JPH03173033A - Cathode body structure for electron tube - Google Patents

Cathode body structure for electron tube

Info

Publication number
JPH03173033A
JPH03173033A JP1309178A JP30917889A JPH03173033A JP H03173033 A JPH03173033 A JP H03173033A JP 1309178 A JP1309178 A JP 1309178A JP 30917889 A JP30917889 A JP 30917889A JP H03173033 A JPH03173033 A JP H03173033A
Authority
JP
Japan
Prior art keywords
sintered
alumina powder
cathode
heater
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309178A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tanaka
吉彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP1309178A priority Critical patent/JPH03173033A/en
Publication of JPH03173033A publication Critical patent/JPH03173033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To prevent the occurrence of contraction and cracks of sintered body in a soldering process by filling alumina powder which is relatively small in size with a narrow range of size distribution, into the insides of heaters and spaces among heater wires so as to be sintered, and concurrently filling alumina powder which is in a wide range of size distribution, into the spaces of the heaters so as to be sintered. CONSTITUTION:Alumina powder which is relatively small in size with a small range of size distribution, is filled in the insides of heaters 3 and spaces 5 among heater wires which are arranged within a cathode support cylinder 2, and alumina powder which is in a wide range of size distribution same as that of a former one, is filled in the other spaces 4, and the aforesaid alumina powder is sintered thereafter. By this constitution, sintered alumina is hardly contracted or cracked even if it is subjected to high temperature up to about 2000 deg.C after sintering, and the circumferential section of a cathode can thereby be soldered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に高電流密度動作が要求される進行波管、
タライストロン、電子銃等の電子管用陰極構体に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is particularly applicable to traveling wave tubes that require high current density operation.
This invention relates to cathode assemblies for electron tubes such as talistrons and electron guns.

〔従来の技術〕[Conventional technology]

高電流密度動作が要求される電子管用陰極では、ヒータ
からの陰極基体金属への熱伝導率を増大させ、効率良く
陰極基体金属を加熱するために、従来より、その多くは
、陰極基体金属を支持する陰極支持筒内にヒータととも
にアルミナ粉末を充填、焼結し、ヒータを焼結アルミナ
内に埋設する構造が採られてきた。
In electron tube cathodes that require high current density operation, in order to increase the thermal conductivity from the heater to the cathode base metal and heat the cathode base metal efficiently, many of them have conventionally used a cathode base metal. A structure has been adopted in which alumina powder is filled and sintered together with a heater in a cathode support cylinder, and the heater is embedded within the sintered alumina.

第2図は従来のこの種電子管用陰極構体の一例を示す。FIG. 2 shows an example of a conventional cathode structure for an electron tube of this type.

図において1は電子放射性物質が含浸された陰極基体金
属、2は陰極支持筒、3はヒータ、3aはヒータ脚部、
4は焼結アルミナである。
In the figure, 1 is a cathode base metal impregnated with an electron radioactive substance, 2 is a cathode support cylinder, 3 is a heater, 3a is a heater leg,
4 is sintered alumina.

焼結アルミナ4は、陰極支持筒2内にヒータ3とともに
粒度分布範囲の広い1種類のアルミナ粉末がアルコール
又は有機溶剤等による沈降法により充填され、乾燥後焼
結されたものである。
The sintered alumina 4 is obtained by filling the cathode support tube 2 together with the heater 3 with one type of alumina powder having a wide particle size distribution by a precipitation method using alcohol or an organic solvent, followed by drying and sintering.

ヒータ3からの熱は、焼結アルミナ層4内を伝導し、陰
極基体金属1に達し、陰極基体金属1を加熱し、表面よ
り電子を放出させる。
Heat from the heater 3 is conducted through the sintered alumina layer 4, reaches the cathode base metal 1, heats the cathode base metal 1, and causes electrons to be emitted from the surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、高い組立精度が要求される電子管が多くなり、従
来溶接等で行なってきた陰極周辺部の組立を、ろう付け
で行なう必要性がでてきた。
In recent years, the number of electron tubes that require high assembly precision has increased, and it has become necessary to assemble the area around the cathode by brazing, which has traditionally been done by welding.

、怜 この場合、ろう付は温度が92000°Cであるため、
焼結アルミナが焼結温度以上の高温度にさらされること
になる。
In Reiko's case, the brazing temperature is 92000°C, so
Sintered alumina will be exposed to high temperatures above the sintering temperature.

従来の上記のような比較的に粒度分布範囲の広い1種類
のアルミナ粉末からなる焼結アルミナでは、焼結後のろ
う付工程で焼結体の縮みがさらに大きくなったり、また
、焼結体にクラ・ンク等が発生したりする。
With conventional sintered alumina made of one type of alumina powder with a relatively wide particle size distribution range, the sintered body shrinks even more in the brazing process after sintering, and the sintered body shrinks even more. Cracks, etc. may occur.

焼結体の縮みがさらに大きくなったり、クランクが発生
したりすると、ヒータの熱が有効に陰極基体金属1に伝
達されな(なる。また、ヒータの温度が設計値以上に上
昇し、ヒータが短寿命となる。
If the shrinkage of the sintered body becomes larger or a crank occurs, the heat of the heater will not be effectively transferred to the cathode base metal 1. Also, the temperature of the heater will rise above the design value, causing the heater to It has a short lifespan.

本発明は上記の問題を解消するためになされたもので、
ろう付工程において、熱の伝導性やヒータの寿命に影響
する焼結体の縮みやクランクが発生することのない陰極
構体を提供することを目的とする。
The present invention was made to solve the above problems.
An object of the present invention is to provide a cathode structure in which shrinkage and cranking of the sintered body, which affect thermal conductivity and the life of a heater, do not occur during a brazing process.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電子管用陰極構体は、上記目的を達成するため
、陰極支持筒内に配置されたヒータの内部及びヒータ線
間部の空間には相対的に小さな粒径て従来のものより粒
度分布範囲の狭いアルミナ粉末を充填し、その他の空間
には従来のものと同じ粒度分布範囲の広いアルミナ粉末
を充填して焼結したものである。
In order to achieve the above object, the cathode assembly for an electron tube of the present invention has relatively small particles in the space between the heater wires and the space between the heaters arranged in the cathode support cylinder, and has a particle size distribution range wider than that of the conventional one. The space is filled with alumina powder with a narrow particle size distribution, and the other spaces are filled with alumina powder with a wide particle size distribution range, which is the same as conventional ones, and then sintered.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

図において1,2,3.3a、4は第2図の同一符号と
同一または相当するものを示し、5は焼結アルミナ4に
比べ、相対的に小さな粒径で粒度分布範囲の狭いアルミ
ナ粉末からなる焼結アルミナである。
In the figure, 1, 2, 3.3a, and 4 are the same as or equivalent to the same reference numerals in Figure 2, and 5 is alumina powder with a relatively small particle size and narrow particle size distribution range compared to sintered alumina 4. It is a sintered alumina made of

陰極基体金属工を陰極支持筒2に高融点ろう材によって
固着し、陰極支持筒2内に、平均粒度が70〜110μ
mの粉末(30%重量比)と平均粒度が10〜30μm
の粉末(70%重量比)とを混合したアルミナ粉末をア
ルコール又は有機溶剤等による沈降法により陰極基体金
属1裏面(陰極支持筒2の底面)より約0.5〜1 m
mの厚さにまで充填し、次に、このアルミナ粉末上にヒ
ータ3を配置する。この際、同時に、陰極支持筒2内壁
に内接し、ヒータ3に外接する円筒を配置する。
The cathode base metal work is fixed to the cathode support cylinder 2 with a high melting point brazing material, and the average particle size is 70 to 110μ inside the cathode support cylinder 2.
m powder (30% weight ratio) and the average particle size is 10-30μm
(70% weight ratio) and alumina powder mixed with the powder (70% weight ratio) is deposited by a precipitation method using alcohol or an organic solvent, etc., from the back surface of the cathode base metal 1 (bottom surface of the cathode support tube 2) by about 0.5 to 1 m.
The alumina powder is filled to a thickness of m, and then the heater 3 is placed on top of this alumina powder. At this time, at the same time, a cylinder is placed which is inscribed in the inner wall of the cathode support cylinder 2 and circumscribed to the heater 3.

この円筒によってヒータ3の中心が決まる。The center of the heater 3 is determined by this cylinder.

上記の構造にして、ヒータ3内に、平均粒度が20〜2
5μmの粉末(90%重量比)と平均粒度が10μmの
粉末(10%重量比)とを混合したアルミナ粉末を上記
と同じ沈降法により充填する。
With the above structure, an average particle size of 20 to 2
Alumina powder, which is a mixture of 5 μm powder (90% weight ratio) and powder with an average particle size of 10 μm (10% weight ratio), is filled by the same sedimentation method as above.

乾燥後、上記円筒を取り除き、陰極支持筒2内の残りの
空間に、平均粒度が70〜110μmの粉末(30%重
量比)と平均粒度が10〜30μmの粉末(70%重量
比)とを混合したアルミナ粉末を同じ沈降法で充填し、
乾燥後還元性雰囲気中にて約1900°Cで60分間保
持し、加熱焼結した。
After drying, the cylinder was removed and the remaining space inside the cathode support cylinder 2 was filled with powder with an average particle size of 70 to 110 μm (30% weight ratio) and powder with an average particle size of 10 to 30 μm (70% weight ratio). Fill the mixed alumina powder using the same sedimentation method,
After drying, it was held at about 1900°C for 60 minutes in a reducing atmosphere to heat and sinter.

上記方法によると、強固なアルミナ焼結体が得られ、こ
の後に約2000°Cで5分間還元性雰囲気中で加熱を
行なっても、縮みが大きくなったり、クランクが発生し
たりすることが殆んどなくなった。
According to the above method, a strong alumina sintered body is obtained, and even if it is subsequently heated in a reducing atmosphere at approximately 2000°C for 5 minutes, there is almost no increase in shrinkage or occurrence of cranks. It's gone.

したがって、焼結アルミナ層を上記のような構成にする
と、陰極周辺部の組立をろう付けで行なうことができる
ことになり、組立精度の高い電子管が得られる。
Therefore, when the sintered alumina layer is configured as described above, the peripheral portion of the cathode can be assembled by brazing, and an electron tube with high assembly accuracy can be obtained.

(発明の効果〕 以上説明したように、本発明によれば、焼結アルミナが
、焼結後約2000℃になった場合も、縮みが大きくな
ったり、クランクが発生したりすることが殆んどなくな
り、陰極周辺部をろう付けすることが可能となり、組立
精度の高い電子管を得ることができるという効果がある
(Effects of the Invention) As explained above, according to the present invention, even when sintered alumina is heated to about 2000°C after sintering, shrinkage becomes large and cranks hardly occur. Finally, it becomes possible to braze the peripheral part of the cathode, which has the effect of making it possible to obtain an electron tube with high assembly accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2図は従来
のこの種電子管用陰極構体の一例を示す説明図である。 1・・・陰極基体金属、2・・・陰極支持筒、3・・・
ヒータ、3a・・・ヒータ脚部、4,5・・・焼結アル
ミナ。 なお図中同一符号は同一または相当するものを示す。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an example of a conventional cathode structure for an electron tube of this type. DESCRIPTION OF SYMBOLS 1... Cathode base metal, 2... Cathode support tube, 3...
Heater, 3a... Heater leg, 4, 5... Sintered alumina. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 電子放射性物質が含浸された陰極基体金属が陰極支持筒
に固着され、該陰極支持筒内にヒータが配置され、アル
ミナ粉末が充填、焼結されて、ヒータが焼結アルミナ内
に埋設された電子管用陰極構体において、 上記陰極支持筒内に配置されたヒータの内部及びヒータ
線間部の空間には相対的に小さな粒径で粒度分布範囲の
狭いアルミナ粉末が充填され、ヒータ外部の空間には粒
度分布範囲の広いアルミナ粉末が充填されて焼結された
ことを特徴とする電子管用陰極構体。
[Claims] A cathode base metal impregnated with an electron radioactive substance is fixed to a cathode support cylinder, a heater is placed in the cathode support cylinder, and alumina powder is filled and sintered, and the heater is made of sintered alumina powder. In the cathode structure for an electron tube embedded in the cathode structure, the inside of the heater disposed in the cathode support cylinder and the space between the heater wires are filled with alumina powder having a relatively small particle size and a narrow particle size distribution range; A cathode structure for an electron tube characterized in that the space outside the heater is filled with alumina powder having a wide particle size distribution range and sintered.
JP1309178A 1989-11-30 1989-11-30 Cathode body structure for electron tube Pending JPH03173033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309178A JPH03173033A (en) 1989-11-30 1989-11-30 Cathode body structure for electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309178A JPH03173033A (en) 1989-11-30 1989-11-30 Cathode body structure for electron tube

Publications (1)

Publication Number Publication Date
JPH03173033A true JPH03173033A (en) 1991-07-26

Family

ID=17989872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309178A Pending JPH03173033A (en) 1989-11-30 1989-11-30 Cathode body structure for electron tube

Country Status (1)

Country Link
JP (1) JPH03173033A (en)

Similar Documents

Publication Publication Date Title
US2698913A (en) Cathode structure
JPH03173033A (en) Cathode body structure for electron tube
JP3628854B2 (en) High pressure discharge lamp and manufacturing method thereof
US3875629A (en) Method of fabricating cathodes for electron discharge devices
JPS5842141A (en) Pierce type electron gun
JPS59167947A (en) Electrode for flash discharge tube and its manufacturing method
JPH01128330A (en) Electron emitting cathode structure for cathode ray tube and its manufacture
JPH0574326A (en) Cylindrical impregnation-type cathode structure
JPH05290717A (en) Impregnation type cathode structure and manufacture thereof
JPH01292730A (en) Manufacture of cathode
JPS59149622A (en) Oxide coated cathode structure
JPH0439646Y2 (en)
JP3137406B2 (en) Manufacturing method of cathode assembly
KR920004896B1 (en) Impregnated type cathode and manufacturing method the same
JPH04366522A (en) Impregnation type cathode body structure
JPH0652793A (en) Manufacture of impregnated cathode body structure
JPS62217525A (en) Impregnated cathode
JPS6124776B2 (en)
JPH0612601Y2 (en) Impregnated cathode
JPH0610956B2 (en) Method for manufacturing cathode substrate of impregnated cathode
JPH05258659A (en) Impregnated type cathode structure
JPH047550Y2 (en)
JPS58192238A (en) Impregnation type cathode
JPH02301933A (en) Impregnated type cathode
JPH02238601A (en) Thick-film resistor