JP 31301089 A JP31301089 A JP 31301089A JP H03173100 A JPH03173100 A JP H03173100A
Authority
JP
Japan
Prior art keywords
frequency
electric field
acceleration
cavity
charged particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31301089A
Other languages
Japanese (ja)
Inventor
Akira Kaimoto
亮 開本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31301089A priority Critical patent/JPH03173100A/en
Publication of JPH03173100A publication Critical patent/JPH03173100A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To change the final energy of ions without changing resonance frequency by generating an electric field deviated from a high frequency electric field satisfying the continuous acceleration conditions of charged particles in a space by a perturbation electrode in order to change the final energy of the charged particles. CONSTITUTION:A perturbation electrode 3 applying microfluctuation to a high- frequency electric field for acceleration is provided inside an acceleration cavity 1 for generating an electric field deviated from a high-frequency electric field satisfying a continuous accelerating condition of charged particles in a space encircled by respective electrodes 2 to be constituted for changing the final energy of the charged particles. When a high-frequency voltage value to be introduced into the cavity 1 is made a voltage value satisfying an ordinary acceleration condition, the high-frequency electric field encircled by the electrodes 2 is influenced by the perturbation electrode 3 to partially lower voltage for lowering the whole energy so that its final energy is changed. The final energy is thereby enabled to be variable without changing the resonance frequency.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高周波多重極線型加速器に関し、更に詳しくは
、加速エネルギを変化させることのできる高周波多重極
線型加速器に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a high frequency multipole linear accelerator, and more particularly to a high frequency multipole linear accelerator capable of varying acceleration energy.

〈従来の技術〉 高周波多重極線型加速器においては、一般に、第3図に
四重掻(4ベーン型)線型加速器を例にとってその構造
を示すように、両端にプレート31a、31bが装着さ
れてなる加速空洞31内に複数の電極(ベーン)32・
・・・32が固着されており、この加速空洞31内に高
周波電力を導入することによって電極32・・・・32
の先端で囲まれた空間33に加速電場を形成し、イオン
ビームを収束しつつ加速することができる。
<Prior Art> In a high-frequency multipole linear accelerator, plates 31a and 31b are generally attached to both ends, as shown in FIG. A plurality of electrodes (vanes) 32 are provided in the acceleration cavity 31.
... 32 are fixed, and by introducing high frequency power into this acceleration cavity 31, the electrodes 32 ... 32 are fixed.
An accelerating electric field is formed in the space 33 surrounded by the tip of the ion beam, and the ion beam can be focused and accelerated.

このほか、四重極線型加速器には40ンド型等があり、
更に八重極型の線型加速器等もあるが、本質的な特徴は
4ベーン型と同じである。
In addition, there are other types of quadrupole linear accelerators, such as the 40-nd type.
There are also octupole type linear accelerators, but the essential characteristics are the same as the four-vane type.

〈発明が解決しようとする課題〉 以上のような従来の高周波多重極線型加速器は、イオン
ビームを収束しつつ同時に加速することができるため、
大電流のイオンビームを高エネルギに加速することが可
能である反面、この種の加速器は高周波共振器の一種で
あることから、イオンの最終エネルギを変化させるため
には、加速空洞の共振周波数を変化させることが唯一の
方法であるとされていた(例えばNuclear In
strument andMethods in Ph
ysics Re5earch、B57138. (1
989)+253−255.Ion Beam Acc
eleration Using VariableF
requency RFQ”)。
<Problems to be Solved by the Invention> The conventional high-frequency multipole linear accelerator as described above is capable of converging and accelerating an ion beam at the same time.
While it is possible to accelerate a large current ion beam to high energy, this type of accelerator is a type of high frequency resonator, so in order to change the final energy of the ions, the resonant frequency of the acceleration cavity must be adjusted. It was believed that the only way was to change (for example, Nuclear In
Strument and Methods in Ph
ysics Re5search, B57138. (1
989)+253-255. Ion Beam Acc
elation Using VariableF
RFQ”).

しかし、複雑な構造体である加速器の共振周波数を変化
させることは、例えば空洞のQ値の低下等、多くの困難
が伴う。
However, changing the resonant frequency of an accelerator, which is a complex structure, involves many difficulties, such as a reduction in the Q value of the cavity.

本発明の目的は、上記のような困難を回避し、つまり加
速器の共振周波数を変化させることなく、しかもイオン
の最終エネルギを変化させることのできる高周波多重極
線型加速器を提供することにある。
An object of the present invention is to provide a high-frequency multipole linear accelerator that avoids the above-mentioned difficulties, that is, can change the final energy of ions without changing the resonant frequency of the accelerator.

〈課題を解決するための手段〉 上記の目的を達成するため、本発明では、実施例に対応
する第1図に示すように、加速空洞1内に、加速のため
の高周波電界に対して微小変動を加える摂動電極3・・
・・3を備え、この摂動電極3、・・・3によって各電
極2・・・・2で囲まれた空間内に、荷電粒子の連続加
速条件を満足する高周波電界から逸脱した電界を生成し
て荷電粒子の最終エネルギを変化させるよう構成してい
る。
<Means for Solving the Problems> In order to achieve the above object, in the present invention, as shown in FIG. Perturbation electrode 3 that adds fluctuation...
... 3, and the perturbation electrodes 3, ... 3 generate an electric field that deviates from the high-frequency electric field that satisfies the condition for continuous acceleration of charged particles in the space surrounded by each electrode 2 ... 2. The device is configured to change the final energy of the charged particles.

〈作用〉 空洞1に導入する高周波電圧値を例えばこの加速器に固
有の、つまり通常の加速条件を満足する電圧値としたと
き、摂動電極3・・・・3を空洞1内に設けることによ
って電極2・・・・2で囲まれた高周波電界が形容を受
け、例えば第2図(C)に示すように部分的に電圧が低
下する。この電圧低下によって加速空洞1内で粒子に作
用する全体エネルギは低下し、その最終エネルギが変化
する。
<Operation> When the high-frequency voltage value introduced into the cavity 1 is set to a voltage value specific to this accelerator, that is, a voltage value that satisfies normal acceleration conditions, by providing the perturbation electrodes 3 in the cavity 1, the electrode The high-frequency electric field surrounded by 2...2 is affected, and the voltage partially decreases, for example, as shown in FIG. 2(C). Due to this voltage drop, the total energy acting on the particles in the acceleration cavity 1 decreases and their final energy changes.

ここで、従来、高周波加速器で共振周波数を変化させな
い限り加速エネルギを変化できないとされている理由は
次の通りである。
Here, the reason why it has conventionally been said that acceleration energy cannot be changed unless the resonance frequency is changed in a high-frequency accelerator is as follows.

すなわち、高周波加速器では、共振周波数、粒子の入射
スピード(エネルギ)、電極の配設位置(ドリフトチュ
ーブライナック等では配設ピッチ、上記のベーン型高周
波加速器ではベーン波形の周期)および印加する高周波
電圧値は互いに密接な関係を持つファクタであり、例え
ば高周波電圧値を変化させても、他のファクタが一定で
ある限り加速加速エネルギは変化せずに一定であり、む
しろ、電圧を低下させることによって荷電粒子を加速で
きなくなるとされている。その理由として、高周波電圧
を低下させると、加速電界中において荷電粒子のスピー
ドが遅くなり、共振周波数、電極波形の周期との関連に
おいて共振条件を満足しなくなるためであると一般には
説明されている。
In other words, in a high-frequency accelerator, the resonance frequency, particle incident speed (energy), electrode arrangement position (for a drift tube linac, the arrangement pitch, for the vane type high-frequency accelerator mentioned above, the period of the vane waveform), and the applied high-frequency voltage value are factors that have a close relationship with each other. For example, even if the high-frequency voltage value is changed, as long as the other factors are constant, the acceleration energy remains constant. Rather, by decreasing the voltage, the charging It is said that particles cannot be accelerated. The reason for this is generally explained that when the high-frequency voltage is lowered, the speed of charged particles in the accelerating electric field becomes slower, and the resonance conditions are no longer satisfied in relation to the resonance frequency and the period of the electrode waveform. .

これに対し本発明者は、四重極高周波加速器、つまりR
FQ加速器の電極に印加すべき高周波電圧を、荷電粒子
のRFQ加速器への導入スピードとこの高周波電圧の周
波数、および電極に形成された波形の周期に基づく共振
条件を満足する電圧値よりも、下方に所定量シフトする
ことによって荷電粒子の加速エネルギを変化させ得るこ
とを実験によって確かめ、この加速エネルギの制御方法
を既に提案している(特願昭63−176540号)。
In contrast, the present inventor has developed a quadrupole radio frequency accelerator, that is, R
The high frequency voltage to be applied to the electrodes of the FQ accelerator is lower than the voltage value that satisfies the resonance condition based on the introduction speed of charged particles into the RFQ accelerator, the frequency of this high frequency voltage, and the period of the waveform formed on the electrodes. It has been experimentally confirmed that the acceleration energy of charged particles can be changed by shifting the charged particle by a predetermined amount, and a method for controlling this acceleration energy has already been proposed (Japanese Patent Application No. 176,540/1982).

すなわち、従来の高周波多重極線型加速器では第2図(
a)に示すように加速空間の粒子入射端X。
In other words, in a conventional high-frequency multipolar linear accelerator, the
As shown in a), the particle entrance end X of the acceleration space.

から出射端xbに到るまで、連続加速の条件を満足する
高周波電界E0を一様に加えていたのに対し、上記の提
案では、第2図(ロ)に示すように同じ加速空間のx8
からX、までそれよりも低電圧の高周波電界E、を加え
ることによって、最終エネルギを変化させる。
In contrast, in the above proposal, a high-frequency electric field E0 that satisfies the conditions for continuous acceleration was uniformly applied from
The final energy is varied by applying a lower voltage high-frequency electric field E, from X to X.

この高周波電界の下方へのシフトにより荷電粒子の最終
エネルギが変化する理由は、ドリフトチューブライナッ
ク等との比較において次の通り推測される。
The reason why the final energy of the charged particles changes due to the downward shift of this high-frequency electric field is estimated as follows in comparison with a drift tube linac and the like.

すなわち、ドリフトチューブライナックでは、加速高周
波電圧を設計値以下にした場合、ビームは共振条件を満
足できず、殆んど発散等によって失われてしまうことは
事実である。ここで、ドリフトチューブライナックとR
FQ加速器との機能上の大きな差異は、そのビーム収束
力にある。前者ではビーム収束力はドリフトチューブ内
に設置された静電もしくは磁気Qレンズ等によって得ら
れ、ドリフトチューブ外では収束力は働かない。
That is, it is true that in a drift tube linac, if the accelerating high-frequency voltage is lower than the design value, the beam will not be able to satisfy the resonance condition and most of the beam will be lost due to divergence or the like. Here, the drift tube linac and R
The major functional difference from the FQ accelerator lies in its beam focusing power. In the former case, the beam focusing force is obtained by an electrostatic or magnetic Q lens installed inside the drift tube, and the focusing force does not work outside the drift tube.

これに対し後者では、ベーンに誘起された高周波電圧が
粒子の収束と加速を同時に行うので、粒子ビームは空間
的に連続して常に強い収束力を受ける。
On the other hand, in the latter case, the high-frequency voltage induced in the vane converges and accelerates the particles at the same time, so that the particle beam is spatially continuous and always receives a strong convergence force.

従って、RFQ加速器では、共振条件を満足できないビ
ームも、その強い収束力のために発散することなく最後
まで加速されてしまう。しかし、共振条件を満足してい
ないが故に、最終的な加速エネルギは設計値よりも低エ
ネルギ側にシフトするものと考えられる。
Therefore, in the RFQ accelerator, even a beam that cannot satisfy the resonance condition is accelerated to the end without divergence due to its strong focusing force. However, since the resonance condition is not satisfied, the final acceleration energy is considered to shift to a lower energy side than the designed value.

さて、本発明は上記提案に基づく技術を更に発展させよ
うとするもので、上記提案では加速空間の高周波電圧を
−様に下方にシフトしたのに対し、本発明では第2図(
C)に例示するように、加速空洞内に摂動電極3・・・
・3を設けることによって、加速空間の一部の電圧を低
下させ、上記提案よりも最終エネルギの制御特性をきめ
細かくしようとするものである。
Now, the present invention is an attempt to further develop the technology based on the above proposal.In the above proposal, the high frequency voltage in the acceleration space was shifted downward in the direction of
As illustrated in C), a perturbation electrode 3... is installed in the acceleration cavity.
・By providing 3, the voltage in a part of the acceleration space is lowered, and the final energy control characteristics are made more finely than the above proposal.

〈実施例〉 第1図は本発明実施例の構成図であり、本発明を4ベー
ン型の高周波加速器に適用した例を示し、(a)は加速
空洞1を粒子の進行方向に沿って切断した図で、(b)
はそのb−b断面図である。なお、(a)図の切断線は
(b)図においてa−aで示している。
<Example> Fig. 1 is a block diagram of an example of the present invention, showing an example in which the present invention is applied to a four-vane type high-frequency accelerator. In the diagram, (b)
is a cross-sectional view taken along line bb. Note that the cutting line in Figure (a) is indicated by a-a in Figure (b).

この実施例において、高周波電源とその制御システム、
および真空ポンプ等は従来と同等であるので第1図にお
いて図示を省略している。
In this embodiment, a high frequency power source and its control system,
Since the components such as a vacuum pump and the like are the same as those of the conventional system, they are not shown in FIG.

加速空洞1とその内部の4つのベーン2・・・・2の構
成についても従来のものと同様であり、空洞1の両端に
プレート1aおよび1bが配設されており、イオンはプ
レー1−1a側から所定のエネルギのものに入射するも
のとする。
The configuration of the acceleration cavity 1 and the four vanes 2 . Assume that the light is incident on something with a predetermined energy from the side.

この構成において空洞1に高周波電力を導入することに
よって、ベーン2・・・・2に囲まれた空間には収束お
よび加速高周波電界が励振され、空洞1内に入射したイ
オンビームはこの加速空間内で収束を受けつつ加速され
る。
In this configuration, by introducing high-frequency power into the cavity 1, a converging and accelerating high-frequency electric field is excited in the space surrounded by the vanes 2...2, and the ion beam that has entered the cavity 1 is inside this acceleration space. It is accelerated while undergoing convergence.

さて、この実施例においては、イオンの出射側のプレー
ト1bに、空洞1の中心軸を対称軸とする軸対称の位置
に、4本の摂動電極3・・・・3が摺動自在に支承され
、その一部分が空洞1内に挿入されている。そして、こ
の各摂動電極3・・・・3は、プレート1bの外部に固
着された摂動電極駆動装置4によって、空洞1内への挿
入量を調整できるようになっている。
In this embodiment, four perturbation electrodes 3 are slidably supported on the plate 1b on the ion exit side at axially symmetrical positions with the central axis of the cavity 1 as the axis of symmetry. and a portion thereof is inserted into the cavity 1. The amount of insertion of each perturbation electrode 3 into the cavity 1 can be adjusted by a perturbation electrode drive device 4 fixed to the outside of the plate 1b.

各摂動電極3・・・・3は空洞1と同電位、例えば接地
電位とされ、また、各摂動電極3・・・・3は互いに連
動し、それぞれの空洞1内への挿入量は常に等しくなる
ようになっている。
Each perturbation electrode 3...3 is at the same potential as the cavity 1, for example, the ground potential, and each perturbation electrode 3...3 is interlocked with each other, and the amount of insertion into each cavity 1 is always equal. It's supposed to be.

以上の実施例において、各ベーン2・・・・2には例え
ば従来と同様に連続加速条件を満足する電圧E0がかけ
られる。この状態で例えば第1図(a)にX。で示す位
置にまで摂動電極3・・・・3を挿入する。
In the above embodiment, a voltage E0 that satisfies continuous acceleration conditions is applied to each vane 2, . . . 2, for example, as in the conventional case. In this state, for example, X is shown in FIG. 1(a). Insert the perturbation electrodes 3...3 up to the position shown.

これにより、摂動電極3・・・・3が挿入された部分に
ついては、ベーン2・・・・2にとって他部分よりも接
地電位が接近することになって、この部分のみ電圧が低
下し、第2図(C)に示すように、ベーン電圧はプレー
ト1aの配設位置X、からX、までの電圧はEoとなる
ものの、xcからプレー)1bの配設位置X、まではそ
れよりも低電位のE2となる。ここで、摂動電極3・・
・・3の電位が全て等しく、かつ、その挿入量が全て同
じであることから、高周波電界は部分的に低電位側にシ
フトするものの、その軸対称性は損なわれない。
As a result, the ground potential of the part where the perturbation electrodes 3...3 are inserted is closer to the ground potential for the vanes 2...2 than other parts, and the voltage decreases only in this part. As shown in Figure 2 (C), the vane voltage is Eo from the arrangement position X of plate 1a to X, but it is lower from xc to the arrangement position X of plate 1b. The potential becomes E2. Here, perturbation electrode 3...
...Since all three potentials are the same and the amount of insertion is the same, the high frequency electric field is partially shifted to the lower potential side, but its axial symmetry is not impaired.

この状態でイオンを導入すると、XlからXbまで−様
な電圧E0を加えた場合に比して加速空洞1内でイオン
が受けるエネルギが減少し、最終エネルギが低下するこ
とになる。
When ions are introduced in this state, the energy received by the ions in the acceleration cavity 1 is reduced compared to the case where a -like voltage E0 is applied from Xl to Xb, and the final energy is lowered.

この実施例において、摂動電極3・・・・3の空洞1内
への挿入量を変えることで、高周波電界の変化量(連続
加速条件を満足する電圧E0からの逸脱量)を制御する
ことができる。
In this embodiment, the amount of change in the high-frequency electric field (the amount of deviation from the voltage E0 that satisfies the continuous acceleration condition) can be controlled by changing the amount of insertion of the perturbation electrodes 3...3 into the cavity 1. can.

なお、本発明では、摂動電極の配設位置は上記の実施例
に限定されず、例えばイオン入射側のプレー)1aに設
けてもよく、あるいは両方のプレートに摂動電極を設け
てもよい。
In the present invention, the arrangement position of the perturbation electrode is not limited to the above-mentioned embodiment; for example, the perturbation electrode may be provided on the plate 1a on the ion incidence side, or the perturbation electrode may be provided on both plates.

また、上記の実施例では、摂動電極を空洞と同じく接地
電位としたが、摂動電極に直流電位ないしは交流電位を
加えることもできる。
Further, in the above embodiments, the perturbation electrode is set to the ground potential like the cavity, but a DC potential or an AC potential can also be applied to the perturbation electrode.

更に、本発明はベーン型に限らず、ロンド型の高周波多
重極線型加速器にも適用でき、更には四重極のほかに八
重極の高周波加速きにも適用可能であることは勿論であ
る。
Furthermore, the present invention is not limited to vane type accelerators, but can also be applied to Ronde type high frequency multipole linear accelerators, and is of course applicable to octupole high frequency acceleration in addition to quadrupole.

〈発明の効果〉 以上説明したように、本発明によれば、従来技術では困
難であった高周波多重極線型加速器の最終エネルギの可
変性能が、共振周波数を変化させることなく可能となり
、大電流のイオンビームを高エネルギに加速するイオン
加速技術分野に革新的な進歩をもたらすものと期待でき
る。このことは、例えば高エネルギイオンビームを利用
する半導体製造プロセスにおけるイオン注入工程に等に
も有用であって、その技術分野での利用性も大である。
<Effects of the Invention> As explained above, according to the present invention, it is possible to vary the final energy of a high-frequency multipole linear accelerator without changing the resonant frequency, which was difficult with the conventional technology, and the It is expected that this will bring about revolutionary progress in the field of ion acceleration technology, which accelerates ion beams to high energy. This is useful, for example, in an ion implantation step in a semiconductor manufacturing process that uses a high-energy ion beam, and has great applicability in that technical field.

しかも、高周波多重極線型加速器の加速空洞内に摂動電
極を設けることによって、加速空間の高周波電界を部分
的に変化させることで最終エネルギを変化させるので、
前記した既提案の技術に比して高周波電界の制御性、ひ
いては最終エネルギの制御特性をより細やかなものとす
ることができる。
Moreover, by providing perturbation electrodes in the acceleration cavity of a high-frequency multipole linear accelerator, the final energy can be changed by partially changing the high-frequency electric field in the acceleration space.
Compared to the previously proposed techniques described above, the controllability of the high-frequency electric field and, by extension, the control characteristics of the final energy can be made more precise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成図、第2図はその作用説明
図、第3図は従来の4ベーン型の高周波加速器の構成説
明図である。 1・・・・加速空洞 2・・2・・・・ベーン 3・・3・・・・摂動電極 411.、摂動電極駆動装置
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIG. 3 is a configuration explanatory diagram of a conventional four-vane type high-frequency accelerator. 1...Acceleration cavity 2...2...Vane 3...3...Perturbation electrode 411. , perturbation electrode drive device

Claims (1)

【特許請求の範囲】[Claims] 内部に複数の電極が配設された空洞内に高周波電力を導
入することにより、その空洞を共振させて上記複数の電
極の先端に囲まれた空間に荷電粒子の収束および加速高
周波電界を発生する装置において、上記空洞内に、上記
高周波電界に対して微小変動を加える摂動電極を設け、
この摂動電極によって上記空間に、荷電粒子の連続加速
条件を満足する高周波電界から逸脱した電界を生成して
荷電粒子の最終エネルギを変化させるよう構成されてい
ることを特徴とする高周波多重極線型加速器。
By introducing high-frequency power into a cavity in which a plurality of electrodes are arranged, the cavity is caused to resonate and a high-frequency electric field is generated in which charged particles converge and accelerate in the space surrounded by the tips of the plurality of electrodes. In the device, a perturbation electrode is provided in the cavity to apply minute fluctuations to the high-frequency electric field,
A high-frequency multipolar linear accelerator characterized in that the perturbation electrode is configured to generate an electric field in the space that deviates from a high-frequency electric field that satisfies continuous acceleration conditions for charged particles, thereby changing the final energy of the charged particles. .
JP31301089A 1989-11-30 1989-11-30 High-frequency multiple wire type accelerator Pending JPH03173100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31301089A JPH03173100A (en) 1989-11-30 1989-11-30 High-frequency multiple wire type accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31301089A JPH03173100A (en) 1989-11-30 1989-11-30 High-frequency multiple wire type accelerator

Publications (1)

Publication Number Publication Date
JPH03173100A true JPH03173100A (en) 1991-07-26

Family

ID=18036144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31301089A Pending JPH03173100A (en) 1989-11-30 1989-11-30 High-frequency multiple wire type accelerator

Country Status (1)

Country Link
JP (1) JPH03173100A (en)

Similar Documents

Publication Publication Date Title
JP3995089B2 (en) Device for pre-acceleration of ion beam used in heavy ion beam application system
US10763071B2 (en) Compact high energy ion implantation system
US4801847A (en) Charged particle accelerator using quadrupole electrodes
JPH10233299A (en) Charged particle beam expander
US11818830B2 (en) RF quadrupole particle accelerator
JP2023541951A (en) Systems, apparatus and methods for multi-frequency resonator operation in linear accelerators
JPH03173100A (en) High-frequency multiple wire type accelerator
JP2617240B2 (en) Control method of acceleration energy in high frequency quadrupole accelerator
US9386681B2 (en) Particle accelerator and method of reducing beam divergence in the particle accelerator
JPS60121655A (en) High voltage ion driving device
US20240114613A1 (en) Particle accelerator having novel electrode configuration for quadrupole focusing
CN116321669B (en) Method for obtaining strong focusing by modulating magnetic field gradient in large radial range of isochronous accelerator
Shiltsev et al. Compensation of beam-beam effects in the Tevatron Collider with electron beams
Chen The" sources" of plasma physics
JP3435926B2 (en) Circular accelerator
JP3448352B2 (en) Method for manufacturing semiconductor device
JP3958149B2 (en) Magnetic field type energy filter
Raparia et al. Electrostatic low‐energy beam transport systems for the SSC linaca
Swenson An rf focused interdigital linac structure
Schlapp et al. A new 14 GHz electron-cyclotron-resonance ion source (ECRIS) for the heavy ion accelerator facility ATLAS
JPH0620797A (en) Control method for beam energy of high frequency linear accelerator
WO2018042539A1 (en) Circular accelerator
JPH09115699A (en) Circular accelerator and beam radiating method
JPH0935899A (en) Take-out method for charged particle beam
Miner et al. Theory and Numerical Simulation of a TE/sub 111/Gyroresonant Accelerator