JPH03172738A - Analysis of ni content in ferric chloride solution and system for managing ferric chloride solution - Google Patents

Analysis of ni content in ferric chloride solution and system for managing ferric chloride solution

Info

Publication number
JPH03172738A
JPH03172738A JP31278089A JP31278089A JPH03172738A JP H03172738 A JPH03172738 A JP H03172738A JP 31278089 A JP31278089 A JP 31278089A JP 31278089 A JP31278089 A JP 31278089A JP H03172738 A JPH03172738 A JP H03172738A
Authority
JP
Japan
Prior art keywords
absorbance
ferric chloride
liquid
content
wavelength region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31278089A
Other languages
Japanese (ja)
Inventor
Katsumi Oi
大井 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP31278089A priority Critical patent/JPH03172738A/en
Publication of JPH03172738A publication Critical patent/JPH03172738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To allow the analysis of an Ni content with high reliability and to allow the exact management of an etching treating liquid by measuring the absorbance of the wavelength region near the absorption peak value of Ni and the absorbance of a wavelength region, the absorbance of which has no relation with the Ni concn. CONSTITUTION:A fresh treating liquid injecting means 2 is attached to a treating tank 1 consisting of a ferric chloride soln. The treating liquid in the treating tank 1 is periodically sampled by a sampling means 3. The absorbance lambda710 to lambda730 of the wavelength region near the absorption peak value of the Ni and the absorbance lambda500 of the wavelength region, the absorbance of which has no relation with the Ni concn. are measured by an absorbance measuring means 4. The absorbance lambda as the concn. of the pure Ni is calculated by a comput ing means 5 from the measured value obtd. in such a manner. The calibration curve of the quantity of the Ni and the absorbance lambda is stored in a calibration curve memory means 6 and the quantity of the Ni corresponding to the calculated absorbance lambda is read out by a reading out means 7. Whether this quantity exceeds a permissible upper limit value or not is judged by a judging means 8. The fresh treating liquid is injected into the treating tank 1 by the means 2 to lower the Ni concn. when the above-mentioned quantity exceeds the permissible value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塩化第2鉄液中に含まれているNi型を定量
分析する方法、及び、この方法を利用した塩化第2鉄液
管理システムに関し、特に、カラーテレビ用シャドウマ
スク、プリント配線板、リードフレーム、各種表示管用
電極等のフォトエツチング製品製造工程中のエツチング
処理における液管理に用いる方法及びシステムに関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for quantitatively analyzing Ni type contained in a ferric chloride solution, and a method for managing a ferric chloride solution using this method. In particular, the present invention relates to a method and system used for liquid management in etching processing during the manufacturing process of photoetching products such as shadow masks for color televisions, printed wiring boards, lead frames, and electrodes for various display tubes.

〔従来の技術〕[Conventional technology]

近年、IC及びLSIの高集積化に伴い、その仕様はま
すます高精度化、高品質化に進む傾向にあるが、半導体
素子以外にも、例えばカラーテレビ用シャドウマスク、
リードフレーム、各種表示管用電極等のフォトエツチン
グ製品等も高品質、高精度が要求されている。このよう
な要求に対応するように材料等の改良も進められてふり
、特にカラーテレビ用シャドウマスク材に関しては、近
年、高精細画像の要求に対応すべく、板厚に対する孔径
、孔ピッチの微細化が進むと同時に、マスク自体の熱に
対する強度面についても改良が行われている。特に、ブ
ラウン管内部の電子銃から照射された電子線による材質
の熱膨張によるマスク変形が問題となっており、その対
策材として、Niを36%含んだ合金材(インバー材)
の利用が多くなってきている。
In recent years, as ICs and LSIs have become more highly integrated, their specifications have tended to become more precise and of higher quality.
Photoetching products such as lead frames and electrodes for various display tubes are also required to be of high quality and precision. Improvements have been made in materials to meet these demands, and in recent years, in particular for shadow mask materials for color TVs, in order to meet the demands for high-definition images, finer hole diameters and hole pitches have been developed to meet the demands for high-definition images. At the same time as the technology advances, improvements are also being made in terms of the heat resistance of the masks themselves. In particular, mask deformation due to thermal expansion of the material due to the electron beam irradiated from the electron gun inside the cathode ray tube has become a problem, and as a countermeasure material, an alloy material (invar material) containing 36% Ni has been developed.
is becoming increasingly used.

現在、これらのエツチング製品は、塩化第2鉄もしくは
塩化第2銅を用いて処理するのが一般的であり、処理す
る材料によってその液管理法は様々である。通常、Ni
を含まない材料(Fe99%以上)を塩化第2鉄で処理
する場合は、塩化第2鉄とFeとの反応から、腐食性の
ない塩化第1鉄が生成するため、塩素ガス(C12)等
の酸化剤の添加による反応によって処理速度に関与する
塩化第2鉄濃度を再生し、同時に、遊離酸濃度等も測定
しながら管理している。
Currently, these etching products are generally treated using ferric chloride or cupric chloride, and the liquid management methods vary depending on the material being treated. Usually, Ni
When treating materials that do not contain Fe (99% or more) with ferric chloride, the reaction between ferric chloride and Fe produces non-corrosive ferrous chloride, so chlorine gas (C12), etc. The ferric chloride concentration, which is involved in the processing speed, is regenerated through a reaction caused by the addition of an oxidizing agent, and at the same time, the free acid concentration is also measured and managed.

それに対して、Niの含まれた合金(インバー材、42
−A11oy等)を塩化第2鉄で処理すると、Niと塩
化第2鉄との反応で腐食性のない塩化ニッケルが生成す
る。塩化ニッケルは酸化剤などの添加による塩化第2鉄
への再生は困難であるため、処理量の増加に伴い、全処
理液中で塩化ニッケルの占める割合が増加していくこと
により、(1)相対的な塩化第2鉄濃度の減少に伴う処
理速度の低下、(2)Ni濃度増加による材料処理表面
への悪影響(例えば、処理面の凹凸化) 、(3)処理
反応速度に関与する遊離酸濃度測定への障害(通常の化
学滴定法では終点が不明瞭となり測定困難)等の弊害が
発生し、結果的に製品の品質への悪影響が出ることにな
る。
On the other hand, alloys containing Ni (Invar material, 42
-A11oy, etc.) with ferric chloride, non-corrosive nickel chloride is produced by the reaction between Ni and ferric chloride. Since it is difficult to regenerate nickel chloride into ferric chloride by adding oxidizing agents, etc., as the amount of treatment increases, the proportion of nickel chloride in the total treatment liquid increases, resulting in (1) Decrease in processing speed due to decrease in relative ferric chloride concentration, (2) Adverse effect on material processing surface due to increase in Ni concentration (e.g. unevenness of the processing surface), (3) Release involved in processing reaction rate. This may cause problems such as interference with acid concentration measurement (in ordinary chemical titration methods, the end point is unclear and measurement is difficult), and as a result, product quality will be adversely affected.

これらの諸問題に対しての従来の技術としては、処理材
料のNi含有量、処理数、処理時間等から、理論的計算
により、予めNi溶解量を求め、連続的にNiを含まな
い塩化第2鉄液を処理槽に補充するか、もしくは、定期
的な液交換により、Ni量を限界値以下に保つ方法や、
機器分析法により連続的にNiff1を分析し、新液補
充等のシステムへフィードバックする方法がある。
Conventional techniques to deal with these problems include calculating the amount of Ni dissolved in advance through theoretical calculations based on the Ni content of the treated material, the number of treatments, the treatment time, etc., and continuously dissolving Ni-free chloride. How to keep the Ni amount below the limit value by replenishing the treatment tank with 2 iron solution or by periodically replacing the solution,
There is a method of continuously analyzing Niff1 using an instrumental analysis method and feeding it back to a system for replenishing new fluid, etc.

特に、最後の方法については、これまでに吸光光度法を
用いて測定を行うシステムが考案されており(特開昭6
3−250473号、特開昭6468483号)、既知
N i ffiサンプルによる710〜730nmの範
囲の吸光度とNiff1との検量線から算出するという
方法がある。
In particular, regarding the last method, a system for measuring using spectrophotometry has been devised (Japanese Unexamined Patent Publication No. 6
3-250473, Japanese Patent Application Laid-Open No. 6468483), there is a method of calculating from a calibration curve between the absorbance in the range of 710 to 730 nm using a known Niffi sample and Niff1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記吸光光度法を用いる方法においては、塩化第2鉄液
の分光曲線中のFeのピークとNiビークとを明確化す
る目的で、塩化鉄中のFeの発色吸収帯を完全消去する
ために加える色消去剤(リン酸)の添加量によって、7
10〜730nm領域における吸光度が変動するため、
Ni量と吸光光度の検量線から求める値が変動してしま
う。また、測定しようとする塩化第2鉄液濃度が変動す
ると、色消去剤との混合比が変動するため吸光度が変動
して、同様にNi量と吸光光度の検量線から求める値が
変動してしまう。
In the method using the above spectrophotometric method, in order to clarify the Fe peak and Ni peak in the spectral curve of the ferric chloride solution, addition is made to completely erase the colored absorption band of Fe in iron chloride. 7 depending on the amount of color eraser (phosphoric acid) added.
Because the absorbance in the 10-730 nm region fluctuates,
The value obtained from the calibration curve of Ni amount and absorbance varies. In addition, if the concentration of the ferric chloride solution to be measured changes, the absorbance will change because the mixing ratio with the color erasing agent will change, and the value obtained from the calibration curve of Ni amount and absorbance will similarly change. Put it away.

以上の原因によって、塩化第2鉄濃度が常時変動すると
ころでは、Ni量と吸光度の関係を表す検量線が一本化
できず、吸光度から求めるNilの信頼性が低いものと
なってしまう。
Due to the above reasons, where the ferric chloride concentration constantly fluctuates, the calibration curve representing the relationship between the amount of Ni and the absorbance cannot be unified, and the reliability of Ni determined from the absorbance becomes low.

したがって、本発明の目的は、上記した従来の710〜
730nm領域における吸光度から塩化第2鉄中のNi
含有量を定債分析する方法の問題点を解決して、信頼性
の高いNi含有量の定量分析方法とその方法を用いた塩
化第2鉄液管理システムを提供することである。
Therefore, the object of the present invention is to
Ni in ferric chloride from absorbance in 730 nm region
It is an object of the present invention to provide a highly reliable method for quantitatively analyzing Ni content and a ferric chloride liquid management system using the method by solving the problems of the method of quantitatively analyzing Ni content.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、上記従来の方法の問題点を解決する
ために、吸光光度法において、測定に用いる波長域を2
波長域とする。従来の1波長域測定方式では、塩化第2
鉄濃度や色消去剤の希釈率等の条件によって、710〜
730 nm領域における吸光度に変化が生じる。この
様子を第1図に示す。図から明らかなように、Ni濃度
を一定としても、Fe濃度の変化によって710〜73
0nm領域における吸光度が変化する。ところが、Fe
濃度を一定にしてNi濃度を変えて分光曲線を求めると
、第2図のようになり、Ni量に影響を受けない波長域
が500nm近傍に存在することが分かる。このことか
ら、第1図の500nmにおける吸光はFeに帰着でき
ることが分かる。
In the present invention, in order to solve the problems of the above-mentioned conventional methods, in the absorption photometry method, the wavelength range used for measurement is divided into two.
wavelength range. In the conventional one-wavelength range measurement method, the second chloride
710~ depending on conditions such as iron concentration and color erasing agent dilution rate.
A change occurs in the absorbance in the 730 nm region. This situation is shown in FIG. As is clear from the figure, even if the Ni concentration is constant, 710 to 73
The absorbance in the 0 nm region changes. However, Fe
When a spectral curve is obtained by changing the Ni concentration while keeping the concentration constant, it becomes as shown in FIG. 2, and it can be seen that there is a wavelength range around 500 nm that is not affected by the Ni amount. From this, it can be seen that the absorption at 500 nm in FIG. 1 can be attributed to Fe.

この500nmの波長域とNi量が寄与する710〜7
30nm波長域とにおいて吸光度を測定し、次の計算式
(1)による演算により、塩化第2鉄濃度の影響を受け
ずにNi量を測定することが可能となる。
This wavelength range of 500 nm and the amount of Ni contribute to 710~7
By measuring the absorbance in the 30 nm wavelength range and calculating according to the following calculation formula (1), it becomes possible to measure the amount of Ni without being affected by the ferric chloride concentration.

λ=λ710−73゜−k・λ、。。 ・・・・・・・
・・(1)ただし、 λ:純Ni濃度としての吸光度 2月。−1,。ニア10〜730nm波長域における吸
光度 λ、。。:500nm波長域における吸光度に:定数 実験の結果、上記の定数にはほぼ1であり、k=1と近
似しても何ら問題がないことが分かっている。したがっ
て、上記式(1)は次の(2)式のように書き改めるこ
とができる。
λ=λ710-73°-k・λ,. .・・・・・・・・・
...(1) However, λ: Absorbance as pure Ni concentration. -1,. Absorbance λ in the near 10-730 nm wavelength range. . : Absorbance in the 500 nm wavelength range: Constant As a result of experiments, it has been found that the above constant is approximately 1, and there is no problem even if it is approximated to k=1. Therefore, the above equation (1) can be rewritten as the following equation (2).

λ;λtoo −vao−λ、。。  ・・・・・・・
・・・・・・・・(2)ところで、測定の際に、塩化第
2鉄の色消去剤として用いるリン酸溶液の濃度、及び、
サンプル液の希釈率を25%以上、5倍以下に選定する
ことによって、測定精度に対しての塩化第2鉄濃度や測
定温度の影響がないことが分かっている。希釈率の測定
精度に対するグラフを第3図に示す。
λ; λtoo-vao-λ,. .・・・・・・・・・
・・・・・・・・・(2) By the way, during the measurement, the concentration of the phosphoric acid solution used as a color erasing agent for ferric chloride, and
It has been found that by selecting the dilution rate of the sample liquid to be 25% or more and 5 times or less, there is no influence of the ferric chloride concentration or measurement temperature on the measurement accuracy. FIG. 3 shows a graph of the measurement accuracy of the dilution rate.

これから、低希釈率はど傾きが大きく測定精度が出るこ
とが分かる。−船釣に、エツチング処理液の場合、希釈
率を5倍以下に選定することが望ましい。このように希
釈率を選定すると、500nm波長域に影響を及ぼすF
e’+のマスキング(色消去)が十分となり、塩化第2
鉄濃度による吸光度の変動への影響も小さくなる。また
、上記のように希釈率が比較的低いので、色消去に必要
なリン酸の絶対量も多くなるが、これが少ないと、色消
去が不十分となり、上記と同様塩化第2鉄濃度及び測定
温度による吸光度変動が起こりやすくなるため、リン酸
濃度を上記の25%以上の濃度にすることによって、そ
の問題点の解決が図られる。
From this, it can be seen that the lower the dilution rate, the greater the slope and the higher the measurement accuracy. - For boat fishing, in the case of etching treatment liquid, it is desirable to select a dilution rate of 5 times or less. When the dilution rate is selected in this way, F
The masking (color erasure) of e'+ is sufficient, and the second chloride
The influence of iron concentration on absorbance fluctuations is also reduced. In addition, since the dilution rate is relatively low as mentioned above, the absolute amount of phosphoric acid required for color erasing is also large, but if this is small, color erasing will be insufficient, and as mentioned above, the ferric chloride concentration and measurement Since absorbance fluctuations are likely to occur due to temperature, this problem can be solved by increasing the phosphoric acid concentration to the above-mentioned 25% or higher concentration.

ところで、このような塩化第2鉄液中のNi含有量分析
法を利用して、塩化第2鉄液の管理システムを構成する
ことができる。
By the way, a management system for ferric chloride liquid can be constructed using such a method for analyzing the Ni content in ferric chloride liquid.

第4図はそのための構成の1例のブロック図であり、塩
化第2鉄液による処理槽lには新処理液注入手段2が付
属しており、処理[1内のNi量度が許容値以上になっ
た場合に、新処理液注入手段2により新処理液を注入し
、その中のNi濃度を低下させるようになっている。処
理槽1内の処理液は処理液サンプリング手段3によって
定期的にサンプルされる。そして、サンプルされた処理
液は、上記した吸光度λff1o−43゜とλ、。。を
測定する手段4によって、吸光度λ、1゜−1,。とλ
、。。
Fig. 4 is a block diagram of an example of a configuration for this purpose, in which a new treatment liquid injection means 2 is attached to a treatment tank l using a ferric chloride solution, and the amount of Ni in the treatment [1] is greater than the allowable value. When this occurs, a new processing liquid is injected by the new processing liquid injection means 2 to reduce the Ni concentration therein. The processing liquid in the processing tank 1 is periodically sampled by the processing liquid sampling means 3. The sampled processing liquid has the above-mentioned absorbance λff1o-43° and λ. . By means 4 of measuring the absorbance λ, 1°-1,. and λ
,. .

が測定される。その測定値からλ=λno −43゜−
λ$。。を演算する手段5により、純Ni濃度としての
吸光度λが計算される。一方、このシステムには、Ni
量とλとの検量線を記憶するための手段6が設けられて
おり、読み出し手段7により、演算手段5によって計算
されたλに対応するNi量が読み出される。この量が処
理に許容される上限値を越えているか否かが判断手段8
によって判断され、越えている場合には、どの程度の量
の新処理液を添加すればよいかが必要新処理液演算手段
9によって計算され、新処理液注入手段2にその結果が
送られ、その信号に基づいた量の新処理液が処理槽1に
加えられる。
is measured. From the measured value, λ=λno −43°−
λ$. . The means 5 for calculating calculates the absorbance λ as the pure Ni concentration. On the other hand, this system has Ni
A means 6 for storing a calibration curve between the amount and λ is provided, and a reading means 7 reads out the Ni amount corresponding to λ calculated by the calculation means 5. Judgment means 8 determines whether this amount exceeds the upper limit allowed for processing.
If it exceeds the amount, the required new processing liquid calculating means 9 calculates how much new processing liquid should be added, and the result is sent to the new processing liquid injection means 2. A new treatment liquid is added to the treatment tank 1 in an amount based on the signal.

第5図は第4図の変形例の構成のブロック図であり、塩
化第2鉄液による処理槽1には、新処理液注入手段2の
代わりに処理液交換手段10が付属しており、第4図と
、読み出し手段7により、演算手段5によって計算され
たλに対応するN+世が読み出され、この量が処理に許
容される上限値を越えているか否かを判断手段8によっ
て判断するまでは同じである。判断手段8によってNi
量が許容上限値以上であると判断された場合には、処理
液交換手段IOによって、処理槽I内の処理液は交換さ
れる。
FIG. 5 is a block diagram of a modification of the configuration shown in FIG. 4, in which the treatment tank 1 using the ferric chloride solution is provided with a treatment liquid exchange means 10 instead of the new treatment liquid injection means 2. 4, the readout means 7 reads out N+th corresponding to λ calculated by the calculation means 5, and the judgment means 8 judges whether this amount exceeds the upper limit allowed for processing. It's the same until you do. Ni by the judgment means 8
When it is determined that the amount is equal to or greater than the allowable upper limit value, the processing liquid in the processing tank I is replaced by the processing liquid exchange means IO.

なお、第4図、第5図何れの例においても、処理液サン
プリング手段3によってサンプルされた処理液には、図
示しない希釈手段及び色消去側添加手段によって、所要
量の希釈液及び色消去剤が添加される。
In both of the examples shown in FIGS. 4 and 5, the processing liquid sampled by the processing liquid sampling means 3 is supplied with a required amount of diluting liquid and color erasing agent by a diluting means and a color erasing side addition means (not shown). is added.

〔作用〕[Effect]

塩化第2鉄液中のNi含有量を、Niの吸収ピーク値近
傍の波長領域の吸光度とNi濃度に吸光度が関係ない波
長領域の吸光度とを測定し、両吸光度からNi含有量の
定量分析をしているので、塩化第2鉄濃度による誤差が
小さくなり、Ni含有量とに対する検量線を一本化する
ことが可能になる。したがって、信頼度の高いNi含有
量の分析ができ、エツチング処理液の管理が正確のもの
となる。
The Ni content in the ferric chloride solution was determined by measuring the absorbance in a wavelength region near the absorption peak value of Ni and the absorbance in a wavelength region where the absorbance is unrelated to the Ni concentration, and quantitatively analyzed the Ni content from both absorbances. Therefore, the error due to the ferric chloride concentration is reduced, and it becomes possible to unify the calibration curve for the Ni content. Therefore, the Ni content can be analyzed with high reliability, and the etching solution can be managed accurately.

〔実施例〕〔Example〕

以下、この発明についての実施例を説明する。 Examples of this invention will be described below.

比重1.470〜1.530の塩化第2鉄液を用いて、
エツチング製品を処理している工程において測定装置を
取り付け、色消去剤(リン酸)濃度28%、希釈率とし
て5倍希釈になるように設定し、Niが最大50g/j
!まで濃度変動している状態において、Ni量に対する
吸光度λ7.。−7,。
Using a ferric chloride solution with a specific gravity of 1.470 to 1.530,
A measuring device was installed in the process of processing etching products, and the color erasing agent (phosphoric acid) concentration was set to 28% and the dilution rate was 5 times diluted, and the maximum Ni content was 50 g/j.
! In a state where the concentration fluctuates up to 7.5%, the absorbance against the amount of Ni is λ7. . -7,.

とλsaoを測定し、Ni量とλ(=λ、1゜−1,。and λsao were measured, and the amount of Ni and λ(=λ, 1°-1,.

−λ、。。)との検量線を求めた。その結果、上記比重
範囲内においては、塩化第2鉄濃度に関係なく、検定率
99%以上で、検量線を一本化することができた。この
検量線を第6図に示す。そして、第4図に示した新処理
液補充システムとの連動により、Ni量を常に一定に管
理でき、安定したエツチング製品の製造が可能となった
−λ,. . ) was calculated. As a result, within the above specific gravity range, it was possible to unify the calibration curves with a verification rate of 99% or more, regardless of the ferric chloride concentration. This calibration curve is shown in FIG. By interlocking with the new processing solution replenishment system shown in FIG. 4, the amount of Ni can always be kept constant, making it possible to manufacture stable etching products.

〔発明の効果〕〔Effect of the invention〕

以上の本発明の塩化第2鉄液中のNi含有量分析法及び
塩化第2鉄液管理システムによれば、塩化第2鉄液中の
Ni含有量を、Niの吸収ピーク値近傍の波長領域の吸
光度とNi量度に吸光度が関係ない波長領域の吸光度と
を測定し、両吸光度からNi含有量の定量分析をしてい
るので、塩化第2鉄濃度による誤差が小さくなり、Ni
含有1に対する検l線を一本化することが可能となった
According to the above-described method for analyzing Ni content in a ferric chloride solution and the ferric chloride solution management system of the present invention, the Ni content in a ferric chloride solution can be measured in a wavelength region near the absorption peak value of Ni. The absorbance of ferric chloride and the absorbance in a wavelength region where the absorbance is not related to the Ni content are measured, and the Ni content is quantitatively analyzed from both absorbances, so the error due to the ferric chloride concentration is reduced,
It became possible to unify the detection line for inclusion 1.

なお、色消去剤(リン酸)の濃度や希釈率を上記条件に
することにより、測定値に対する塩化第2鉄濃度、測定
温度の影響もなく、高精度な測定が可能となる効果もあ
る。
Note that by setting the concentration and dilution rate of the color erasing agent (phosphoric acid) to the above conditions, there is an effect that highly accurate measurement is possible without the influence of the ferric chloride concentration and measurement temperature on the measured value.

したがって、信頼度の高いNi含有量の分析ができ、エ
ツチング処理液の管理が正確のものとなるので、品質の
高いエツチング製品の処理が可能になる。
Therefore, the Ni content can be analyzed with high reliability, and the etching solution can be managed accurately, making it possible to process etched products of high quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi量度を一定としたときのFe濃度の変化に
よる吸光度の変化を示すための図、第2図はFed度を
一定としたときのNi量度の変化による吸光度の変化を
示すための図、第3図は希釈率の測定精度に対する影響
を示すための図、第4図は本発明による塩化第2鉄液管
理システムの構成の1例のブロック図、第5図は第4図
の変形例の構成のブロック図、第6図は実際に求めた検
量線を示すための図である。 1・・・塩化第2鉄液処理槽、2・・・新処理液注入手
段、3・・・処理液サンプリング手段、4・・・吸光度
λ71゜130)λsoo測定手段、5・・・λ−λI
Q −13゜−λ、。。演算手段、6・・・Ni量とλ
との検m線記憶手段、7・・・λに対応するNiff1
の読み出し手段、8・・・NINが処理上限値以下か否
かの判断手段、9・・・必要新処理液演算手段、lO・
・・処理液交換手段大日本印刷株式会社
Figure 1 is a diagram showing the change in absorbance due to a change in Fe concentration when the Ni content is constant, and Figure 2 is a diagram showing the change in absorbance due to a change in Ni content when the Fed content is constant. Figure 3 is a diagram showing the influence of the dilution rate on measurement accuracy, Figure 4 is a block diagram of an example of the configuration of a ferric chloride liquid management system according to the present invention, and Figure 5 is a diagram showing the influence of the dilution rate on measurement accuracy. FIG. 6, a block diagram of the configuration of the modified example, is a diagram showing an actually obtained calibration curve. DESCRIPTION OF SYMBOLS 1... Ferric chloride liquid treatment tank, 2... New processing liquid injection means, 3... Treatment liquid sampling means, 4... Absorbance λ71°130) λsoo measuring means, 5... λ- λI
Q −13°−λ,. . Calculating means, 6...Ni amount and λ
Niff1 corresponding to 7...λ
reading means, 8... means for determining whether NIN is below the processing upper limit value, 9... means for calculating necessary new processing liquid, lO.
・・Processing liquid exchange means Dai Nippon Printing Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)塩化第2鉄液中のNi含有量を、Niの吸収ピー
ク値近傍の波長領域の吸光度とNi濃度に吸光度が関係
ない波長領域の吸光度とを測定し、両吸光度からNi含
有量の定量分析をすることを特徴とする塩化第2鉄液中
のNi含有量分析法。
(1) To determine the Ni content in the ferric chloride solution, measure the absorbance in a wavelength region near the absorption peak value of Ni and the absorbance in a wavelength region where the absorbance is not related to the Ni concentration, and calculate the Ni content from both absorbances. A method for analyzing Ni content in a ferric chloride solution, characterized by quantitative analysis.
(2)Niの吸収ピーク値近傍の波長領域を710nm
から730nmとし、Ni濃度に吸光度が関係ない波長
領域を500nmとして、上記両波長領域の吸光度を測
定することを特徴とする請求項1記載の塩化第2鉄液中
のNi含有量分析法。
(2) The wavelength region near the absorption peak value of Ni is 710 nm.
2. The method for analyzing Ni content in a ferric chloride solution according to claim 1, wherein absorbance is measured in both of the wavelength ranges, with the wavelength region having no relation to the Ni concentration being 500 nm.
(3)両吸光度の差を用いて定量分析をすることを特徴
とする請求項1又は2記載の塩化第2鉄液中のNi含有
量分析法。
(3) The method for analyzing Ni content in a ferric chloride solution according to claim 1 or 2, characterized in that quantitative analysis is performed using the difference between both absorbances.
(4)Fiの吸光度への影響をなくすために色消去剤と
してのリン酸溶液の濃度を25%以上に選定して用いる
ことを特徴とする請求項1から3の何れか1項に記載の
塩化第2鉄液中のNi含有量分析法。
(4) The method according to any one of claims 1 to 3, characterized in that the concentration of the phosphoric acid solution as a color erasing agent is selected to be 25% or more in order to eliminate the influence on the absorbance of Fi. Method for analyzing Ni content in ferric chloride liquid.
(5)塩化第2鉄液による処理槽を有し、前記処理槽内
のNi濃度が許容値以上になった場合に新処理液を注入
するための新処理液注入手段を前記処理槽に付属させた
塩化第2鉄液管理システムにおいて、前記処理槽内の処
理液をサンプルするための処理液サンプリング手段、処
理液サンプリング手段によってサンプルされた処理液の
Niの吸収ピーク値近傍の波長領域の吸光度とNi濃度
に吸光度が関係ない波長領域の吸光度とを測定する手段
、前記測定手段によって測定された両吸光度の差を演算
する手段、含有Ni量と両吸光度の差との検量線を記憶
するための手段、両吸光度の差に対応する含有Ni量を
前記記憶手段から読み出す手段、前記読み出し手段によ
って読み出された含有Ni量が処理に許容される上限値
を越えているか否かを判断する手段、前記判断手段によ
って含有Ni量が処理に許容される上限値を越えている
と判断された場合に前記新処理液注入手段に新処理液を
注入することを指令する手段を備えたことを特徴とする
塩化第2鉄液管理システム。
(5) It has a treatment tank using a ferric chloride solution, and a new treatment liquid injection means is attached to the treatment tank for injecting a new treatment liquid when the Ni concentration in the treatment tank exceeds an allowable value. In the ferric chloride liquid management system, the processing liquid sampling means for sampling the processing liquid in the processing tank, the absorbance in a wavelength region near the Ni absorption peak value of the processing liquid sampled by the processing liquid sampling means means for measuring and absorbance in a wavelength range where the absorbance is unrelated to Ni concentration; means for calculating the difference between the two absorbances measured by the measuring means; and for storing a calibration curve between the amount of Ni contained and the difference between the two absorbances. means for reading out the Ni content corresponding to the difference between both absorbances from the storage means; and means for determining whether the Ni content read out by the reading means exceeds an upper limit allowed for the process. , further comprising means for instructing the new treatment liquid injection means to inject a new treatment liquid when the determination means determines that the amount of Ni contained exceeds the upper limit allowed for the treatment. Ferric chloride liquid management system.
(6)塩化第2鉄液による処理槽を有し、前記処理槽内
のNi濃度が許容値以上になった場合に新処理液と交換
するための処理液交換手段を前記処理槽に付属させた塩
化第2鉄液管理システムにおいて、前記処理槽内の処理
液をサンプルするための処理液サンプリング手段、処理
液サンプリング手段によってサンプルされた処理液のN
iの吸収ピーク値近傍の波長領域の吸光度とNi濃度に
吸光度が関係ない波長領域の吸光度とを測定する手段、
前記測定手段によって測定された両吸光度の差を演算す
る手段、含有Ni量と両吸光度の差との検量線を記憶す
るための手段、両吸光度の差に対応する含有Ni量を前
記記憶手段から読み出す手段、前記読み出し手段によっ
て読み出された含有Ni量が処理に許容される上限値を
越えているか否かを判断する手段、前記判断手段によっ
て含有Ni量が処理に許容される上限値を越えていると
判断された場合に前記処理液交換手段に新処理液と交換
することを指令する手段を備えたことを特徴とする塩化
第2鉄液管理システム。
(6) A treatment tank with a ferric chloride solution is provided, and a treatment liquid exchange means is attached to the treatment tank for replacing the treatment liquid with a new treatment liquid when the Ni concentration in the treatment tank exceeds an allowable value. In the ferric chloride liquid management system, a processing liquid sampling means for sampling the processing liquid in the processing tank, and N of the processing liquid sampled by the processing liquid sampling means.
means for measuring the absorbance in a wavelength region near the absorption peak value of i and the absorbance in a wavelength region where the absorbance is not related to the Ni concentration;
means for calculating the difference between the two absorbances measured by the measuring means; means for storing a calibration curve between the amount of Ni contained and the difference between the two absorbances; and a means for storing the amount of Ni contained corresponding to the difference between the two absorbances from the storage means. reading means, means for determining whether the amount of Ni contained read by the reading means exceeds the upper limit allowed for processing, and means for determining whether the amount of Ni contained exceeds the upper limit allowed for processing by the judgment means; A ferric chloride liquid management system, comprising means for instructing the processing liquid exchange means to replace the processing liquid with a new processing liquid when it is determined that the processing liquid has changed.
JP31278089A 1989-11-30 1989-11-30 Analysis of ni content in ferric chloride solution and system for managing ferric chloride solution Pending JPH03172738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31278089A JPH03172738A (en) 1989-11-30 1989-11-30 Analysis of ni content in ferric chloride solution and system for managing ferric chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31278089A JPH03172738A (en) 1989-11-30 1989-11-30 Analysis of ni content in ferric chloride solution and system for managing ferric chloride solution

Publications (1)

Publication Number Publication Date
JPH03172738A true JPH03172738A (en) 1991-07-26

Family

ID=18033314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31278089A Pending JPH03172738A (en) 1989-11-30 1989-11-30 Analysis of ni content in ferric chloride solution and system for managing ferric chloride solution

Country Status (1)

Country Link
JP (1) JPH03172738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175631A (en) * 2010-12-31 2011-09-07 昆明理工大学 Method for measuring metallic nickel contained in lateritic-nickel-ore reduction products
CN104101576A (en) * 2014-07-31 2014-10-15 攀钢集团江油长城特殊钢有限公司 Method for determining nickel content in steel or iron alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175631A (en) * 2010-12-31 2011-09-07 昆明理工大学 Method for measuring metallic nickel contained in lateritic-nickel-ore reduction products
CN104101576A (en) * 2014-07-31 2014-10-15 攀钢集团江油长城特殊钢有限公司 Method for determining nickel content in steel or iron alloy

Similar Documents

Publication Publication Date Title
JP5604770B2 (en) Method and apparatus for adjusting developer concentration
WO1993014390A1 (en) A method of determining the concentration of sulfide in liquors and smelt solutions
Hill Direct photometric determination of aluminum in iron ores
SA517381910B1 (en) Apparatus for, system for and method of maintaining sensor accuracy
Hill Photometric determination of beryllium
JPH03172738A (en) Analysis of ni content in ferric chloride solution and system for managing ferric chloride solution
US4081280A (en) Processing of photographic silver halide materials
JPS61149949A (en) Method for controlling processing solution for silver halide photographic sensitive material
Agazzi Determination of Tin in Hydrogen Peroxide Solutions by Atomic Absorption Spectrometry.
EP0830598B1 (en) Manganese iii method for chemical oxygen demand analysis
DeBolt A high sample volume procedure for the colorimetric determination of soil organic matter
Duffendack et al. Quantitative analysis by spectroscopic methods
Donaldson et al. Volumetric analysis of stannous and total tin in acid-soluble tin compounds
US5065417A (en) Method and apparatus for monitoring the partial density of metal and acid in pickling baths
Bates et al. Processing control procedures for Ansco color film
Olin et al. Determination of citrate by potentiometric titration with copper (II) and a copper ion-selective electrode
JPH0230465B2 (en)
JP2005265728A (en) Quantitative analytical method by colorimetric method
Fenwick Rapid method for fixing end point of potentiometric titration
CN110687060A (en) Method for combined determination of phosphorus and silicon content in high-carbon ferrochrome and nitrided ferrochrome
JPS61259250A (en) Method for checking performance of stabilizer to be replaced for washing for photographic sensitive material and method for controlling replenisher amount for stabilizer to be replaced for washing
Bacon The photometric determination of phosphorus in low-alloy steels
Calokerinos et al. Indirect potentiometric determination of sulphide with a cadmium ion-selective electrode
Gehring et al. Determination of sodium nitrate in sodium nitrite by selective ion electrode measurement
JPH0355559B2 (en)